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Abstract: The quality of the N-doped 4H-SiC homoepitaxial layers grown via hot-wall horizontal
chemical vapor deposition (CVD) was evaluated at various C/Si ratios (1.0–1.2) and growth tempera-
tures (1570–1630 ◦C). The microstructure and morphology of the epilayers were studied through a
comparative analysis of the AFM patterns under different growth conditions. X-ray photoelectron
spectroscopy and Raman spectroscopy revealed the quality of the 4H-SiC epilayers and the amount
of N-doping. It was found that an increase in the C/Si ratio enabled obtaining a quite smooth
epitaxial layer surface. Moreover, only the 4H-SiC crystal type was distinguished in the epilayers.
In addition, the epitaxial quality was gradually improved, and the amount of defect-related C-C
bonds significantly dropped from 38.7% to 17.4% as the N doping content decreased from 35.3%
to 28.0%. An increase in the growth temperature made the epitaxial layer surface smoother (the
corresponding RMS value was ~0.186 nm). According to the Raman spectroscopy data, the 4H-SiC
forbidden mode E1(TO) in the epilayers was curbed at a higher C/Si ratio and growth temperature,
obtaining a significant enhancement in epitaxial quality. At the same time, more N dopants were
inserted into the epilayers with increasing temperature, which was opposite to increasing the C/Si
ratio. This work definitively shows that the increase in the C/Si ratio and growth temperature can
directly enhance the quality of the 4H-SiC epilayers and pave the way for their large-scale fabrication
in high-power semiconductor devices.
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1. Introduction

Silicon carbide (SiC) is characterized by a robust crystal structure, high-temperature
resistance, outstanding conductivity, and favorable chemical stability [1–4]. In particular,
its impressive conductive properties make SiC widely used in the semiconductor field,
especially in electronic power devices. Meanwhile, tuning the content of impurities can
change the electrical properties of silicon carbides. For example, n-type semiconduc-
tors are produced via the intentional introduction of nitrogen [5]. For instance, nearly
250 polytype isomers of SiC single crystals have been reported to date, of which the most
common are the 3C, 4H, and 6H structures [6–9]. Compared with the other two types,
the 3C-SiC configuration is unstable, making it difficult to grow large 3C-SiC ingots at a
reasonable rate [8,9]. The intrinsic carrier concentration and electron mobility of the 4H-SiC
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are much higher than those of the 6H-SiC. Excessive electron mobility can result in a higher
current density or a lower on-resistance with the same current density [10,11]. Moreover,
the switching speed of the 4H VDMOS is slower than that of the 6H-SiC. As such, the
4H-SiC is suitable for the development of power devices.

