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Abstract: The CuCl binuclear complexes were synthesized with phenyl-1H-pyrazole-1-carbodithioate
(L1) and phenyl-3-methyl-1H-pyrazole-1-carbodithioate (L2) ligands. The complexes were isolated as
crystalline material in a reasonable quantity. The complexes were crystallized in acetonitrile (MeCN)
and characterized for their single crystal, using X-ray diffraction. The two units with the general
formula LCuCl are bridged together via chlorido ligands, affording (LCuCl)2-type complexes. The
complexes, [Cu2(µ-Cl)2(L1)2] 1 and [Cu2(µ-Cl)2(L2)2] 2 are monoclinic and triclinic with space group
P21/n and Pi, respectively. The crystal packing is stabilized by C1(p)· · ·C(p) and S· · ·C(p) interactions
extended in 2D fashion in complex 1, while complex 2 is stabilized by C(p)· · · S interactions extended
in a 1D fashion. Structural features and secondary interactions present in both complexes discussed
in this article.

Keywords: phenyl-1H-pyrazole-1-carbodithioate; 3-methyl-1H-pyrazole-1-carbodithioate; Cu;
chloride-bridged; crystal structure; 2D extension; 1D extension

1. Introduction

The coordination chemistry of copper(I) with sulfur- and nitrogen-containing ligands
is of great interest, due to structural variations and large-scale biological applications [1–3].
Copper itself is an essential element, and its importance cannot be neglected from health
perspective [4,5], as its absence may cause severe health problems in human beings, i.e.,
reduced immunity, augmented vulnerability to various oral and systemic diseases, impaired
physical and mental growth, and reduced efficiency [6]. The analysis proved that it is found
in human milk as a component of metabolic enzymes, hormones and antioxidants [7]. The
carbodithioate moiety containing ligands are valuable metal-coordination compounds, due
to their extra stability. That is why chemists are interested in synthesizing these complexes
for pharmaceutical and medicinal uses. Ziram (zincdimethyldithiocabamate) and zineb
(zinc ethylene-1,2-bisdithiocarbamate) are well known fungicides [8]. The complexes of
copper are important for their biological importance in certain activities. The biological
activities of sulfur- and nitrogen-based copper complexes have been studied thoroughly
by different researchers, and the complexes were fairly effective against gram-negative
and gram-positive bacteria [9]. Hydrazine carbodithioate Schiff bases were prepared, and
treated with copper salts. The complexes were investigated for antibacterial activities,
with moderate results [10]. Transition-metal complexes of copper with ligands having
heteroatom nitrogen and sulfur show carcinostatic, antitumor, antiviral, antifungal and
antibacterial activities [11]. The complexes of benzoylpyridine Schiff-base ligands were
found to be sufficiently active towards certain microorganisms [12]. The copper complexes
of S-benzyl dithiocarbazate were synthesized and studied for analgesic activities; the
complexes show good anti-inflammatory activity compared to standard Indomethacine [13].
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The copper complexes of S-allyldithiocarbazate were synthesized and tested for anticancer
activity. It was found that the respected complexes are more toxic to cancer cells while
less toxic to normal cells [14]. The complexes with carbodithioate moiety also exhibit good
antioxidant activity [15]. The thiosemicarbazone complexes of copper were also tested
for ribonucleotide-reductase-R2 inhibition, as this enzyme plays a crucial role in nucleic-
acid metabolism, so it is the best target for anticancer therapy. Investigation showed that
copper complexes of the respective ligands are effective anti-proliferative agents, being
tested for several cancer cells [16]. The halide-bridged complexes of Cu(I) and Cu(II) with
piperidine-1-carbodithioato ligand were prepared and tested successfully for magnetic and
conductive properties. They were tested as the sensitizing material in dye-sensitized solar
cells (DSSCs) [17].

Copper complexes with ligands containing the carbodithioate moiety are also of
considerable interest in several inter-disciplinary areas such as bioinorganic chemistry,
catalysis, photochemistry and magnetochemistry. These compounds may also have many
potential applications in pharmaceutical chemistry, including use as antibacterial, antifun-
gal, anticancer and anti-inflammatory agents. Here we report the synthesis and crystal
structure of bi-nuclear copper(I) complexes with phenyl-1H-pyrazole-1-carbodithioate and
phenyl 3-methyl-1H-pyrazole-1-carbodithioate ligands.

