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Abstract: Recent advancements in experimental approaches have made it possible to synthesize
silver (Ag5) atomic quantum clusters (AQCs), which have shown a great potential in photocatalysis.
This study employs the generalized gradient approximation (GGA) density functional theory (DFT)
to explore the adsorption of CO2, CH4, and H2O molecules on the Ag5 AQC. Our investigations
focus on the structural and electronic properties of the molecules in Ag5 AQC systems. This involves
adsorption energy simulations, charge transfer, charge density difference, and the density of states
for the modelled systems. Our simulations suggest that CH4 and H2O molecules exhibit higher
adsorption energies on the Ag5 AQC compared to CO2 molecules. Remarkably, the presence of CH4

molecule leads to a significant deformation in the Ag5 AQC structure. The structure reforms from a
bipyramidal to trapezoidal shape. This study also reveals that the Ag5 AQC donates electrons to CO2

and CH4 molecules, resulting in an oxidation state. In contrast, gaining charges from H2O molecules
results in a reduced state. We believe the proposed predictions provide valuable insights for future
experimental investigations of the interaction behaviour between carbon dioxide, methane, water
molecules, and Ag5 sub-nanometre clusters.

Keywords: Ag5 atomic quantum cluster; DFT; renewable energy

1. Introduction

Metal nanoparticles with sizes ranging from 2 to 100 nm have been extensively studied
and applied in various fields such as catalysis [1], bioassays [2], and medicine [3]. When the
size of metal particles is reduced to approximately 0.5 nm for silver (Ag) or gold (Au) [4],
new chemical, optical, and electrical attributes appear, which differ significantly from bulk
and nanomaterials. These metal particles are known as atomic quantum clusters (AQCs)
and possess discrete electronic energy levels due to their very small sizes. Surprisingly,
these metal AQCs are highly stable due to strong quantum confinement, which includes
the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) gap at the Fermi energy level [5]. As the size of the metal clusters reduces, the
HOMO–LUMO gap increases, leading to a reduction in its reactivity. Currently, small
metal clusters with a size of less than 1 nm are being synthesized and widely studied
under realistic reaction conditions [6–8]. Additionally, experimental investigations have
revealed that these sub-nanometre clusters have unique catalytic activities due to their
high surface-to-volume ratio and high concentration of impurity atoms compared with the
bulk materials [9–12]. Silver AQCs play a pivotal role in various technological processes,
including photocatalysis, where they are utilized as cocatalysts.

In recent years, the advancement of the density functional theory (DFT) and improve-
ments in computer hardware have made quantum mechanical calculations and molecular
modelling techniques effective tools for investigating the adsorption mechanism of silver
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clusters on metal oxide surfaces [13,14]. Computational techniques have been widely em-
ployed to gain mechanistic insights into metallic nanoparticles, which are highly attractive
materials. In particular, Hagen et al. [15] provided theoretical evidence that odd-sized
Ag cluster anions, specifically Ag3 and Ag5, can activate the molecular bond of oxygen
through cooperative effects in the adsorption of two oxygen molecules. Furthermore, it has
been found that Ag5 AQCs exhibit exceptional catalytic activities upon the adsorption on
the rutile TiO2 (110) surface. Alotaibi et al. [16], for instance, conducted a systematic study
on the impact of the Ag5 AQC on the photocatalytic activities of rutile and anatase TiO2
using DFT calculations. The deposition of Ag5 on titania surfaces was predicted to induce
electronic gap states due to charge transfers from the cluster, resulting in the enhanced
photocatalytic activities of the material. Gogoi et al. [17] observed a significant reduction in
the band gap of a TiO2 surface upon depositing 1.5 Ag, leading to an improvement in the
photocatalytic activity for hydrogen production. Additionally, Preda et al. [18] employed
DFT to investigate the Ag cluster on pure and defective CeO2 (111) surfaces. It was found
that the Ag cluster undergoes oxidation, transferring its valence electrons to the CeO2
surface, thereby enhancing its photocatalytic activity.

