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Abstract: In the present project, fructose-stabilized gold, silver and gold–silver bimetallic colloids
have been synthesized by the electrochemical reduction of HAuCl4·3H2O (Au precursor) and AgNO3

(Ag precursor), employing the atmospheric pressure microplasma technique. X-Ray Diffraction
patterns of gold–silver bimetallic particles exhibit (111), (200) and (220) planes identical to gold and
silver NPs depicting FCC structures. The decrease in the peak intensities of Au–Ag (111) and Au–Ag
(200) as compared to those of Au (111) and (200) is due to the formation of Au–Ag alloys. The
FE-SEM image of gold–silver bimetallic NPs has revealed an adequate change in morphology as
compared to the morphology of gold NPs and silver NPs. The majority of the gold–silver bimetallic
NPs are spherical and are uniformly dispersed. The EDS spectra of (Au–Ag) confirm the presence
of metallic gold and silver. The appearance of a single Surface Plasmon Resonance (SPR) peak in
the UV–VIS absorption spectra of gold–silver colloids and its position in between the SPR peaks
of the UV–VIS absorption spectra of gold and silver colloids justify the formation of gold–silver
bimetallic alloy particles. In DLS measurements, the size distribution of gold–silver bimetallic
colloids carries a narrow range 55 to 117 nm as compared to the size distribution of gold and silver
colloids. The compatibility of the sizes of these colloids and the influenza virus belonging to the
Orthomyxoviruses family (size range 80–300 nm with different morphologies) are assumed to stand
responsible for an effective bio-conjunction with Influenza viruses. Au–Ag bimetallic nanostructures
have synergistically improved their antiviral activity against H9N2 influenza virus as compared to
monometallic AuNPs and AgNPs. Thus, the Au–Ag nanostructured alliance has been proven to be
more effective and is capable of manifesting high antiviral efficacy.

Keywords: microplasma fabrication; bimetallic colloids; nanostructures; analytical techniques; an-
tiviral activity; synergy

1. Introduction

The influenza virus is a consistent global fear and threat with the potential to cause
pandemics worldwide in humans and animals [1]. The Avian Influenza Virus H9N2 be-
longing to the orthomyxoviridae family was initially isolated from China poultry forms.
It had resulted in large-scale economic losses due to the decreased egg production and
the increased mortality of chicks in the past [2]. The H9N2 virus has also been a source
of sporadic infections in humans in Asia since 1998 [3]. The concerns about its pandemic
potentials have been pressing researchers to recognize and sort alternative anti-influenza
agents. However, the evolution of various virus strains and the emergence of their antiviral
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drug resistance has put a huge burden on controlling influenza [4]. For the survival of
human and animal lives, there is an utter need to develop new treatment strategies for
combatting influenza virus activities. Metallic nanocomposites have a great potential to
fight against viruses and to be an effective alternative to conventional antiviral drugs,
particularly against influenza. Recent developments in the field of nanoscience and nan-
otechnology have entirely altered the pattern of human and animal life [5]. As the nexus of
nanotechnology in the medical field is developing more and more, the use of nanostruc-
tures in the creation of novel and efficient medical diagnostics and therapies is becoming a
growing strategy [6].

In previous research, metal nanoparticles including Ag, Au, Cu, Pt and metal oxides of
Fe, Zn, Cu and Ti have been explored extensively and have earned tremendous popularity
as antimicrobial agents [7–9]. Among the metallic nanoparticles, both silver and gold
nanoparticles have been demonstrated to exert antimicrobial effects against a wide range
of pathogens such as parasites, fungi, bacteria and viruses [10,11]. As antiviral agents, both
AuNPs and AgNPs in monometallic forms have been investigated against various viral
diseases, particularly against influenza virus. In one of the past studies, influenza virus
activity was effectively inhibited by anionic AuNPs [12]. In another past investigation,
the inhibitory effects of AgNPs against influenza virus activity were assessed in a Hemag-
glutination Assay (HA) [13]. Recently, J. Kim and co-workers reported a strong antiviral
activity of porous AuNPs on the H1N1 and H9N2 influenza virus strains in HA protocol
using MDCK cells as a culture medium [14]. In addition, Chang et al. synthesized the
Ag and Au nanoparticles and observed a reduction in the cytopathic effect induced by
human and avian influenza viruses. They also reported that TPNT1 was very effective in
blocking the viral entry and, thus, preventing viral infection [15]. Similarly, Bhattacharya
and Jagirdar studied the core shell formulism of Ag and Au nanoparticles. In this study, Au
was used as a core and Ag was used as a shell, and the details of the underlying mechanism
were presented [16].

In addition, TPNT1 also effectively reduced the cytopathic effects induced by human
(H1N1) and avian (H5N1) influenza viruses, including the wild-type and oseltamivir-
resistant virus isolates. Together with the previously demonstrated efficacy as antimi-
crobials, TPNT1 can block viral entry and inhibit or prevent viral infection to provide
prophylactic effects against both SARS-CoV-2 and opportunistic infections.