2. Materials and Methods
2.1. Synthesis of Ligands and General Considerations

The ligands phenyl-1H-pyrazole-1-carbodithioate and phenyl 3-methyl-1H-pyrazole-
1-carbodithioate were prepared, according to the reported method [18,19]. Equimolar
amounts of phenylchlorodithioformate and pyrazole or its derivative were treated together
in dry toluene and in the presence of an equimolar amount of triethyl amine. The formation
of white precipitated ammonium salt Et3N·HCl indicates the reaction completion. The
reaction was continued for 48 h, and after completion the product was washed with water,
and the final product was dried over sodium sulfate. Solvents and all other volatile material
were evaporated under reduced pressure, and a viscous orange oil of both ligand L1 and
ligand L2 was obtained. Chemicals used in this study such as CuCl, MeOH and acetonitrile
were purchased from Sigma Aldrich. All chemical reagents used in this study were used
without further purification. Elemental analyses (CHN) were performed on a Vario EL
III instrument. For the single crystal of both the complexes, X-ray-diffraction data were
collected through STOE-IPDS II equipped with an Oxford Cryostream low-temperature
unit, and graphite-monochromator Mo-Kα radiation (λ = 0.71073 Å). Structure solutions
and refinements of complexes were accomplished using SIR97 [20], SHELXL2018/3 [21],
WinGX [22], SAINT [23] and PLATON [24].

2.2. Synthesis of Di-µ-chlorido-bis(phenyl-1H-pyrazole-1-carbodithioato)dicopper(I) (1) and Its
Analogous Complex Di-µ-chlorido-bis(phenyl-3-methyl-1H-pyrazole-1-carbodithioato)dicopper(I) (2)

A solution of copper salt was prepared in 5 mL analytical-grade methanol (CuCl
100 mg; 1.0 mmol) and was mixed with a separately prepared equimolar solution of ligand
L1 (ligand contents 220 mg; 1.0 mmol, solvent methanol). Immediately after mixing both
the solutions, the color turned green; stirring was continued for 30 min which led to
the formation of green precipitates of the desired complex 1. The reaction mixture was
allowed to stir further for 60 min, so that the completion of the reaction was ensured.
The green solid was separated from the mother liquor, and was dried in open air. The
powder product was redissolved in methanol and kept undisturbed, for slow evaporation.
After one day, green-colored crystals of the complex appeared, and a crystal of suitable
dimensions was selected for single-crystal X-ray-diffraction analysis, and its structure was
determined. Complex 2 was prepared following the same experimental procedure, by
mixing salt solution and L2 in equimolar amounts (100 mg; 1.00 mmol of CuCl and 230
mg; 1.0 mmol of phenyl-3-methyl-1H-pyrazol-1-carbodithioate)). The complexes were also
studied for their elemental ratios of CHN.



Crystals 2023, 13, 322 3 of 11

1. Yield: 70%; Color of crystalline material: green; Chemical formula of complex:
C24H24Cl2Cu2N4S4, Found/Cal (%): C 38.8/41.49, H 3.5/3.48, N 8.2/8.06.

2. Yield: 73%; Color of crystalline material: green; Chemical formula of complex:
C22H20Cl2Cu2N4S4, Found/Cal (%): C 37.8/39.63, H 3.2/3.02, N 7.9/8.40.

2.3. Hirshfeld Surface Calculations

The Hirshfeld surfaces and subsequent two-dimensional (2D) fingerprint plots of the
herein reported compounds were calculated using Crystal Explorer 17.50 [25]. Crystallo-
graphic information were obtained for each X-ray single crystal from their crystallographic
information files (.cif) and were imported to Crystal Explorer to generate the Hirshfeld
surfaces, with the following settings being applied: property: none; resolution: high (stan-
dard). For fingerprint generation (di vs. de plot) we applied range: standard; filter: by
elements; fingerprint-filter options are both inside–outside elements, including reciprocal
contacts. The interactions with normalized contact distance in crystal structures shorter
than the sum of the corresponding van der Waals radii of the atoms are visualized by
red spots, and those with longer contacts having the positive dnorm value are shown in
blue [26].