In recent years, the 4H-SiC bulk single crystals have been extensively developed, and
those of 6 inches have been put into industrial production. However, there are inevitable
structural and surface defects in the substrate, which reduce the withstand voltage and
carrier mobility of the material, greatly weakening the device’s performance [12–20]. To
decrease the defect density, high-quality SiC epitaxial layers are often designed, which
makes the whole plane flatter and hinders the emergence of defects, thereby ensuring the
performance of appliances [21,22]. Generally, the epitaxial growth of other semiconductor
materials such as silicon [23], sapphire [24], and titanium carbide [25] for cinnamon carbide
only obtains 3C-SiC. Moreover, the large lattice mismatch between the layers and different
coefficients of thermal expansion are conducive to the appearance of multiple defects.
Therefore, using SiC single crystals as the substrates for homogeneous epitaxial growth
has become a hot topic. At present, the preparation methods of SiC epitaxial films mainly
include physical vapor transport (PVT) [26], liquid phase epitaxy (LPE) [27], sputtering,
pulsed laser deposition (PLD) [28], molecular beam epitaxy (MBE) [29], and chemical vapor
deposition (CVD) [30]. Among them, CVD is considered the most convenient epi-wafer de-
position method for large-scale production owing to its relatively low growth temperature,
good film uniformity, and easy-to-control growth process. The growth mechanism and key
processes including the C/Si ratio [31], Cl/Si ratio [32–35], pressure [36,37], main hydro-
gen flow ratio [38], growth temperature [39,40], etc., of the epitaxial single-crystal 4H-SiC
substrates are the basis for the growth of device-level epitaxial materials. By changing the
temperature, the pressure of the growth process, and the proportion of the C2H4 and TCS
(SiHCl3) to grow the carbon and silicon, the quality control of the 4H-SiC epitaxial layer can
be achieved, thus reducing the macroscopic defect density, reducing the surface roughness,
and improving the thickness and doping uniformity. There have been numerous types
of research on advanced epitaxial technology. Hassan et al. [41] developed an over 100
µm/h growth rate process on 4-inch diameter wafers using chlorinated growth, which
enabled them to obtain extremely smooth epilayers (RMS < 2 nm) with a very low surface
defect density and high uniformity of thickness and doping. Lee et al. [40] produced
4H-SiC homoepitaxial layers onto 4◦-off-axis Si-face and C-face substrates. According to
the results, the high-quality and defect-free epilayers were obtained within a relatively low
temperature range of 1320–1440 ◦C on the Si-face substrates and at 1500 ◦C on the C-face
substrates at a low source flow rate of 5–10 sccm (the best result of the RMS roughness was
0.2–0.3 nm at a temperature of 1440 ◦C and flow rate of 10 sccm). Tsuchida et al. [42]
developed a single-wafer vertical-type epitaxial reactor for 4-inch diameter wafers, which
realized high-speed wafer rotation, thus greatly enhancing the growth rates and the uni-
formity of thickness and doping, as well as rather a smooth surface (RMS = 0.21 nm).
High-quality epitaxial wafers are the basis of high-performance power devices. Therefore,
exploring the technique for enhancing the epitaxial quality is a matter of great importance.

In the present study, emphasis is placed on the influence of the C/Si ratio and growth
temperature on the quality of the SiC epilayer grown using CVD. These comparative exper-
iments were conducted to comprehensively analyze the effects of the growth process on
the chemical composition and microstructure of the epilayers. A series of characterization
methods were utilized for surface analysis, namely, X-ray spectroscopy (XPS), atomic force
microscopy (AFM), and Raman spectroscopy. Specifically, the evolution of the epilayers’
microstructure, polytype, and surface morphology was monitored. The surface chemistry
analysis of the intrinsic defects was performed by the C 1 s of the XPS spectra. The com-
parative study revealed the internal relationship between the process parameters and the
material properties, thus providing an in-depth understanding of the epitaxial growth
mechanism with the aim of improving the quality of the epilayers in industrial production.
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2. Experimental Procedures
2.1. Sample Preparation

4H-SiC homoepitaxial layers were grown on 4◦-off-axis 4H-SiC Si-face substrates
using a homemade low-pressure horizontal hot-wall chemical vapor deposition (CVD)
setup equipped with an active gas injection system that allowed the H2, C2H4, TCS, and N2
flows to be modulated along the central main circuit and the adjacent side circuits. Before
reaching the growth temperature in the reactor, the SiC substrates were etched in situ in
an H2 atmosphere for 10 min. Then, accompanied by the H2 carrier gas at the total flux of
120 slm, the precursors (C2H4 and TCS) were introduced into the reaction chamber in a
certain proportion, which determined the C/Si ratio. The growth pressure and the growth
temperature were set to 100 mbar and 1570–1630 ◦C, respectively. The flux of the dopant
N2 source for highly doped (~1017 cm−3) n-type SiC epilayers was maintained at 250 sccm.
According to the above process parameters, five groups of comparative experiments were
conducted. The C/Si ratios and growth temperatures are listed in Table 1.

Table 1. H-SiC homoepitaxy growth process parameters and the corresponding RMS values.