From previous research, silver NPs have been found to be more effective as an antibac-
terial agent as compared to gold NPs. On the other hand, in most of the studies, gold NPs
have been seen as less toxic and more biocompatible than AgNPs [11,17]. Their combination
in the form of a nano-alloy and core-shell has received massive attention in exploring their
antimicrobial potentials [18]. For example, silver-gold colloids in alloy form fabricated by
the chemical co-reduction method have demonstrated a strong antibacterial effect [19,20].
An improved efficiency of Au–Ag bimetallic colloids fabricated by the chemical method has
been studied in the past [21]. In other similar research, an enhanced antibacterial efficacy of
Au–Ag core-shell NPs synthesized via the chemical route has been observed [22]. Likewise,
the antibacterial activity of bio-synthesized (Au–Ag) NPs was studied by Ramasamy and
coworkers [23]. A promising synergy in the antibacterial efficiencies of bimetallic NPs
(Ag–Cu) as compared to their monometallic counterparts has also been reported [24,25].
More recently, Diana Lomelí-Marroquín and co-workers fabricated (Au–Ag) bimetallic
nanoparticles in the one-pot green synthesis, using starch as a reducing and capping agent,
and studied their antimicrobial and anticancer activity [26].

From the brief literature survey, it is seen that Au–Ag bimetallic NPs fabricated by
various synthesis roots have been mostly deployed in examining their antibacterial tenden-
cies against various pathogens. There is limited literature available regarding the antiviral
record of bimetallic nanoparticles, particularly against the influenza viruses. Most recently,
our group has examined the antiviral capability of gold–PVP nanocomposites against the
avian influenza virus strain H9N2. In these investigations, gold–PVP nanocomposites have
shown an enhanced antiviral activity as compared to gold NPs alone [27].
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The present research work is about the fabrication of gold, silver and gold–silver
bimetallic nanoparticles by the atmospheric pressure microplasma technique and about
testing their antiviral activities against avian influenza virus. To the best of our knowledge,
no such research activity was found in the past. In microplasma-assisted fabrication, the
nanoparticles are synthesized by the reduction of their respective precursors in an aqueous
medium without using a chemical reducing agent [28]. The size and morphology of
nanoparticles are the important parameters in biomedical applications, and they are tuned
by controlling the experimental parameters. These include the microplasma discharge time,
the gas flow rate and the concentration of precursor salt [29].

2. Materials and Methods
2.1. Materials

Hydrogen tetrachloroaurate(III) trihydrate HAuCl4·3H2O (Merck) (393.83 g/mole) has
been used as a gold precursor. Analytical grade 169.87 g/mol silver nitrate AgNO3 (Sigma
Aldrich) has been used as a silver precursor. D-Fructose 180.16 g/mol (Avonchem UK)
has been used as a stabilizer. Distilled water has been used as a solvent. All of these were
purchased from the local market. A home-designed atmospheric pressure microplasma
setup was used as the electrochemical reducing technique.

2.1.1. Preparation of Stock Solutions

A 100 mL stock solution of AgNO3 with a concentration of 10.0 mM was prepared
by dissolving 0.169 g of AgNO3 in 100 mL of distilled water. A 100 mL stock solution
of HAuCl4·3H2O with a concentration of 25.0 mM was prepared by dissolving 1.00 g of
hydrogen tetrachloroaurate(III) trihydrate HAuCl4·3H2O in 100 mL of distilled water. The
solutions were separately stirred magnetically for 25 min to ensure the homogeneity.

2.1.2. Preparation of 0.25 mM Gold Precursor

A total of 1.0 mL of 25.0 mM stock solution of gold (III) chloride trihydrate/chloroauric
acid (HAuCl4·3H2O) and 0.049 g of D-Fructose was added to 99.0 mL of distilled water.
The whole solution was magnetically stirred for 20 min to produce homogeneous solution
with 0.25 mM gold precursor and 2.5 mM D-Fructose.

2.1.3. Preparation of 0.5 mM Gold Precursor

A total of 2.0 mL of 25.0 mM stock solution of gold (III) chloride trihydrate/chloroauric
acid (HAuCl4·3H2O) and 0.089 g D-Fructose was added to 98.0 mL of distilled water. The
whole solution was magnetically stirred for 20 min to produce a homogeneous solution
with 0.50 mM gold precursor and 5.0 mM D-Fructose.

2.1.4. Preparation of 0.25 mM Silver Precursor

A total of 2.5 mL of 10.0 mM stock solution of AgNO3 and 0.049 g was added to
97.5 mL of distilled water. The whole solution was stirred magnetically for 20 min to
prepare a homogeneous 0.25 mM silver precursor with 2.5 mM D-Fructose

2.1.5. Preparation of 0.50 mM Silver Precursor

A total of 5.0 mL of 10.0 mM stock solution of AgNO3 and 0.089 g was added to
95.0 mL of distilled water. The whole solution was stirred magnetically for 20 min to
prepare a homogeneous 0.50 mM silver precursor with 5.0 mM D-Fructose.