3. Results and Discussion

The complexes 1 and 2 were synthesized by the reaction of CuCl with L1 and L2 in
equimolar ratios. The reaction for the synthesis of complexes is summarized in Scheme 1.
Based on the molar ratio of metal to ligand, it was expected to obtain final products with
the general formula LCuCl. The metal (Cu(I)) being coordinatively unsaturated afforded
binuclear Cu(I) complexes. The binuclear complexes bridged together via chloride, in each
complex. The metal atom was bonded to two bridging chlorido ligands, a nitrogen atom
of the pyrazolyl moiety and the thionyl sulfur of the ligand. The elemental ratio of the
compounds was determined (elemental/CHN analysis), and the structure was confirmed
for the single crystal of each complex, using X-ray diffraction, CCDC numbers are provided
below in section “supplementary material”.
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The crystal structure with selected bond lengths and angles of complex 1, is shown in
Figure 1. It has a monoclinic crystal system with space group P21/n. Two copper ions in
the complex are bridged together with the help of chlorido ligands. The central metal ion
in the monomer unit is trigonal planar, wherein the metal is coordinatively unsaturated
and interacts with a neighboring unit to make the dimer through the Cl− bridge. The
metal in the bimetallic molecule adopts distorted tetrahedral geometry, bonded to two
chlorido and a N and S of the chelating ligand. The pyrazolyl moiety contains two N atoms
wherein C=N is more basic than the C-N, as has been proved in the literature for certain
metal complexes [27]. Similarly, the two S in the nucleophilic center are also chemically
different, and C=S is softer and more basis in comparison to -S-. The presence of N and S in
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the ligand L1 makes a stable chelating ligand, to afford a 5-membered metallacycle of the
C2NSCu type.
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carbon atoms, ellipsoids drawn at 50% probability level, all hydrogen atoms are omitted for clarity.
Color scheme: Cu = orange; Cl: green; S = yellow; and N = blue. Selected structural features: bond
lengths (Å) and angles (◦); Cu(1)-N(1) 2.057(2), Cu(1)-S(1) 2.287(7), Cu(1)-Cl(1) 2.318(7), Cu(1)-Cl(1)
2.325(7), S(2)-C(1) 1.749(3), S(2)-C(5) 1.770(3), S(1)-C(1) 1.637(3); N(1)-Cu(1)-S(1) 85.44(6), N(1)-Cu(1)-
Cl(1) 114.19(6), S(1)-Cu(1)-Cl(1) 123.14(3), N(1)-Cu(1)-Cl(1) 117.94(7), S(1)-Cu(1)-Cl(1) 116.51(3),Cl(1)-
Cu(1)-Cl(1) 100.66(2), Cu(1)-Cl(1)-Cu(1) 79.34(2), C(1)-S(2)-C(5) 100.87(12), C(1)-S(1)-Cu(1) 98.12(9),
C(2)-N(2)-N(1) 110.1(2), C(2)-N(2)-C(1) 130.1(2), N(1)-N(2)-C(1) 119.7(2), C(4)-N(1)-N(2) 104.9(2), C(4)-
N(1)-Cu(1) 140.63(18), N(2)-N(1)-Cu(1) 114.44(16), N(2)-C(1)-S(1) 122.21(18), N(2)-C(1)-S(2) 112.25(17),
S(1)-C(1)-S(2) 125.54(16).

The geometry around the Cu(I) as discussed above is distorted tetrahedral, with
observed bond angles ∠N(1)-Cu(1)-Cl(1) 114.19◦, ∠S(1)-Cu(1)-Cl(1) 123.14◦, ∠N(1)-Cu(1)-
Cl(1) 117.94◦ and an acute angle ∠N(1)-Cu(1)-S(1) 85.44◦. The acute angle is obvious, due to
the bidentate (chelating) behavior of the ligand to afford the metallacycle. The open angles
are wider as compared to normal angles of tetrahedrally arranged monodentate ligands
around a copper ion [28]. The sp2 hybridized C(1) adopts trigonal-planar geometry, with all
atoms being coplanar with slight deviation, and all angles close to 120◦, i.e., ∠N(2)-C(1)-S(1)
122.21◦, ∠N(2)-C(1)-S(2) 112.25◦, ∠S(1)-C(1)-S(2) 125.54◦. The smallest angle ∠N(2)-C(1)-
S(2) 112.25◦ is because of N(2) and S(2), as part of the 5-membered metallacylic ring. All
other bond angles are similar to those observed for 5-membered metallacycles containing
Cu as the central metal ion [29]. The Cu(1)-N(1) and Cu(1)-S(1) bond distances are of
2.057 Å and 2.29 Å, respectively, and are within the expected range, as has been reported
for Cu complexes with N, S-donor ligands [29].