Several theoretical and experimental studies have been conducted on the mechanism of
silver clusters. However, the important mechanisms necessary for fabricating higher levels
of photocatalytic materials have not been thoroughly investigated either theoretically or
experimentally. Notably, the literature lacks calculations of Ag5 AQCs with CO2, CH4, and
H2O molecules, and investigations of their geometries and electronic properties are of great
significance, given that they can now be synthesized and produced without ligands [19,20].
The combustion of fossil fuels, namely natural gas, oil, and coal is a significant contributor
to the emission of greenhouse gases. The release of large quantities of CO2 and CH4, among
other gases, has a detrimental impact on the environment. Methane leakage, for instance,
represents a considerable waste of resources and poses significant pollution issues. Given
the pressing need for clean energy, it is of utmost importance to develop efficient hydrogen
evolution reaction (HER) catalysts [21] that can split water into oxygen and hydrogen.
Therefore, it is crucial to identify functionally tailored materials that can enable cross-
selectivity techniques for the development of nonconventional, cleaner energy sources.

This paper aims to investigate the interactions between Ag5 AQCs with CO2, CH4, and
H2O molecules, by considering their corresponding geometries and electronic structures,
using DFT. The materials presented in this paper have the potential for various technological
applications, including hydrogen production, methane gas sensors, and nanoelectronics.
To explore the interactions of Ag5 AQCs with these molecules, we have computed different
electronic characteristics, including the adsorption energy, charge transfer using Bader
charge analysis, charge density difference, and density of states (DOSs). This study could
serve as a valuable theoretical guide for future experimental work towards photocatalytic
processes used in the field of renewable energy. The structure of this paper is as follows.
In Section 2, we elaborate on the computational methodologies developed and utilized
in this study. Subsequently, the findings from our computations are expounded upon
and deliberated in Section 3, which is divided into several subsections. Finally, Section 4
summarizes our primary results, offering a pragmatic outlook on their implications.

2. Computational Details

In this study, quantum chemical simulations were implemented to investigate the
structural and electronic properties of the Ag5 AQC and its interaction with the stud-
ied molecules. The Kohn–Sham DFT technique [22,23] was used, employing the Quan-
tum Espresso simulation package v6.7 [24]. The exchange correlation functionals were
treated within the generalised gradient approximation (GGA) suggested by Perdew-Burke-
Ernzerhof (PBE) [25]. A plane-wave basis set with an energy cut-off value of 25 Ry for the
wave function and 225 Ry for the charge density were fixed for all calculations present
in this study. We also tested the optimisation results by increasing the energy cut-off
value to 50 Ry, and found the same optimised configurations revealed by the initial energy
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cut-off value. See Figure S9 for comparison purposes. The projector augmented wave
(PAW) method [26,27] pseudopotentials were employed to describe the interaction between
valence electrons and the ion core. The PAW technique allowed for the precise treatment of
the valence band states.

All modelled systems were placed in sufficiently large simple cubic cells with a side
length of 15 Å to prevent any interactions between molecules in different replicas. To
account for the large size of the unit cells, all simulations were restricted to the Γ-point
within a Brillouin zone. During the geometric optimization, a convergence threshold value
of 10−6 Ry was utilized for the self-consistency electronic minimization, and all atoms were
allowed to relax with a threshold force value of 10−3 Ry/Å. To analyse electron transport,
Bader charge analysis was employed [28]. The VESTA software [29] was used to analyse
maps of charge density difference, and to visualise all structures. It is important to note that
all simulations utilized spin-polarized calculations to obtain accurate electronic structures.
The adsorption energy (Eads) of the CO2, CH4, and H2O molecules on the Ag5 AQC was
calculated using the formula provided below.

Eads = Etot − EAg5 − Emolecule (1)

In the equation, Etot represents the total energy of the entire system, EAg5 denotes the
total energy of the bare Ag5 cluster, and Emolecule signifies the total energy of the isolated
molecule. The subsequent section undertakes an examination of the optimised structures
and adsorption energies. Furthermore, an exploration into the influence of CO2, H2O, and
CH4 on the electronic structures of the Ag5 AQC is conducted through the presentation of
the density of states, Bader charge analysis, and charge density difference.