2.2. Fabrication of Nanostructured Materials by Atmospheric Pressure Microplasma

In our research work, we used a home-designed atmospheric pressure microplasma
facility, as shown in Figure 1, to execute the synthesis of metal colloids through plasma–
liquid interactions. The microplasma was produced by applying a high dc voltage up
to 5–6 kV (power supply output 30 KV, 66 mA Glassman high voltage, INC) between a
cathode and an anode. The stainless-steel capillary with an internal diameter of 0.28 mm
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and a wall thickness of 0.145 mm acted as cathode, and a carbon rod that was 4 cm in length
and 8.0 mm in diameter was dipped in the precursor solution as an anode. Microplasma
discharge was produced in argon gas flowing through the capillary with a constant flow
rate of 35 Sccm. The distance between the precursor solution and capillary needle was kept
at 2 mm, while the distance between the anode and cathode was 3 cm. At the surface of
the precursor solution, the microplasma discharge acted as a cathode, while the graphite
rod immersed in the precursor cell served as an anode. A non-thermal stable glow-like
microplasma discharge consists of high-energy species electrons, ions, UV radiations and
neutral and reactive radicals. The microplasma–precursor aqueous solution interface
becomes the active reaction zone. The cathodic microplasma discharge impinges on the
anodic metal precursor–aqueous solution. The electrochemical catalysis reduces the metal
cations that interact with the micro plasma-donated electrons to form metal atoms. The
metal atoms come close by van der Waals forces. They nucleate and aggregate to form metal
nanoparticles [30]. The underlying basic idea for the synthesis of metallic nanostructures
using plasma, represented by Equation (1), has been reported in most of the research
papers [31,32].

Metal (cation) + ne(microplasma) ———— Mo
(atom) (1)
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Figure 1 illustrates the atmospheric pressure microplasma setup for fabricating nanos-
tructures. Figure 2 is a block diagram of the roadmap for the synthesis of metal colloids
through microplasma electrochemical reduction.
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2.2.1. Synthesis of Gold Colloids

Figure 2 shows a reaction cell with a volume of 100 mL containing hydrogen tetra-
chloroaurate(III) trihydrate HAuCl4·3H2O (0.5 mM composition) as a precursor solution,
which was exposed to atmospheric pressure microplasma for 10 min. The microplasma
discharge is the source of electrons among other microplasma species. Gold cations, after
the electrochemical reduction, interact with microplasma-produced electrons to form gold
atoms, followed by limited agglomeration to produce gold nanostructure particles. After
2–3 min of plasma exposure time, the color of the solution was changed from yellow to pur-
plish, showing the first visual indication of gold colloids formation, as shown in Figure 3a,
represented by (Au-10)0.5.
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2.2.2. Synthesis of Silver Nanoparticles

A reaction cell containing 100.0 mL of the AgNO3 precursor with a concentration of
0.50 mM was exposed to atmospheric pressure microplasma for 10 min. Silver cations,
after the electrochemical reduction, interact with microplasma-produced electrons to form
silver atoms, followed by agglomeration to produce silver nanostructured particles. After
2–3 min of plasma exposure time, a colorless transparent solution of AgNO3 precursor
was changed from a yellowish one, showing the first visual indication of silver colloids
formation, as shown in Figure 3b, represented by (Ag-10)0.5.
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2.2.3. Synthesis of Gold–Silver Bimetallic Colloids

A Volume of 50 mL with concentration 0.25 mM of HAuCl4·3H2O precursor solution
was added to a volume of 50 mL AgNO3, precursor solution with concentration 0.25 mM
The whole solution was mixed and stirred magnetically for 20 min. The solution was
initially colorless. The microplasma was energized by a high dc voltage of 5 kV between
the stainless-steel capillary (through which argon gas flows at a rate of 35 Sccm) and the
carbon rod dipped in the precursor. The current was maintained from 2 to 2.5 mA. With
the exposure of microplasma discharge for 10 min, a light reddish color appeared initially,
followed by the appearance of a pinkish mixed precursor. These observations suggest
that AuNPs formed first at the early stage of (Au–Ag) colloids. Then, with time, they
turn pinkish, indicating the contribution of AgNPs in (Au–Ag) bimetallic colloids, named
(Au–Ag)-10), as shown in Figure 3c, represented by (Au–Ag-10)0.50.

2.3. Investigation of the Antiviral Activities of Gold and Silver Nanostructures

Investigations of the antiviral tendencies of gold, silver and gold–silver bimetallic
nanostructures have been carried out by adopting inoculation, the harvesting of chorioal-
lantoic fluid and the Hemagglutination Assay (HA) protocol. An equal volume of gold,
silver, and gold-silver colloids were separately mixed with equal volume of confirmed
Avian Influenza Virus AIV (H9N2) of 106 EID50 were mixed in a microfuge tube. AIV
(H9N2) of 106 EID50 was procured from the Influenza Lab, Institute of Microbiology, the
University of Veterinary and Animal Sciences, Lahore. The virus and nanoparticles were
incubated at 37 ◦C for 30 min in an incubator so that the nanoparticles could react.

2.3.1. Inoculation in Embryonated Chicken Eggs

A total of about 0.2 mL of the inoculum was inoculated in 9-day-old embryonated
chicken eggs via the Chorio-Allantoic Sac (CAS) route by using sterile disposable syringes.
After the inoculation, the drilled eggshell was sealed by using wax, as shown in Figure 4a.
After the inoculation, the eggs were incubated at 37 ◦C for 48 h for the propagation of
the virus.
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2.3.2. Fluid Harvesting

The embryonated chicken eggs were chilled overnight at 4 ◦C. After proper chilling,
the eggs were placed in a Level II bio-safety cabinet and were disinfected with 70% ethanol.
Over the air sac, the eggshell portion was removed using sterile, sharp scissors. The air
sac membrane was removed. With the help of sterile forceps, the head of the embryo
was gently pressed, and Chorio-Allantoic Fluid (CAF) was picked up by using a 5 mL
disposable syringe, as shown in Figure 4b. The pooled CAF was separated in properly
labeled 15 mL falcon tubes.
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2.3.3. Hemagglutination Test (HA)