The supramolecular chemistry reveals that molecules of the complex in solid state are
bonded to each other via intermolecular interactions of the phenyl ring C(6)(p)· · ·Cl(1)(p)
(3.688 Å) and C(6)(p)· · · S(1) (3.354 Å). This interaction arranges molecules in three parallel
layers in such a way that alternate layers are exactly superimposable over each other. As
shown in the 2D-supramolecular fragment of the molecule in Figure 2, Cl and S of the same
molecule are active, to stabilize the supramolecular structure of the complex. There is no
evidence of π-electrons of 5-membered pyrazole moiety including the N atoms of the ring.
Other types of short-ranged interactions were also negligible.
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interaction, with separation distance of 3.688 and 3.354 Å, respectively. The five- and four-membered
rings containing Cu are shown shaded, to make the interactions reader friendly. Hanging contacts
and all hydrogen atoms are deleted for simplicity.

The molecular structure of complex 2 is depicted in Figure 3, along with structural
features as the footnote. Crystal-structure solution and refinement parameters are sum-
marized in Table 1. The molecule is triclinic-bearing-P1 space group. The complex is
homo structural to that of complex 1, i.e., bimetallic. The geometry around the Cu(I) ion is
distorted tetrahedral, and bond angles around the metal ion are within the expected range,
between 85.44◦ and 121.67◦. The C(1) is similar in geometry to that present in complex
1, which is trigonal planar (with sp2 hybridization) with negligible deviation from the
planarity. All angles around C(1) are approximately equal to 360◦ (∠S(1)-C(1)-N(1), ∠S(1)-
C(1)-S(2) and ∠S(2)-C(1)-N(1)), measuring 112.40, 126.01 and 121.50◦, respectively. As
expected, the endocyclic bond angle ∠N(1)-C(1)-S(1) is relatively smaller than the exocyclic
angles (126.01◦ and 121.5◦). The Cu(1)-N(2) and Cu(1)-S(1) bond lengths are 2.054 Å and
2.281 Å, respectively, and are comparable to other Cu complexes stabilized by N, S-donor
ligands [30]. The Cu(1)-Cl(1) bond lengths (2.317 Å and 2.338 Å) are different with respect to
each other, which reveals the difference in nature of interaction (bond) with the same metal
ion, i.e., the Cu-Cl and Cl→Cu bond, respectively. The coordinate covalent bond is slightly
longer than the covalent bond, but the electron density is still considerably distributed over
the Cl(1)-Cu(1)-Cl(1) fragment. The difference in Cu-Cl-bond lengths also indicates the
electron-density delocalization and the nature of the bond being formed between Cl and
Cu ions. The difference in bond lengths of the Cu-Cl bond in complex 2 is less (0.021 Å)
than the difference in the Cu-Clbridged bond reported in the literature (∆ = 0.452 Å). The
Cu-Clbridged bond is longer than the Cu-Clterminal bond, the latter being 2.2307 Å [31]. The
S(2)-C(1) bond length of 1.643 Å and S(1)-C(1) bond length of 1.737 Å clearly show the C=S
double- and C-S single-bond characters. The elongation of the C=S bond in the complex is
because of the flow of electron density towards metal from the ligand (C=S bond length for
the uncoordinated thiourea compound is 1.662–1.698 Å [32–35]. The C=S bond in complex
2 is slightly stronger than the bond between the same ligand and the Pd(II) metal ion, being
1.643 and 1.662 Å, respectively [18].
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Figure 3. Solid-state molecular structure of 2; partial-numbering scheme, thermal ellipsoids are
drawn at 50% probability level, for clarity reasons all hydrogen atoms are omitted. Color scheme:
Cu = orange; Cl: green; S = yellow; and N = blue. Selected structural features: bond lengths (Å)
and angles (◦); Cu(1)-N(2) 2.054(3), Cu(1)-S(1) 2.281(9), Cu(1)-Cl(1) 2.317(9), Cu(1)-Cl(1) 2.338(9),
Cu(1)-Cu(1) 2.901(9),Cl(1)-Cu(1) 2.317(9), S(2)-C(1) 1.643(3), S(1)-C(1) 1.737(4), S(2)-C(6) 1.768(3); N(2)-
Cu(1)-S(2) 85.44(8), N(2)-Cu(1)-Cl(1) 121.67(7), S(2)-Cu(1)-Cl(1) 114.11(3), N(2)-Cu(1)-Cl(1) 106.36(8),
S(2)-Cu(1)-Cl(1) 127.03(3), Cl(1)-Cu(1)-Cl(1) 102.92(3), Cu(1)-Cl(1)-Cu(1) 77.08(3), C(1)-S(2)-Cu(1)
98.25(12), C(1)-S(2)-C(6) 101.93(15), N(1)-C(1)-S(2) 121.50(3), N(1)-C(1)-S(1) 112.40(2), S(2)-C(1)-S(1)
126.01(19), C(4)-N(2)-Cu(1) 138.2(3), N(1)-N(2)-Cu(1) 114.50(18).