3. Results and Discussion

The structure and electronic properties of the Ag5 atomic quantum cluster interacting
with CO2, CH4, and H2O molecules were explored as follows.

3.1. The CO2@Ag5 Structure

We started the calculations by examining the geometrical and electronic properties of
the isolated systems. For example, the isolated Ag5 nanocluster, represented by a doublet
with S = 1/2 in the density of state plot (see Figure S4), has an unpaired electron that is
predominantly located on the two axial Ag atoms [16]. This unpaired electron is represented
by the singly occupied molecular orbital (SOMO), which is suited right below the Fermi
energy level. This distribution of charge is similar to that observed in Cu5 [30]. Furthermore,
the existence of the unpaired electron in the Ag5 nanocluster can influence its electronic
properties. Unpaired electrons are often involved in the electronic and optical attributes of
materials. For instance, Yang et al. [31] conducted a theoretical and experimental study on
Cu or Zn on metal-organic frameworks (MOFs) containing electron-withdrawing ligands.
Their results revealed that electrons induced wide-range light absorption within the MOFs,
resulting in an excellent photo-induced intramolecular charge transfer (ICT) effect. The
study verified the role of unpaired electrons in enhancing ICT within the MOFs through
molecular structure, density of states, and electronic structure calculations, as well as the
electron spin resonance (EPR) approach.

We investigated the interaction mechanism of the CO2 molecule with the silver AQC
by exploring its geometric optimization and electronic properties, including adsorption
energy, charge transfer, charge density difference, and the density of states, to gain a deep
understanding of the process. Three different adsorption sites of CO2 on the Ag5 cluster
have been explored to find the most stable structure (see Figures 1 and S6). The initial
and optimized structures of the most stable configuration of CO2@Ag5 are presented in
Figure 1, which clearly shows that the CO2 molecule was initially connected with two silver
atoms (see Figure 1a). However, after the geometric optimization, only one oxygen atom
was bonded to one silver atom, with a bond length of 2.56 Å (see Figure 1b and Table 1).
The calculated distance between the carbon atom and the nearest silver atom was 3.25 Å,
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which is consistent with a previous DFT study [32]. Meanwhile, a low stability was found
for the structures possessing no bond between the oxygen atom and the silver atom. See
Figure S6 and Table S8 for further details. The calculations of isolated systems, along with
coordinates for all studied structures, can be found in the Supplementary Information.
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Figure 1. (a) Initial and (b) optimised structures of CO2@Ag5. Grey, red, and brown circles represent
Ag, O, and C atoms, respectively.

Table 1. Bond lengths of CO2@Ag5 structure obtained using the PBE-DFT level.

Symbol Bond Length (Å)

r1 2.82
r2 2.80
r3 2.76
r4 2.67
r5 2.72
r6 2.81
r7 2.81
r8 2.80

r9 (Ag-O) 2.56
r10 (Ag-C) 3.25

It is worth noting that upon the adsorption of the CO2 molecule, the Ag–Ag bonds of
the Ag5 AQC were slightly increased, resulting in changes to the geometric structures of the
silver cluster. Further details can be found in Table 1. These changes in the silver geometric
structures when interacting with CO2 molecules were also reported in a recent theoretical
investigation [33]. Consequently, this increase in Ag–Ag bonds could enhance the surface
activity of the silver cluster [34]. The adsorption energy, Eads, was calculated using the
PBE-DFT level of the theory. The results indicated that the CO2 molecule was physiosorbed
to the Ag5 cluster with an adsorption energy of −0.27 eV. This value is comparable to the
results previously obtained by Zhang et al. [35]. Furthermore, it is important to note that
the chemisorption feature of CO2 on silver surfaces was not predicted in previous DFT
simulations [36,37]. This is due to the unusual and unstable structure deformation of the
CO2 molecule. The calculated bond lengths of the bare Ag5 cluster are illustrated in Figure
S1d, which can be compared with the results presented in Table 1.