The chorio-allontioc fluid (CAF) harvested from the embryonated chicken eggs was
checked for hemagglutination activity via the hemagglutination test (HA). This test was
carried out according to the procedure referenced by Alexander and Chettle (Alexander
and Chettle 1977). For this procedure, 50 µL of normal saline (NS) was dispensed in all the
wells of the micro titration plate by using a multi-channel micro pipette. Then, 50 µL of the
harvested CAF was dispensed in the first well. After that, twofold serial dilutions of the
CAF were made from 1:2 to 1:2048. This was accomplished by transferring 50 µL into the
next wells, and so on, up to the 11th well. After this step, 50 µL of 1% RBCs suspension
was dispensed into all of the wells. The 12th well was kept as the negative control or
RBCs control, which contains only 1% RBCs suspension and normal saline. After that,
the micro titration plate was incubated at 37 ◦C for 20–30 min. The results were recorded
after the incubation when RBCs in the 12th well were completely settled down to form a
clearly visible bead at the bottom of the well. The HA test observations were performed in
triplicate to ensure quality results. The HA activity being negative means that the virus is
disabled or neutral, and the HA activity being positive confirms the presence of the virus.
The virus has a tendency to adhere to the surface of red blood cells and cause agglutination,
preventing them from settling at the bottom of a well and not letting them to form a bead.
This is called positive HA activity, as shown in the micro-titer plates Figure 5.
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2.4. Characterization Techniques

To assess the functional aspects of fabricated products, analytical techniques have
been executed to characterize gold, silver and gold–silver nanostructures. The formation
of their colloids was primarily experienced through visual observations. The crystallinity,
phases and planes of the nanostructured materials (gold, silver and gold–silver NPs/NCs)
have been probed with Bruker D8 DISCOVER Advance in Bragg–Brentano mode with
Cu Kα radiation (40 KV, 1.54 A and 40 mA). The morphology of the gold and silver
nanostructures was investigated with a Nova Nano SEM 450 Field-Emission Scanning
Electron Microscope (FE-SEM). The compositional analysis of the nanostructured materials
was carried out by energy dispersive X-ray spectroscopy (EDS) attached with the FE-SEM.
UV–VIS spectroscopic studies of gold and silver nanostructures and their nanostructured
composites were accomplished by using Agilent Technologies Cary 60, ranging from 200 to
800 nm, with a resolution of 1 nm. The dynamic light scattering technique, with a standard
He-Ne laser (632.8 nm) used as a light source (BI-200SM, Brookhaven Instrument Corp.), has
been used to characterize the hydrodynamic size distributions of the colloidal dispersions.

3. Results and Discussion
3.1. X-ray Diffrectometry

X-ray diffraction analyses of all the samples were carried out to confirm the phase and
crystalline nature of the gold, silver and gold–silver bimetallic nanoparticles prepared by
drop-casting the colloids separately on glass strips, followed by drying at room temperature.
Figure 6 shows the X-ray diffractograms of all of the prepared samples 2θ ranging from
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20◦ to 75◦. The identical Bragg’s reflections of (Au-10), (Ag-10) and (Au–Ag-10) appearing
at 2θ = 38.2◦, 44.4◦ and 64.58◦ correspond to (111), (200) and (220) planes, respectively,
and are indexed as face-centered cubic (FCC) structures [18,33]. The peaks of Ag were
recognized by matching this diffraction pattern with the reference card #00-001-1167, which
ensured the formation of a cubic crystal structure of Ag with lattice parameters of 4.08
Å. Similarly, the peaks of Au were confirmed by matching its peaks with the reference
card #00-001-1172 with lattice parameters of 4.0699 Å. An additional peak of (AgO) has
been observed due to the rapid oxidation of silver nanoparticles [34] and the same in the
bimetallic Ag–Au-10 nanoparticles. This peak of Ag–O was identified by the reference card
#00-022-0472.

Crystals 2023, 13, x FOR PEER REVIEW 8 of 18 
 

 

technique, with a standard He-Ne laser (632.8 nm) used as a light source (BI-200SM, 
Brookhaven Instrument Corp.), has been used to characterize the hydrodynamic size 
distributions of the colloidal dispersions. 

3. Results and Discussion 
3.1. X-ray Diffrectometry 

X-ray diffraction analyses of all the samples were carried out to confirm the phase 
and crystalline nature of the gold, silver and gold–silver bimetallic nanoparticles prepared 
by drop-casting the colloids separately on glass strips, followed by drying at room 
temperature. Figure 6 shows the X-ray diffractograms of all of the prepared samples 2θ 
ranging from 20° to 75°. The identical Bragg’s reflections of (Au-10), (Ag-10) and (Au–Ag-
10) appearing at 2θ = 38.2°, 44.4° and 64.58° correspond to (111), (200) and (220) planes, 
respectively, and are indexed as face-centered cubic (FCC) structures [18,33]. The peaks 
of Ag were recognized by matching this diffraction pattern with the reference card #00-
001-1167, which ensured the formation of a cubic crystal structure of Ag with lattice 
parameters of 4.08 Å. Similarly, the peaks of Au were confirmed by matching its peaks 
with the reference card #00-001-1172 with lattice parameters of 4.0699 Å. An additional 
peak of (AgO) has been observed due to the rapid oxidation of silver nanoparticles [34] 
and the same in the bimetallic Ag–Au-10 nanoparticles. This peak of Ag–O was identified 
by the reference card #00-022-0472. 