Table 1. Data pertinent to crystal-structure determination and refinements of compound 1 and 2.

Compounds 1 2

Chemical Formula C20H16Cl2Cu2N4S4 C22H20Cl2Cu2N4S4
Formula weight 638.59 666.64
Crystal system Monoclinic Triclinic

Space group P21/n Pi
a [Å] 7.33 (4) 7.42 (5)
b [Å] 19.29 (1) 9.35 (7)
c [Å] 8.80 (5) 10.85 (8)
α[◦] 90.00 104.91 (6)
β[◦] 109.94 (4) 101.32 (6)
γ [◦] 90.00 111.75 (5)

V [Å3] 1171.25 (11) 639.06 (8)
Z 2 1

Crystal size [mm] 0.38 × 0.23 × 0.16 0.15 × 0.13 × 0.12
D [g cm−3] 1.811 1.732

U [mm−1](Mo-Kα) Å 0.71073 0.71073
Temperature [K] 133 133

θ range [◦] 2.1–27.7 2.1–26.7
Unique reflections 19,359 2709

Reflections observed 2744 9485
Parameters 145 155

R[F2 > 2σ(F2)] 0.036 0.035
wR(F2) 0.095 0.082

The extended, supramolecular structure of compound 2 is shown in Figure 4, and is
considerably different from the supramolecular structure of 1. In complex 2, molecules are
extended in a one-dimensional fashion, making the 1D straight chain. The C(1)-S(1) and
C(6)-S(2) separation distances indicate that the lone pair of electrons is somehow shifted to
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C(1), making S(2) partially electron deficient. The electron deficiency thus generated on the
sulfur S(2) causes the production of an interaction with π-electrons of the aromatic ring,
extending the structure as an 1D chain. The molecules within the same chain are separated
by a distance 3.493 Å, with respect to each other.
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Figure 4. 1D Supramolecular structure of 2 stabilized by C(p)· · · S interaction, with a separation
distance of 3.491 Å. Color scheme: Cu = orange; Cl: green; S = yellow; and N = blue.

To further quantify and obtain insights about the strengths as well as the differences
of intermolecular interactions in 1 and 2, Hirshfeld-surface analyses were performed. The
interactions with a normalized contact distance shorter than the sum of the corresponding
van der Waals radii of the atoms, have been visualized by red spots, and the longer contacts
having the positive dnorm value are shown in blue (Figures 5 and 6). The corresponding
intermolecular interactions with significant contributions are shown in Figures 7 and 8.
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Crystals 2023, 13, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 6. Visualization of the three-dimensional Hirshfeld surface of 2 mapped over norm in the 
range −0.5221 to 1.1503. Color scheme: Cu = orange; Cl: green; S = yellow; and N = blue. 

 
Figure 7. Two-dimensional fingerprint plots of complex 1, all intermolecular contacts are included. 
The percentage contribution for each contact is specified at the lower part of each subfigure. 

Figure 6. Visualization of the three-dimensional Hirshfeld surface of 2 mapped over norm in the
range −0.5221 to 1.1503. Color scheme: Cu = orange; Cl: green; S = yellow; and N = blue.



Crystals 2023, 13, 322 8 of 11

Crystals 2023, 13, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 6. Visualization of the three-dimensional Hirshfeld surface of 2 mapped over norm in the 
range −0.5221 to 1.1503. Color scheme: Cu = orange; Cl: green; S = yellow; and N = blue. 

 
Figure 7. Two-dimensional fingerprint plots of complex 1, all intermolecular contacts are included. 
The percentage contribution for each contact is specified at the lower part of each subfigure. 

Figure 7. Two-dimensional fingerprint plots of complex 1, all intermolecular contacts are included.
The percentage contribution for each contact is specified at the lower part of each subfigure.