Growth Temperature (◦C) C/Si Ratio RMS (nm)

1600 1.0 1.91
1600 1.1 1.84
1600 1.2 0.194
1570 1.2 0.521
1630 1.2 0.186

2.2. Characterization

The prepared epilayers were analyzed by various characterization methods. The root
mean square roughness (RMS) values and topography mapping were determined using
a Bruker Dimension Icon AFM system with 1 µm × 1 µm scans. The polytype structure
of the SiC epilayers was investigated at room temperature via backscattering Raman
spectroscopy in the wavenumber range of 500–1200 cm−1 by means of a LabRAM HR
(HORIBA, Tokyo, Japan)Raman spectrometer paired with an Ar+ laser (532 nm). The XPS
(SPECS) measurements were carried out to characterize the surface chemical composition
of the epilayers.

3. Results and Discussion
3.1. The Surface Morphology of the N-Doped 4H-SiC Epilayers

To directly observe the microstructure evolution of the N-doped 4H-SiC epilayers
grown under different conditions, AFM mapping was conducted. Figure 1 depicts the
2D and 3D surface morphology images of the 4H-SiC homoepitaxial layers. The grain
distributions of the different growth parameters were evaluated, and the root mean square
(RMS) values are listed in Table 1. Figure 1a–c show the typical AFM images of the
as-grown 4H-SiC homoepitaxial layers with the uniform increase in the C/Si ratio at
1600 ◦C. At C/Si = 1.0, small sporadic distribution grains appeared. As the ratio increased,
the volume of 4H-SiC grains increased gradually on the surface of the epilayers and
was distributed along the steps, which vividly and intuitively proved the combination
of island-like and step-flow growth modes in the 4H-SiC homoepitaxial growth. Mean-
while, the crystallinity and surface quality of the 4H-SiC epilayers were relatively poor.
By further increasing the C/Si ratio, the grains entirely covered the epilayers, forming a
perfectly flat surface. According to Table 1, when the C/Si ratio increased from 1.0 to 1.2,
the RMS values decreased monotonically from 1.91 to 0.194 nm. Therefore, the 4H-SiC
epitaxial growth strongly depended on the C/Si ratio. In addition, the growth tempera-
ture (GT) is an essential factor causing microchanges in the surface morphology [39,41].
Figure 1c–e display the surface topography of the epilayers within the temperature range of
1570–1630 ◦C at the same C/Si ratio (1.2), revealing the correlation between the growth
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temperatures and the morphology of the epitaxial layer. The coexistence of the step-flow
and island-like growth modes was evident from Figure 1d, and relatively large grains were
formed on the surface at GT = 1570 ◦C. As the growth temperature increased, the surface
atoms gained enough energy to migrate and enhance the nucleation. Thus, quite a flat
surface could be obtained at higher temperatures. In particular, the value of the RMS was
0.186 nm at GT = 1630 ◦C.
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Figure 1. 2D and 3D AFM images displaying the morphology of the N−doped 4H−SiC epilayers
grown at different C/Si ratios and temperatures: (a) C/Si = 1.0, GT = 1600 ◦C; (b) C/Si = 1.1,
GT = 1600 ◦C; (c) C/Si = 1.2, GT = 1600 ◦C; (d) C/Si = 1.2, GT = 1570 ◦C; (e) C/Si = 1.2, GT = 1630 ◦C.

3.2. Chemical Composition Analysis

To gain a better insight into the elemental composition and defects of the N-doped
4H-SiC epilayers, XPS measurements were performed. The survey XPS spectra (Figure 2a)
disclosed the presence of elemental C, O, Si, and N on the epilayer surface. The detailed
atomic proportion is summarized in Table 2. To quantitatively investigate the influence of
the C/Si ratio and growth temperature on the chemical properties of the 4H-SiC epilayers
in detail, high-resolution C 1s and Si 2p spectra were further acquired. Figure 3 depicts the
C 1 s core-level XPS curve fitting using mixed Gaussian and Lorentzian line shapes after
subtracting a Shirley background. In addition to the major Si-C bond, several contaminants
including C-C, C-H, and C-O bonds were detected as well [43–45]. After curve fitting, all
the XPS spectra were calibrated with respect to the C-C peak at 284.8 eV.
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Figure 2. (a) The survey XPS spectra of the five N−doped 4H−SiC samples; high-resolution C 1 s
and Si 2p spectra at different (b1,b2) C/Si ratios and (c1,c2) growth temperatures, respectively.