 
Figure 6. XRD patterns of (a) Ag-10, (b) Au-10 and (c) Au–Ag-10 nanoparticles. 

These identical Bragg’s reflections of AuNPs, AgNPs and ‘Au–Ag’ NPs are due to 
the almost similar interplanner distances of both Au (0.408) and Ag (0.409), supporting 
the mixable trend of Au and Ag atoms in a nanoparticle structure, as evidenced in 
previous investigations [35,36]. The peak intensities of Au (111) and Au (200) are higher 
in comparison to those of Ag (111) and Ag (200). However, there is a slight decrease in the 
peak intensities of Au–Ag (111) and Au–Ag (200) as compared to those of Au (111) and 
(200). It appears that this decrease in the peak intensities of Au–Ag is due to the formation 
of Au–Ag alloys [34,37]. In addition, the crystallite size was calculated using Scherer’s 
formula, which was found to be 35 nm and 29 nm for Au and Ag nanoparticles and 30 nm 
for their composite [38]. 

Figure 6. XRD patterns of (a) Ag-10, (b) Au-10 and (c) Au–Ag-10 nanoparticles.

These identical Bragg’s reflections of AuNPs, AgNPs and ‘Au–Ag’ NPs are due to
the almost similar interplanner distances of both Au (0.408) and Ag (0.409), supporting
the mixable trend of Au and Ag atoms in a nanoparticle structure, as evidenced in pre-
vious investigations [35,36]. The peak intensities of Au (111) and Au (200) are higher in
comparison to those of Ag (111) and Ag (200). However, there is a slight decrease in the
peak intensities of Au–Ag (111) and Au–Ag (200) as compared to those of Au (111) and
(200). It appears that this decrease in the peak intensities of Au–Ag is due to the formation
of Au–Ag alloys [34,37]. In addition, the crystallite size was calculated using Scherer’s
formula, which was found to be 35 nm and 29 nm for Au and Ag nanoparticles and 30 nm
for their composite [38].

3.2. Field-Emission Scanning Electron Microscope (Fe-Sem) Analyses
3.2.1. SEM of (Au-10)0.50

Figure 7a shows the FE-SEM image of (Au-10)0.50. The picture demonstrates that the
gold NPs are maximum in spherical shape and are not uniformly dispersed. Recently,
identical FE-SEM images of gold nanoparticles prepared by the green synthesis technique
have been reported [39]. Gold nanoparticles synthesized by the green method at room
temperature, where the majority of the particles seem spherical, have also been reported in
the near past [40].
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3.2.2. SEM of (Ag-10)0.50

Figure 7b is the FE-SEM image of (Ag-10)0.50, showing uniform dispersions. The
morphological studies suggest that maximum particles are in a spherical shape. These obser-
vations are inconsistent with recent findings based upon the FE-SEM analysis of silver NPs
fabricated by green synthesis [41]. In one of the previous investigations, the silver nanopar-
ticles were synthesized by the reduction in the silver precursor (AgNO3) of a concentration
of 1.0 mM by 25 min of atmospheric pressure microplasma discharge. The SEM images of
these silver nanostructures revealed spherical cum multi-shaped nanoparticles [42].

3.2.3. SEM of (Au–Ag)0.50 Bimetallic Nanoparticles

The FE-SEM image of gold–silver bimetallic NPs reveals an adequate change in mor-
phology as compared to the morphology of fructose-stabilized gold particles. The majority
of the Au–Ag composite particles are spherical and are uniformly dispersed, as shown in
Figure 7c. It appears that silver nanoparticles have influenced the morphology of Au–Ag
composites. The change in the morphology of Au–Ag was also reflected in the XRD analyses
of Au–Ag bimetallic nanocomposites. The decrease in the peak intensities of Au–Ag (111)
and Au–Ag (200), as compared to those of Au (111) and (200), as shown in Figure 6, is
due to the formation of Au–Ag alloys [37]. A similar kind of change in the morphology of
bimetallic gold–silver nanoparticles produced by one-step synthesis has also been observed
in previous activity [43,44]. In another previous research activity, the FE-SEM images of
bimetallic noble metal nanostructures showed multiple shapes depending upon the ratio
of constituents [45]. The EDX spectrum of (Au–Ag) confirms the presence of metallic gold
and silver masked by C and O peaks as the major constituents of D-Fructose, as shown in
Figure 7d. The weight percentage of all the involved elements is provided in Table 1.
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Table 1. Weight percentage of all the involved elements.

Elements Ag Au C O Cl

Wt% 20.51 68.36 4.98 4.49 1.66

3.3. UV—Visible Spectroscopic Analyses

The UV–VIS spectra of fructose-stabilized (Au-10)0.5, (Ag-10)0.5 and (Au–Ag-10)0.5
colloids are shown in Figure 8a–c, respectively.
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The surface plasmon resonance (SPR) of (Au-10)0.5 and (Ag-10)0.5 was observed at
532 nm and 410 nm, respectively. The maximum absorbance due to the surface plasmon
resonance of the (Au–Ag-10)0.5 nanoparticles was observed at 498 nm. The position of SPR
in the case of (Au–Ag-10)0.5 lying between the SPRs of (Ag-10)0.5 and (Au-10)0.5 justifies
the formation of Au–Ag bimetallic NPs [46]. Furthermore, the position of SPR in the case
of (Au–Ag-10)0.5 was blue-shifted as compared to that of Au-10 NPs, suggesting a decrease
in size in the bimetallic form as compared to Au-10 NPs [47]. The further appearance of a
single SPR in (Au–Ag-10)0.5 NPs confirms the formation of a gold–silver nano-alloy [48].
This is in agreement with the previous work, where the location of the SPR in Au/Ag NPs
was found to be at 443 nm, lying intermediately between the SPR of AuNPs at 545 nm and
that of AgNPs at 413 nm [39]. For core-shell structure, two peaks have been observed in
the UV–VIS spectra seen in previous studies [22].

