
Citation: Altowyan, M.S.; Albering,

J.H.; Barakat, A.; Soliman, S.M.;

Abu-Youssef, M.A.M. Synthesis,

Supramolecular Structural

Investigations of Co(II) and Cu(II)

Azido Complexes with Pyridine-Type

Ligands. Crystals 2023, 13, 346.

https://doi.org/10.3390/

cryst13020346

Academic Editor: Alexander Y.

Nazarenko

Received: 31 January 2023

Revised: 12 February 2023

Accepted: 15 February 2023

Published: 17 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Synthesis, Supramolecular Structural Investigations of Co(II)
and Cu(II) Azido Complexes with Pyridine-Type Ligands
Mezna Saleh Altowyan 1 , Jörg H. Albering 2, Assem Barakat 3 , Saied M. Soliman 4,*
and Morsy A. M. Abu-Youssef 4,*

1 Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University,
P.O. Box 84428, Riyadh 11671, Saudi Arabia

2 Graz University of Technology, Mandellstr. 11/III, A-8010 Graz, Austria
3 Department of Chemistry, College of Science, King Saud University, P.O. Box 2455,

Riyadh 11451, Saudi Arabia
4 Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia,

Alexandria 21321, Egypt
* Correspondence: saeed.soliman@alexu.edu.eg (S.M.S.); morsy5@alexu.edu.eg (M.A.M.A.-Y.)

Abstract: Two new Co(II) and Cu(II) azido complexes with 4-picoline (4-Pic) and pyridine-2-
carboxaldoxime (HAld) were synthesized by self-assembly of the organic ligand and the M(II)
nitrate in the presence of azide as a co-ligand. Their structures were determined to be [Co(4-
Pic)4(H2O)(N3)]NO3*H2O*4-Pic (1) and [Cu(HAld)(Ald)(N3)] (2) using X-ray single crystal diffraction.
In complex 1, the coordination geometry is a slightly distorted octahedron with a water molecule
and azide ion located trans to one another. On the other hand, complex 2 has a distorted square
pyramid CuN5 coordination sphere with N-atoms of the organic ligand as a basal plane and azide ion
as apical. All types of intermolecular contacts and their contributions in the molecular packing were
analyzed using Hirshfeld analysis. The intermolecular contacts, H . . . H (53.9%), O . . . H (14.1%),
N . . . H (11.0%) and H . . . C (18.8%) in 1, and H . . . H (27.4%), N . . . H (27.7%), O . . . H (14.7%) and
H . . . C (13.6%) in 2 have the largest contributions. Of all the contacts, the O . . . H, N . . . H and
C . . . C interactions in 2 and the O . . . H, N . . . H and H . . . C in 1 are apparently shorter than the
van der Waals radii sum of the interacting atoms. Atoms in molecules (AIM) topological parameters
explained the lower symmetry of the coordinated azide in 1 than 2.

Keywords: Co(II) and Cu(II) azido complexes; Hirshfeld analysis; atoms in molecules; X-ray single
crystal structure; 4-picoline; pyridine-2-carboxaldoxime; intermolecular interactions

1. Introduction

Metal complexes have attracted the attention of researchers for their diverse and fasci-
nating applications in different fields [1–6]. These compounds have interesting applications
such as gas storage and separation of ions [7,8]. On the other hand, the coordination
environment in metal complexes depends on many factors such as the nature of the metal
ion, ligand and medium used [9,10]. Moreover, the presence of linker group such as azide
has a great impact not only on the dimensionality of the resulting coordination compound
but also on their functionality and applications [11–21].

The chemistry of azide containing compounds has attracted the attention of scientist
due to the versatile applications of these compounds especially in the field of explo-
sives. Some metal azides such as Pb(N3)2 and Cu(N3)2 are well known explosives [22,23].
Moreover, azide compounds are important as propellants in air bags [24]. Hence, these
compounds could be considered as a good source of energy. Intuitively, the increase in
N3
− ion content in a compound has a vital role in obtaining better energy sources. More-

over, the azide binding mode in metal complexes is an important factor in achieving this
purpose. Many azide binding modes have been reported in the literature, ranging from
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ionic, terminal and µ-1,1 (end-on) to µ-1,3 (end-to-end) bridging modes. The azide binding
modes depend on a number of factors including the type and oxidation state of the metal
ion and the nature of the auxiliary ligand. Moreover, these factors have an important role
in upholding the stability of the azide containing compounds. Cobalt azide complexes are
generally stable compounds [25–27]. As a result, these azide complexes could be consid-
ered as promising compounds for tunable heat energy release. Based on the literature, the
[Co(NH3)5(N3)](N3)2 complex is the first well known azide complex [28].