To investigate the charge transfer between the Ag5 AQC and the CO2 molecule,
we conducted Bader charge analysis calculations [38]. The results of the Bader charge
distribution revealed a modest charge donation from the silver cluster to the CO2 molecule,
amounting to approximately 0.004 e−. This charge transfer indicates that the cluster
was oxidized. Additional information regarding the Bader charge analysis can be found
in Table S5 of the Supplementary Information. This result aligns with a previous study
conducted by Zhang et al. [34]. In their research, they employed a natural bond orbital
(NBO) charge analysis to identify electronic transfer. Their results predicted that the Ag2
cluster transfers approximately 0.009 e− to the adsorbed CO2 molecule. Furthermore, to
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gain insights into the chemical bonds [39,40] and electronic structures of the CO2@Ag5
system, we examined its charge density difference and density of states, as depicted in
Figure 2. The charge density difference plot reveals that the oxygen atoms of the CO2
molecule exhibit negative surface potentials (represented by the blue clouds), while the
silver atoms possess positive surface potentials (represented by the yellow clouds). This
suggests that the interaction between the silver AQC and the CO2 molecule is primarily
driven by electrostatic forces.
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Figure 2. Charge density difference and density of states of CO2@Ag5. The blue, red, and grey curves
of DOS represent the contributions of silver, oxygen, and carbon orbitals, while yellow and cyan
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reference colours are used for all the charge density difference plots in the subsequent figures.). The
vertical dotted line refers to the Fermi energy level.

Furthermore, we conducted an analysis of the interaction between the Ag5 AQC and
the adsorbed molecule, focusing on the orbital overlaps. Our investigation revealed that
the density of states exhibited the formation of four peaks (see Figure 2), which were
generated successively as a result of the combination of the orbital of the C atom with that
of the O atom. The DOS figure indicated a strong overlapped state of the orbital of the
C atom and the orbital of the O atom, whose peak was located at approximately −9.5 eV.
This observation suggests a significant electron transfer from the C atom to the O atoms,
estimated to be around 2.16 e−. It is worth noting that the energy level states of the CO2
molecule experienced a significant shift of approximately −3 eV due to the interaction of
the Ag5 AQC (see Figures S2 and S4 of the DOS of the isolated CO2 molecule and bare
Ag5 cluster for comparison purposes, respectively). Additionally, we observed a weak
orbital overlap in low-energy states, which were located at less than −6 eV, for the binding
interaction of the Ag atom with the O atom.

3.2. The CH4@Ag5 Structure

Three different adsorption sites of CO2 on the Ag5 cluster have been explored to find
the most stable structure (see Figures 3 and S7). The structures presented in Figure S7
showing meta-stable states and the clusters retain their initial configurations, while Figure 3
illustrates the initial (bipyramidal) and optimized (trapezoidal) Ag5 cluster configurations
of the most stable CH4@Ag5 structure. Surprisingly, upon geometric optimization, a
significant deformation of the silver cluster occurred when interacting with the methane
molecule. This deformation resulted in a transition from a three-dimensional (bipyramidal)
shape (see Figure 3a) to a two-dimensional (trapezoidal) shape, as depicted in Figure 3b.
A previous DFT investigation [16] has reported that the trapezoidal-shaped Ag5 cluster
is energetically favourable compared to the bipyramidal-shaped Ag5 cluster. Therefore,
it can be inferred that the interaction of methane plays a crucial role in stabilizing the
silver AQC, even though it significantly affects the cluster’s geometry. The calculated
distance between the carbon atom and the nearest silver atom was determined to be 3.60 Å
(see Table 2 for further details), which agrees well with a previous DFT prediction [32].
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Additionally, the calculated Ag–Ag bond lengths of the cluster were nearly identical,
with an average value of 2.64 Å, indicating the stability of the cluster. Furthermore,
the physical adsorption of CH4 was observed on the Ag5 AQC with an energy value of
−0.50 eV. Similarly, a small adsorption energy of methane has been found on Ag20 [41]
and platinum (Pt) [42] nanoclusters.
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Table 2. Bond lengths of CH4@Ag5 structure obtained using the PBE-DFT level.