3.4. Dynamic Light Scattering Analyses
3.4.1. Size Distribution of (Au-10)0.50

The size distributions of the gold colloids (Au-10)0.50 are shown in Figure 9a. The
hydrodynamic size of (Au-10)0.50 consists of two distributions. Their size ranges from 12 nm
to 149 nm, with 14 nm and 91 nm maximum intensities in the respective distributions. In
one of the previous studies, the same approach was used to estimate the hydrodynamic size
of the gold nanoparticles. In these investigations, the major particles size distribution peak
at an average diameter of 75 nm was observed, while a small size distribution exhibited a
particles size peak around 5–6 nm [49].
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3.4.2. Size Distribution of (Ag-10)0.50

The hydrodynamic size of (Ag-10)0.50 consists of two distributions, as shown in
Figure 9b. Their size ranges from 19 nm to 143 nm, with 21 nm and 99 nm maximum
intensities in the respective distributions. In a past investigation, the size distribution of
silver colloids produced by the chemical reduction method with an intensity-weighted
technique has been reported. The major particles size distribution ranged from 60 to 100
nm, with the peak at an average diameter of 80 nm [42].

3.4.3. Size Distribution of Gold–Silver (Au–Ag-10)0.50

The hydrodynamic size of gold–silver bimetallic colloids (Au–Ag-10)0.50 also consists
of two distributions, as shown in Figure 9c. Their size ranges from 12 nm to 117 nm, with
16 nm and 78 nm maximum intensities in the respective distributions.

In summary, it is observed that the first distributions in (Au-10)0.50, (Ag-10)0.50 and
(Au–Ag-10)0.50 colloids produced by a microplasma discharge of 10 min lie within an iden-
tical range of (12–23 nm), regardless of the nature of the nanoparticle and the concentration
of the precursor. The second distribution in the spectrum consists of a comparatively larger-
sized range, i.e., 64–142 nm for (Au-10)0.50, 70–143 nm for (Ag-10)0.50 and 55–117 nm for
(Au–Ag-10)0.50. It can be interpreted that the narrow distribution of the small-sized range
is independent of the nature of the particles. It is suggested that these narrow distributions
could be due to the scattering of the laser due to the presence of some impurities in the sam-
ples [46]. However, the size distribution of gold–silver bimetallic colloids ((Au–Ag-10)0.50)
carries a narrow range of 55–117 nm as compared to the size distribution of (Au-10)0.50 and
(Ag-10)0.50 colloids. The reduction in the size distribution in bimetallic colloids is due to
their tendency to form the alloy, in accordance with the previously reported results [50].
The formation of the bimetallic Au–Ag alloy was also reflected in XRD diffractograms
(Figure 6) and UV–VIS spectroscopic studies (Figure 8). A reduction in the size distribution
of dextran-stabilized Ag–Au bimetallic alloy NPs as compared to dextran-stabilized Ag-
NPs was also observed in previous research [50]. This reduction in the size distribution
in bimetallic alloy colloids definitely has a viable impact on their interaction with the
biological system [51].

3.5. Antiviral Activities

After the comprehensive characterization of various synthesized metallic and bimetal-
lic gold and silver nanostructures with XRD, SEM, UV–VIS and DLS, we investigated their
antiviral activities against the Avian Influenza H9N2 virus strain. The hemagglutination
assay test has been used to detect the presence of a typical virus on the basis of its hemag-
glutination ability. H9N2 influenza A virus has the ability to agglutinate chicken Red Blood
Cells (RBCs). Perusing the procedure referenced by Alexander and Chettle, the competing
viral property of H9N2 influenza A virus for agglutinating chicken Red Blood Cells (RBCs)
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and the gold and silver nanostructures’ antiviral property of disabling virus activity have
been examined. [52]. The detailed procedure is described in Section 2.3. It is also seen
in the literature that bimetallic gold–silver nanostructures have synergistically improved
their antibacterial activities, as compared to monometallic counterparts, against various
microbes [24,25]. In this section, an attempt has been made to investigate the antiviral
tendency of bimetallic gold–silver nanostructures and their monometallic counterparts
synthesized by the atmospheric pressure microplasma technique. The Haemagglutinin Ac-
tivity (HA) of AIV/H9N2 after the interaction with different concentrations of (Au-10)0.50,
(Ag-10)0.50 and (Au–Ag-10)0.50 colloids fabricated by an atmospheric pressure microplasma
discharge of 10 min in micro titration is shown in Figures 10–12. The concentration of the
nanostructures in the precursor composition that can inhibit the virus activity has been
evaluated by using the standard relation [53].