On the other hand, nitrogen heterocycles such as pyridine compounds have great
importance as ligands in coordination chemistry [29–31]. The introduction of the substituent
has a pivotal role in changing the electronic, steric and conformational characteristics of
the ligand which affect the ligand coordination ability [32–39]. In light of the fascinating
structure and applications of azido complexes [40–42] with various N-heterocycles, our
plan in the current work is to synthesize the Co(II) and Cu(II) azido complexes of 4-picoline
(4-Pic) and pyridine-2-carboxaldoxime (HAld) (Figure 1). Combined experimental and
theoretical studies were used to shed light on their structural aspects. In this regard, the
structures obtained from the single crystal X-ray diffraction analyses were studied using
Hirshfeld and DFT calculations.

Crystals 2023, 13, x FOR PEER REVIEW 2 of 15 
 

 

purpose. Many azide binding modes have been reported in the literature, ranging from 
ionic, terminal and µ-1,1 (end-on) to µ-1,3 (end-to-end) bridging modes. The azide bind-
ing modes depend on a number of factors including the type and oxidation state of the 
metal ion and the nature of the auxiliary ligand. Moreover, these factors have an im-
portant role in upholding the stability of the azide containing compounds. Cobalt azide 
complexes are generally stable compounds [25–27]. As a result, these azide complexes 
could be considered as promising compounds for tunable heat energy release. Based on 
the literature, the [Co(NH3)5(N3)](N3)2 complex is the first well known azide complex [28].  

On the other hand, nitrogen heterocycles such as pyridine compounds have great 
importance as ligands in coordination chemistry [29–31]. The introduction of the substit-
uent has a pivotal role in changing the electronic, steric and conformational characteristics 
of the ligand which affect the ligand coordination ability [32–39]. In light of the fascinating 
structure and applications of azido complexes [40–42] with various N-heterocycles, our 
plan in the current work is to synthesize the Co(II) and Cu(II) azido complexes of 4-pico-
line (4-Pic) and pyridine-2-carboxaldoxime (HAld) (Figure 1). Combined experimental 
and theoretical studies were used to shed light on their structural aspects. In this regard, 
the structures obtained from the single crystal X-ray diffraction analyses were studied us-
ing Hirshfeld and DFT calculations. 

 
Figure 1. Structure of 4-picoline (4-Pic) and pyridine-2-carboxaldoxime (HAld). 

2. Experiment 
2.1. Physicochemical Characterizations 

All details regarding chemicals and physicochemical characterizations are given in 
Supplementary data. 

2.2. Synthesis of the Metal Complexes 1 and 2  
2.2.1. Synthesis of [Co(4-Pic)4(H2O)(N3)]NO3*H2O*4-Pic; 1 

A solution of Co(NO3)2.6H2O (0.2 mmole in 10 mL ethanol) was added to 10 mL eth-
anolic solution of 1.0 mmole 4-picoline (4-Pic), then 1 mL saturated aqueous solution of 
NaN3 was added dropwise with constant stirring for 10 min followed by filtration and the 
clear filtrate was left to slowly evaporate at rt. After one week, pink crystals of 1 were 
obtained. 

[Co(4-Pic)4(H2O)(N3)]NO3*H2O*4-Pic; 1: Yield: 65%; Anal. Calcd. C30H39CoN9O5: C, 
54.21; H, 5.91; N, 18.97; Co, 8.87%. Found: C, 54.09; H, 5.84; N, 18.83; Co, 8.96%. 

2.2.2. Synthesis of [Cu(HAld)(Ald)(N3)]; 2 
A solution of Cu(NO3)2.3H2O (0.2 mmole in 10 mL ethanol) was added to 10 mL eth-

anolic solution of 0.4 mmole pyridine-2-aldoxime (HAld), then 1 mL saturated aqueous 
solution of NaN3 was added dropwise with constant stirring for 10 min followed by fil-
tration and the clear filtrate was left to slowly evaporate at rt. After 5 days, dark green 
crystals of 2 were obtained. 