Table 2. Atomic ratios of the O, Si, C, and N elements on the five N-doped 4H-SiC epilayers,
determined via XPS.

Element 1.0 (1600 ◦C) 1.1 (1600 ◦C) 1.2 (1600 ◦C) 1.2 (1570 ◦C) 1.2 (1630 ◦C)

O 17.09 13.67 12.38 5.14 14.06
Si 43.60 39.14 35.31 40.59 41.02
C 37.11 45.50 51.01 53.31 43.35
N 2.20 1.69 1.30 0.96 1.57

Total 100 100 100 100 100
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Figure 3. C 1s core−level and corresponding deconvoluted spectra of the N−doped 4H−SiC epi-
layers grown at different C/Si ratios and temperatures: (a) C/Si = 1.0, GT = 1600 ◦C; (b) C/Si = 1.1,
GT = 1600 ◦C; (c) C/Si = 1.2, GT = 1600 ◦C; (d) C/Si = 1.2, GT = 1570 ◦C; (e) C/Si = 1.2, GT = 1630 ◦C.

As seen from Figures 3 and 4, the proportions of the Si-C bonds in both the C 1 s
and Si 2p spectra tended to rise with an increase in the C/Si ratio, meaning the contin-
uous formation of SiC in the epilayers. The existence of the C-C bonds was ascribed to
defects [42,46,47]. Moreover, according to Figure 3a–c, the amount of surface-dominant
C-C contaminant species decreased with the increase in the C/Si ratio. In Figure 4a–c, the
amount of dopant-related Si-O-N bonds tended to have lower proportions as the C/Si
ratio increased. This was due to the gradually weakening N-site competition with the
increasing C/Si ratio [48], which corresponded to the results in Table 2. Moreover, there
were few O atoms (Statistics in Table 2) on the surface at 1570 ◦C, which was evident from
the disappearance of the Si-O bond related peak near 103.0 eV [49]. The band attributed
to the Si-Si bonds was identified at 99.8 eV, which indicated the presence of scarce Si
droplets on the surface at relatively low temperatures [50]. With the increase in the O
contents at higher temperature (as shown in Table 2), the Si-O bonds increased, while
the Si-Si bonds disappeared. In addition, according to Figures 3c–d and 4c–d, the pro-
portions of the Si-C bonds in the C 1 s and Si 2p spectra increased at the temperatures of
1570–1600 ◦C, while they decreased at higher temperatures. A significant increase in the
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amount of Si-C bonds at the beginning indicated that the formation of SiC was dominant at
this stage. However, once the temperature reached 1630 ◦C, the quantity of the Si-C bonds
decreased from 62.8% to 54.6%. So, more N impurities occupied the C sites (NC) while
releasing abundant vacancies in SiC [51,52]. Therefore, the reduction in number of Si-C
bonds could be reasonably clarified at the higher growth temperatures.
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epilayers grown at different C/Si ratios and temperatures: (a) C/Si = 1.0, GT = 1600 ◦C; (b) C/Si = 1.1,
GT = 1600 ◦C; (c) C/Si = 1.2, GT = 1600 ◦C; (d) C/Si = 1.2, GT = 1570 ◦C; (e) C/Si = 1.2, GT = 1630 ◦C.

In addition, the C 1 s and Si 2p peak positions both shifted in a regular manner under
different growth parameters (shown with red dotted arrows and black dashed lines in
Figure 2b,c). The existence of the C-C bonds was attributed to defects, which often induce
a certain deviation of the binding energy [53]. With the increase in the C/Si ratio from
1.0 to 1.2, the quantities of C-C bonds were found to be 38.7%, 31.2%, and 17.4%, respectively.
The decrease in the defect-related C-C bonds generally results in a slight shift toward the
higher binding energies, which was consistent with the movement of the C 1 s and Si 2p
spectra in Figure 2b1,b2. With the increase in the growth temperature from 1570 ◦C to
1630 ◦C, the proportions of the C-C bonds decreased from 33.9% to 17.4% and then increased
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to 24.1%. Therefore, a slight shift occurred in the binding energies of the C 1 s and Si 2p
spectra, as shown in Figure 2c1,c2.