Mass = Molarity × Molecular Wight × volume (2)
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3.5.1. HA Activity of AIV/H9N2 after the Interaction with (Au-10)0.50

The HA activity of AIV/H9N2 in the presence of the different concentrations of gold
colloids was reduced from 0.5 mM HAuCl4·3H2O by 10 min of microplasma discharge
exposure, which has been investigated in this section. With the twofold serial dilutions, the
confirmed concentration of (Au-10)0.50 that can attenuate the AIV/H9N2 activity has been
evaluated to be 4.9 µg/mL. However, at the concentration of 2.45 µg/mL, the HA activity
was positive, as shown in Figure 10. Table 2 gives the details of the Haemegglutination
Assay protocols for studying the inhibiting tendency of gold colloids.

Table 2. HA Activity of AIV/H9N2 After Mixing with Different Concentrations of the (Au-10)0.50

(Gold Nanostructures) Formulation by 10 min of Microplasma Discharge Time.

Sample ID/Au-10 Precursor Concentration (HAuCl4·3H2O) Concentration of Nanostructure Gold HA Activity

1 0.50 mM 9.8 µg/mL −Ve

2 0.25 mM 4.9 µg/mL −Ve

3 0.125 mM 2.45 µg/mL +Ve

3.5.2. HA Activity of AIV/H9N2 after the Interaction with (Ag-10)0.50 (Silver Colloids)

The Haemagglutinin Activity (HA) of AIV/H9N2 after the interaction with different
concentrations of (Ag-10)0.50 colloids fabricated by an atmospheric pressure microplasma
discharge of 10 min in micro titration is shown in Figure 11. The details of the HA activity
of AIV/H9N2 in the presence of the different concentrations of silver (Ag-10)0.50 nanopar-
ticles are depicted in Table 2. The confirmed concentration of silver nanostructures that
could disable the AIV/H9N2 virus activity has been observed to be 13.4 µg/mL, while at
5.39 µg/mL, the HA activity was positive, as evidenced in Figure 11.

3.5.3. HA Activity of AIV/H9N2 after the Interaction with (Au–Ag-10)0.50 (Gold–Silver
Bimetallic Colloids)

The Haemagglutinin Activity (HA) of AIV/H9N2 after the interaction with differ-
ent concentrations of (Au–Ag-10)0.50 colloids fabricated by an atmospheric pressure mi-
croplasma discharge of 10 min in micro titration is shown in Figure 12. Moreover, the
detailed antiviral activity of gold–silver bimetallic colloids is presented in Table 3, where it
can be observed that gold–silver colloids can attenuate the infectivity of H9N2 influenza
virus with a concentration of 3.18 µg/mL.

Table 3. HA Activity of AIV/H9N2 after Mixing with Different Concentrations of Silver NPs
Formulation by 10 min of Microplasma Discharge Time.

Sample (Ag-10)0.50 Precursor (AgNO3) Concentration Concentration of Nanostructured Silver Particles HA Activity

1 0.5 mM 53.9 µg/mL −Ve

2 0.25 mM 26.9 µg/mL −Ve

3 0.125 mM 13.4 µg/mL −Ve

4 0.05 mM 5.39 µg/mL +Ve

The HA activity of AIV/H9N2 interaction with different concentrations of gold, silver
and gold–silver colloids is shown in micro titration plates in Figures 10–12, respectively. The
concentrations of gold, silver and gold–silver nanostructures for counteracting AIV/H9N2
have been recorded in Tables 2–4, respectively, computed by the standard relation [53]. With
the two-fold serial dilution, it is observed that the confirmed concentration of (Au-10)0.50
gold colloids that can inhibit AIV/H9N2 activity is 4.9 µg/mL, as depicted in Figure 10 and
Table 2. This is quite satisfactory compared to the recently investigated antiviral activity of
porous-gold NPs prepared by a surfactant-free emulsion method against the H1N1, H3N2
and H9N2 influenza virus strains in the HA protocol using Madin–Darby Canine Kidney
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(MDCK) cells as a culture medium [14]. Their observations yielded 0.2 mg/mL for the
minimum concentration of porous AuNPs needed to inactivate the effects of these virus
strains. The confirmed concentration of Silver colloids that could disable the AIV/H9N2
virus activity was observed to be 13.4 µg/mL, as illustrated in Figure 11 and Table 3.
In a similar kind of past study, the silver nanoparticles prepared by the green synthesis
method had shown a potential tendency of inhibiting H1N1 influenza A virus activity
with a concentration range of 12.5 µg/mL to 100 µg/mL [54]. In the present study, the
confirmed concentration of silver nanoparticles prepared by the microplasma technique
that can inhibit H9N2 Influenza A virus activity lies within this range.

Table 4. HA Activity of AIV/H9N2 After Mixing with Different Concentrations of (Au–Ag-10)0.50.