On the Hirshfeld surfaces, the H· · ·H, Cl· · ·H/H· · ·Cl and S· · ·H/H· · · S interactions
appear as the largest regions (30.1, 18.01 and 14.3% (1) and 30.7, 15.2 and 18.5% (2), re-
spectively) of the fingerprint plot. Interestingly, the contributions due to Cl· · ·H/H· · ·Cl
and S· · ·H/H· · · S interactions have been swapped, as 1 shows stronger Cl· · ·H/H· · ·Cl
hydrogen bonding (2.636 Å), which could be observed as dark red spots and sharp spikes
in the fingerprint plots, and could be attributed to the lower bulk of the stabilizing ligand.
This might also be the reason for larger C· · ·H/H· · ·C π interactions in 2 (14.7%) than in 1
(7.3%). On the other hand the S···C/C···S and C . . . C π interactions are more pronounced
in 1 (7.1 and 6.5%, respectively), than in 2 (2.0 and 3.5%, respectively). The other interatomic
contacts that make comparatively less contribution to crystal packing are nearly identical,
and are due to Cu· · ·Cl/Cl· · ·Cu, N· · ·H/H· · ·N and N· · ·C/C· · ·N and π interactions
(4.3, 4.1 and 2.1% (1) and 4.2, 5.7 and 1.9% (2), respectively).

There are few examples of carbodithioate-type ligands containing the N(S)C=S frag-
ment. The ligands have different chemistry, and the CuL2-type complexes have been
isolated and structurally characterized in the solid state for a single crystal. The complex
in this case was mononuclear Cu(I), while with other metal ions such as Cd and Zn, the
chemistry was different [36]. In another report, the Cu(II) ion also affords a mononuclear
complex with two chelating ligands, in the same way as in the cases of ligands discussed
above [37]. The coordination chemistry of such ligands with CuCl/CuBr works in the
same way, but with other metals such as Ni(II), and heavier halogen (I) the behavior is
different [38]. An overview of the general reactivity of the carbodithioate ligands indicates
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that the solvent, reaction conditions and structure of the ligand play a role in determining
the geometry of the final complex. Further studies in the field are required to obtain insights
into the factors responsible for exact chemistry with the same and different metal ions. The
chemistry of these ligands is interesting, and interesting results with other metal ions are
very much expected.
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4. Conclusions

Two ligands, namely phenyl-1H-pyrazole-1-carbodithioate and phenyl-3-methyl-1H-
carbodithioate were synthesized and isolated as viscous oil. They were used for the
syntheses of two copper(I) complexes. Complexes containing the Cu(I) ion were isolated
in good purity. The binuclear copper(I) complexes bear two bridged-chlorido functions.
The ligands act as a bidentate chelate, with N and S as potential donor sites. Each Cu(I) ion
in the CuCl2NS fragment of the complex bears distorted-tetrahedral geometry. Structural
features such as bond length and angles are in close agreement with structurally analogous
complexes. The supramolecular chemistry of the complexes is quite different one from
the other, owing to the presence of pyrazole and the methylpyrazol moiety in the ligand.
The complex containing the pyrazole moiety affords 2D-supramolecular extension, while
the methylpyrazole-containing complex affords the 1D chain. The ligands designed in
this study are efficient chelators and useful for designing bimetallic complexes. The
Hirshfeld-surface analysis of both the complexes reveals that H· · ·H, Cl· · ·H/H· · ·Cl and
S· · ·H/H· · · S interactions appear. Complex 1 shows stronger Cl· · ·H/H· · ·Cl hydrogen
bonding. Larger C· · ·H/H· · ·C π interactions in 2 (14.7%) than in 1 (7.3%) were observed.
Other interactions, such as S· · ·C/C· · · S and C· · ·C π are more pronounced in 1 than in
2. Other interatomic contacts, Cu· · ·Cl/Cl· · ·Cu, N· · ·H/H· · ·N and N· · ·C/C· · ·N and
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π, contribute comparatively less towards crystal packing. The chemistry herein can be
applied to the development of bimetallic complexes, for useful applications in the future.

Supplementary Materials: Crystallographic data for the structural analysis have been deposited
with the Cambridge Crystallographic data center, CCDC Nos. 2238715 and 2238716 for 1 and 2,
respectively. Copies of this information may be obtained free of charge from the +44(1223)336-033 or
Email: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk (accessed on 30 January 2023).
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