[Cu(HAld)(Ald)(N3)]; 2: Yield: 69%; Anal. Calcd. C12H11CuN7O2: C, 41.32; H, 3.18; N, 
28.11; Cu, 18.22%. Found: C, 41.21; H, 3.11; N, 27.97; Cu, 18.10%. 

Figure 1. Structure of 4-picoline (4-Pic) and pyridine-2-carboxaldoxime (HAld).

2. Experiment
2.1. Physicochemical Characterizations

All details regarding chemicals and physicochemical characterizations are given in
Supplementary data.

2.2. Synthesis of the Metal Complexes 1 and 2
2.2.1. Synthesis of [Co(4-Pic)4(H2O)(N3)]NO3*H2O*4-Pic; 1

A solution of Co(NO3)2.6H2O (0.2 mmole in 10 mL ethanol) was added to 10 mL
ethanolic solution of 1.0 mmole 4-picoline (4-Pic), then 1 mL saturated aqueous solution
of NaN3 was added dropwise with constant stirring for 10 min followed by filtration and
the clear filtrate was left to slowly evaporate at rt. After one week, pink crystals of 1
were obtained.

[Co(4-Pic)4(H2O)(N3)]NO3*H2O*4-Pic; 1: Yield: 65%; Anal. Calcd. C30H39CoN9O5:
C, 54.21; H, 5.91; N, 18.97; Co, 8.87%. Found: C, 54.09; H, 5.84; N, 18.83; Co, 8.96%.

2.2.2. Synthesis of [Cu(HAld)(Ald)(N3)]; 2

A solution of Cu(NO3)2.3H2O (0.2 mmole in 10 mL ethanol) was added to 10 mL
ethanolic solution of 0.4 mmole pyridine-2-aldoxime (HAld), then 1 mL saturated aqueous
solution of NaN3 was added dropwise with constant stirring for 10 min followed by
filtration and the clear filtrate was left to slowly evaporate at rt. After 5 days, dark green
crystals of 2 were obtained.

[Cu(HAld)(Ald)(N3)]; 2: Yield: 69%; Anal. Calcd. C12H11CuN7O2: C, 41.32; H, 3.18;
N, 28.11; Cu, 18.22%. Found: C, 41.21; H, 3.11; N, 27.97; Cu, 18.10%.
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2.3. X-ray Diffraction Analysis

The crystal structures of the two azide complexes were determined as described in
the Supplementary Materials [43,44]. Crystal data are given in Table 1. It is worth noting
that the crystals of complex 1 were extremely brittle and tended to decompose after a while
on the diffractometer. The measurement was stopped before it was completed—due to
crystal decomposition. Upon cooling, the material crumbled, ending up in a more or less
polycrystalline lump. Thus, we decided to use the data measured at the best crystal in the
sample and solve the structure based upon these data. Anyway even with the reduced
dataset it was possible to determine the structure properly, without any deviations from
the ideal shape of the displacement parameters or unusual interatomic distances.

Table 1. Crystal data of 1 and 2.

Compound 1 2

Empirical formula C30H39CoN9O5 C12H11CuN7O2
Fw 664.63 348.82
T (K) 293(2) K 100(2) K
λ (Å) 0.71073 Å 0.71073 Å
cryst syst Monoclinic Monoclinic
Space group P21/c P21/n
a (Å) 11.3305(7) 6.8277(2)
b (Å) 11.3887(15) 10.2203(2)
c (Å) 25.9243(16) 18.8056(6)
β (◦) 101.672(2) 94.700(2)
V (Å3) 3276.1(5) 1307.86(6)
Z 4 4
ρcalc (Mg/m3) 1.347 Mg/m3 1.772 Mg/m3

µ (Mo Kα) (mm−1) 0.576 mm−1 1.690 mm−1

F(000) 1396 708
θ-range 2.180 to 26.341◦ 2.173 to 32.498◦

No. reflns. 7685 28,102
Unique reflns. 4249 [R(int) = 0.0414] 4745 [R(int) = 0.0310]
Completeness to theta = 25.242◦ 64.10% 100.00%
GOOF (F2) 1.037 1.032
Final R indices [I > 2sigma(I)] R1 = 0.0392, wR2 = 0.0930 R1 = 0.0229, wR2 = 0.0635
R indices (all data) R1 = 0.0754, wR2 = 0.1144 R1 = 0.0264, wR2 = 0.0657
CCDC 2,158,205 2,158,206

3. Hirshfeld and DFT Calculations

The topology analyses including Hirshfeld calculations, construction of the different
maps (dnorm, shape index (SI) and curvedness) and decomposition of the different inter-
molecular contacts were performed using Crystal Explorer 17.5 program [45–47]. DFT
computational details are described in the Supplementary Materials [48–52].