Sample/
(Au–Ag-10)0.50

Precursor Concentration
(0.25 mM HAuCl4·3H2O + 0.25 mM AgNO3) Concentration of (Au–Ag-10)0.50 HA Activity

1 0.50 mM 31.8 µg/mL −Ve

2 0.25 mM 15.9 µg/mL −Ve

3 0.125 mM 7.95 µg/mL −Ve

4 0.05 mM 3.18 µg/mL −Ve

5 0.025 mM 1.59 µg/mL +Ve

Moreover, the detailed antiviral activity of gold–silver bimetallic colloids is presented
in Table 4. The confirmed concentration of gold–silver bimetallic colloids that could disable
the AIV/H9N2 virus activity was observed to be 3.18 µg/mL, as shown in Figure 12. From
the present observations, it is seen that (Au-10)0.50, (Ag-10)0.50 and (Au–Ag-10)0.50 bimetal-
lic NPs with crystalline nanostructures, as evidenced in the XRD analysis [30], remarkably
inhibited the influenza virus H9N2 activity. One strong reason for such a convincing antivi-
ral efficiency is assumed to be the compatibility of the size range of microplasma-fabricated
gold and silver colloids, as seen in our DLS analyses (in Section 3.4), which range from
55 nm to 143 nm. The avian influenza virus belonging to the orthomyxoviruses family
can exist with different morphologies in the size range of 80–300 nm [55]. These com-
patibilities are assumed to be responsible for the effective bio-conjunction with influenza
viruses [56]. Consequently, these nanostructures attach to the viral envelope glycoproteins
and, hence, inhibit the virus surface activity [57]. Recently, our group found the gold–PVP
hybrid nanostructure to be more effective in inhibiting the influenza H9N2 virus activity as
compared bare gold particles [27].

Most importantly, in our present investigations, (Au–Ag-10)0.50 showed a greater
efficiency of inhibition against H9N2 virus activity as compared to (Au-10)0.50 and (Ag-
10)0.50. The enhancing inhibiting capability of (Au–Ag-10)0.50 bimetallic NPs against avian
influenza is attributed to their alloy formation. The formation of (Au–Ag-10)0.50 bimetallic
alloy NPs is well supported by XRD analyses (Section 3.1), where a decrease in the peak
intensities of Au–Ag (111) and Au–Ag (200) as compared to those of Au (111) and (200)
is due to the formation of Au–Ag alloys [35]. The appearance of a single SPR peak in
the UV–VIS spectrum of (Au–Ag-10)0.50 NPs and its existence between the SPR peaks of
(Ag-10)0.50 colloids and (Au-10)0.50 colloids also justify the formation of (Au–Ag-10)0.50
bimetallic NPs in the alloy [46,58].

Another reason for the greater antiviral proficiency of (Au–Ag-10)0.50 as compared to
that of (Au-10)0.50 NPs is the decrease in the size distribution of (Au–Ag-10)0.50 colloids (in
DLS studies; Section 3.4) in bimetallic form, which is also evidenced in UV–VIS spectroscopy
(Section 3.3). This decrease in the size of (Au–Ag-10)0.50 bimetallic alloy nanoparticles
increases the effective surface area of the nanostructured particles [47]. The small particle
size with an enhanced surface area causes an improvement in the surface reactivity of NPs,
with the virus envelope glycoprotein favoring an enhanced antiviral activity in bimetallic
alloy form [51]. Fortunately, (Au–Ag-10)0.50 nanoparticles are fertile in compatibility due
to the inherited character of the gold constituent [59], are more antimicrobial due to
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the inherited character of silver NPs [60] and have a more stable character due to their
existence in the alloy form [61]. Consequently, (Au–Ag-10)0.50 alloy NPs have shown a
great potential to execute an excellent surface functionalization with the influenza virus
glycoprotein, disabling the hemagglutinin and neuraminidase activities of the binding
host cells, resulting in synergy in the antiviral activity, as compared to its counterparts.
These observations have emphasized the importance of bimetallic alloy NPs in therapeutic
applications [62].

It seems pertinent to mention that, with the administration of our reported confirmed
concentration of fructose-stabilized nanostructures in inhibiting AIVH9N2 virus activity,
cytotoxic effects are assumed to be negligible. Our claim is strengthened by the previously
reported antimicrobial potencies of starch-stabilized AuNPs and Au/Ag alloy NPs, where,
up to 20 ug/mL, the cytotoxic effects of AuNPs and Au/Ag alloy NPs against healthy cells
were insignificant [26]. However, these studies can be extended in the future to investigate
the cytotoxic effects of microplasma-fabricated nanostructures.

4. Conclusions

Atmospheric pressure microplasma-assisted fabrication resulted in gold, silver and
gold–silver crystalline nanostructures. An adequate change in the morphology of gold–
silver bimetallic NPs has been revealed as compared to the morphology of fructose-
stabilized gold particles and silver NPs. The majority of the gold–silver particles are
spherical and are uniformly dispersed. Gold–silver colloids depict the bimetallic nanostruc-
tures in an alloy form. The compatibility in the sizes of both fabricated nanoparticles and
the influenza virus belonging to the orthomyxoviruses family are assumed to be responsible
for an effective bio-conjunction with influenza viruses. These nanostructures have demon-
strated convincing antiviral activity against the Avian Influenza H9N2 virus. However,
gold–silver alloy nanoparticles have synergistically improved the antiviral activity against
Avian Influenza virus H9N2 as compared to the antiviral activities of their counterparts.
It is conclusively stated that bimetallic nanocomposites could be better antiviral options
to control and hence to eradicate the viral diseases. In the future, this research work can
be extended to design an atmospheric pressure microplasma setup to fabricate metallic
oxide nanocomposites of copper, Fe and Zn on a large scale. Moreover, these studies can
be further extended to investigate the antiviral activates against other enveloped viruses
such as Hepatitis C virus (HCV) and human coronaviruses (SARS-CoV-2). Furthermore,
the cytotoxic effects of microplasma-fabricated nanostructures can also be explored in
future works.
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