Symbol Bond Length (Å)

r1 2.62
r2 2.62
r3 2.63
r4 2.65
r5 2.65
r6 2.63
r7 2.65

r8 (Ag-C) 3.60

In relation to charge transfer, the C atom’s total electronic charge was determined
to be 0.38 e−. Of this charge, approximately 0.36 e− was transferred from the H atoms,
while the remaining charge (~0.02 e−) was transferred from the Ag5 cluster, resulting in the
oxidation of the cluster. The interaction between the Ag5 cluster and the methane molecule
was dominated by electrostatic forces, as evidenced by the charge density difference
illustrated in Figure 4. The yellow clouds surrounding the Ag atoms indicate positive
surface potentials, while the blue clouds on the CH4 molecule indicate negative surface
potentials. Based on the density of states’ results, two electronic states were formed due to
the contribution of the orbital of the C atom and the orbital of the H atoms. At approximately
−5.5 eV, there was a clear overlap of the CH4 orbitals (see Figure 4). Comparing the density
of the states of the isolated CH4 molecule (see Figure S3) with its density of states when
interacting with the silver cluster, it can be observed that the electronic energy levels shifted
towards lower energy levels by a factor of 3 eV. Notably, a weak hybridization of the
methane molecule and the Ag5 AQC occurred in the energy range of −5 eV to −6 eV,
indicating a physical interaction between the methane and the silver cluster. This trend
was also observed when adsorbing the CH4 molecule on small tin-oxide clusters [43].
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3.3. The H2O@Ag5 Structure

Three different adsorption sites of CO2 on the Ag5 cluster have been explored to
find the most stable structure (see Figures 5 and S8). It was found that the structure
showed lower stability when the water molecule was adsorbed on the axial silver atom
(see Figure S8d), while the structure revealed a higher stability when the water molecule
was bonded to the equatorial silver atom (see Figures S8b and 5b). We further analysed the
system where Figure 5 depicts the initial and optimized configurations of the most stable
configuration of the H2O@Ag5 system. Initially, the H2O molecule was connected to three
silver atoms (as shown in Figure 5a). Following geometrical optimization, as can be clearly
seen in Figure 5b, the H2O molecule was attached to the Ag5 AQC through an Ag–O bond of
approximately 2.36 Å (see Table 3 for further details). This value for the Ag–O bond length
is consistent with previous theoretical studies [44–47]. Notably, there was an insignificant
change in the Ag–Ag bond length of the cluster after the adsorption of the water molecule.
The calculated value for the H2O adsorption energy was approximately −0.50 eV, which
suggests that the adsorption was physical rather than chemical. This adsorption energy
value is in line with a previous study [48]. Table 4 illustrates the adsorption energies of the
studied molecules on the Ag5 AQC and compares the results with the literature.
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Table 3. Bond lengths of H2O@Ag5 structure obtained using the PBE-DFT level.

Symbol Bond Length (Å)

r1 2.80
r2 2.80
r3 2.68
r4 2.72
r5 2.81
r6 2.80
r7 2.80
r8 2.80

r9 (Ag-O) 2.36

Table 4. Adsorption energies (Eads, eV) of the studied molecules on Ag5 AQC compared with
the literature.