3.3. Polytype Control

To confirm the polytypes of the five 4H-SiC epilayers, the Raman measurements
were conducted at a 532 nm laser excitation wavelength. As shown in Figure 5, three
relatively strong Raman peaks were distinguished in the epitaxial layers in the range of
600–1200 cm−1. Among them, the first two peaks were assigned to transversal (TO) optic
modes [54]. The other peak at 970 cm−1 was ascribed to the longitudinal phonon–plasmon
coupling (LOPC) mode [46]. It is worth mentioning that for the 4H-SiC, the E1(TO) mode
is forbidden by the Raman selection rules [55,56]. Since the El (TO) and E2(TO) modes
come from lattice vibrations in different directions, they can reflect the degree of crystal
orientation irregularities. Therefore, the E2(TO)/E1(TO) intensity ratio is considered the
indicator of the crystal quality of the epilayers [56]. Specifically, a higher intensity ratio
means fewer defects and better crystal quality. In Figure 6a, the intensity ratio rose with the
increase in the C/Si ratio and the growth temperature, which indicated the improvement
in the quality of the 4H-SiC epilayers. In general, the LOPC peak is related to the dopant
concentration [57]. In particular, the large dopant content is conducive to the interaction
between atoms and crystal cells. With the increase in the doping concentration, the phonons
increase, and the scattering probability increases, but the phonon lifetime decreases. In
this work, as the C/Si ratio increased, there was a slight redshift in the LOPC peaks (see
Figure 5a). This corresponded to the gradual decrease in the N dopant concentration, as
discussed above. In contrast, more prominent features emerged with the increase in the
growth temperature. For example, the LOPC peaks became wider (their FWHM varied
between 5.339 and 8.922 cm−1 in Figure 6b and moved toward the higher frequencies
in Figure 5b). The scattering field intensity decrease is shown in Figure 6b. All these
characteristics at higher growth temperatures demonstrated the increase in the N doping
concentration. The scattering field intensity decrease is shown in Figure 6b. These results
confirm the aforementioned XPS analysis.
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4. Conclusions

In this work, N-doped 4H-SiC homoepitaxial layers were deposited using CVD at
various growth temperatures and C/Si ratios. The influence of the C/Si ratio and growth
temperature on the quality of epilayers was investigated via AFM, XPS, and Raman spec-
troscopy. It was found that the micromorphology strongly depended on the C/Si ratio and
growth temperature. As the C/Si increased from 1.0 to 1.2, the value of the RMS decreased
dramatically from 6.06 to 0.238 nm. In addition, the flatness of the surface was improved
(RMS~0.217 nm) by increasing the growth temperature from 1570 to 1630◦C. According
to the XPS analysis, with the increase in the C/Si ratio, the amount of defect-related C-C
bonds decreased significantly from 38.7% to 17.4%, simultaneously inducing SiC nucle-
ation. In terms of the relationship between the temperature and the epitaxial quality, the
higher temperature promoted the formation of the Si-C species but concurrently generated
more vacancies due to the enhancement of the N doping efficiency. As for the polytypes,
only 4H-SiC species were detected without any other crystal forms in the epilayers. The
E2(TO)/E1(TO) intensity ratio increased with the increase in the C/Si ratio and growth
temperature, implying the improvement in the epilayer quality. In addition, according to
the shift in the LOPC peaks, the change in the N-doping concentration was consistent with
the XPS data. Therefore, this report, on the one hand, provides a deeper understanding of
the epitaxial growth physical mechanism and some theoretical support for the subsequent
control of defects and doping concentration. On the other hand, it strives to extend the
application of SiC in the field of power electronics.
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