Structure Present Study Literature

CO2@Ag5 −0.27 −0.29 [32]
CH4@Ag5 −0.50 −0.27 [41]
H2O@Ag5 −0.50 −0.52 [48]

Based on the Bader charge analysis, it can be inferred that the hydrogen atoms in the
H2O molecule lose approximately 1.99 e−, with the oxygen atom gaining around 1.92 e−

and the remaining charge (~0.07 e−) being transferred to the Ag5 AQC, resulting in the
reduction of the Ag5 AQC. Further details on the charge distribution can be found in
Table S7. The charge density difference and the density of the states of the H2O@Ag5
model are presented in Figure 6. Similar to the CO2@Ag5 and CH4@Ag5 systems, the H2O
molecule exhibited negative surface potentials (represented by the blue clouds), while
the silver atoms possessed positive surface potentials (represented by the yellow clouds),
indicating that the interaction between the silver AQC and the H2O molecule is primarily
driven by electrostatic forces. The density of the states information in Figure 6 reveals
that the water molecule produced four peaks due to the bonds between the hydrogen
atoms and the oxygen atom. Specifically, the electronic state appearing at approximately
−9.8 eV was mainly derived from the notable mixture of hydrogen and oxygen orbitals,
resulting in the charge transfer from the hydrogen atoms to the oxygen atom. Comparing
the density of states of the isolated water molecule (see Figure S5) with its density of states
when interacting with the Ag5 cluster (see Figure 6), a clear shift in the energy level states
of the water molecule towards lower energy levels can be observed, primarily due to the
interaction with the Ag5 AQC. Additionally, the Ag–O bond led to the formation of an
overlapped electronic state whose peak was located at approximately −6.3 eV, providing
evidence for the charge transfer between the Ag5 cluster and the water molecule.

In pursuit of the objectives outlined in this work, it is important to note that the
structures presented herein may not represent the most stable configurations. Therefore, an
additional step is required to identify the most stable structures, which would significantly
enhance the theoretical predictions of the electronic structures of the molecules of Ag5
systems. Moreover, the selection of exchange-correlation functional presents an obvious
challenge, and the application of hybrid functional, such as HSE06 [48], could lead to more
accurate electronic property predictions. To precisely determine and validate the amount
of charge transfer between species, alternative methods of charge transfer analysis, such as
Hirshfeld [49], Voronoi [50], or Mulliken [51], could be employed.
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4. Concluding Remarks

In the present study, we have investigated the interactions between the Ag5 AQC
and various molecules, namely methane, carbon dioxide, and water, utilizing DFT pre-
dictions. Specifically, we have employed Bader charge analysis to examine the charge
transfer between the Ag5 cluster and the molecules. Our results reveal that the Ag5 cluster
experiences slight charge loss when interacting with CO2 and CH4 molecules. Conversely,
the cluster gains electrons upon interaction with the H2O molecule. Furthermore, we have
performed adsorption energy calculations to assess the strength of the adsorption of water,
methane, and carbon dioxide on the Ag5 AQC. Our results indicate that both water and
methane exhibit stronger adsorption on the Ag5 AQC compared to the carbon dioxide
molecule, with an energy difference of 0.23 eV. The atomic arrangement of the CO2@Ag5
compound involves a singular oxygen atom covalently bonded to a singular silver atom,
with a bond length measuring 2.56 Å. The analysis reveals that the distance between the
carbon atom and the closest silver atom is 3.25 Å, which aligns with the findings of a prior
DFT investigation. Conversely, structures lacking a bond between the oxygen atom and the
silver atom exhibit lower stability. Notably, we have observed a significant deformation
of the Ag5 AQC following its interaction with the methane molecule. This deformation
suggests that the Ag5 AQC could potentially be further stabilised by introducing CH4 into
the system. In the case of the H2O@Ag5 system, it was noted that the H2O molecule was
connected to the Ag5 AQC via an Ag–O bond spanning approximately 2.36 Å. Remarkably,
the Ag–Ag bond length of the cluster experienced minimal alteration following the ad-
sorption of the water molecule. The computed H2O adsorption energy was approximately
−0.50 eV, indicating a predominantly physical, rather than chemical, adsorption process.
The results in this work can be significantly enhanced by implementing hybrid functionals
to gain a deeper understanding of the electronic behaviour of the studied molecules when
interacting with the Ag5 AQC. To sum up, our theoretical predictions offer valuable insights
into the interactions between the Ag5 AQC and CO2, CH4, and H2O molecules. These
results hold potential significance for future experimental studies, providing a foundation
for further exploration in the field of renewable energy.
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