4. Results and Discussion
4.1. X-ray Structure Description
4.1.1. Structure of [Co(4-Pic)4(H2O)(N3)]NO3*H2O*4-Pic; 1

This Co(II) complex crystallizes in the monoclinic crystal system and space group
P21/c. The unit cell parameters are a = 11.3305(7) Å, b = 11.3887(15) Å, c = 25.9243(16) Å
and β= 101.672(2)◦, 101.672(2)◦, V = 3276.1(5) A3, Z = 4. Compound 1 is a cationic complex
in which the coordination sphere comprises a hexa-coordinated Co(II) ion (Figure 2). There
are four Co-N interactions with the four 4-Pic ligand units as N-donor ligand via the
heterocyclic nitrogen of the pyridine moiety. The Co-N lengths vary from 2.160(4) Å (Co1-
N4) to 2.211(3) Å (Co1-N5). The angles of the trans bonds N4-Co1-N6 and N5-Co1-N7 are
178.48(10)◦ and 175.25(10)◦, respectively, while the angles of the cis N-Co-N bonds range
from 87.04(14)◦ (N6-Co1-N7) to 93.06(13)◦ (N4-Co1-N5). The coordination sphere of the
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Co(II) is completed by a terminally coordinated azide ion and a water molecule located
trans to one another. The corresponding Co1-N1 and Co1-O1 bond lengths are 2.102(3)
and 2.091(2) Å, respectively, while the O1-Co1-N1 is 178.79(16)◦ which is very close to
the ideal value of 180◦ (Table 2). Hence the CoN5O coordination geometry is a slightly
distorted octahedron. The outer sphere of 1 contains one nearby nitrate anion and two
neutral molecules, which are the crystal water and a fifth free 4-Pic molecule.
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Figure 2. X-ray structure of 1 drawn at 50% probability level for thermal ellipsoids. The labels of the
aromatic and aliphatic protons are not depicted for better clarity.

Table 2. Bond lengths (Å) and angles (◦) of complex 1.

Bond Bond Length Bond Bond Length

Co(1)-O(1) 2.091(2) Co(1)-N(6) 2.181(4)
Co(1)-N(1) 2.102(3) Co(1)-N(7) 2.198(3)
Co(1)-N(4) 2.160(4) Co(1)-N(5) 2.211(3)

Bonds Angle Bonds Angle

O(1)-Co(1)-N(1) 178.79(16) N(1)-Co(1)-N(7) 89.77(11)
O(1)-Co(1)-N(4) 88.80(12) N(4)-Co(1)-N(7) 91.54(14)
N(1)-Co(1)-N(4) 90.50(15) N(6)-Co(1)-N(7) 87.04(14)
O(1)-Co(1)-N(6) 91.72(12) O(1)-Co(1)-N(5) 89.67(9)
N(1)-Co(1)-N(6) 88.96(15) N(1)-Co(1)-N(5) 91.35(11)
N(4)-Co(1)-N(6) 178.48(10) N(4)-Co(1)-N(5) 93.06(13)
O(1)-Co(1)-N(7) 89.27(9) N(6)-Co(1)-N(5) 88.37(14)
O(5)-Co(1)-N(7) 175.25(10)

The structure of complex 1 comprised numerous intra- and intermolecular hydrogen
bonding interactions. Presentation of these hydrogen bond contacts is shown in Figure 3
while the hydrogen bond parameters are depicted in Table 3. It is clear that the nitrate
counter anion in the outer sphere acts as a hydrogen bond acceptor which connects the
crystal water and free 4-Pic molecules with the complex cationic part via the coordinated
water as hydrogen bond donor. Moreover, the latter form a short and strong O1-H2A . . .
O2 hydrogen bond with the crystal water as hydrogen bond acceptor. It is worth noting
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that there is no significant direct interaction between the complex cationic unit and the free
4-Pic molecule.
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Figure 3. H-bridge contacts (A) and H-bonding network (B) in 1.

Table 3. Hydrogen bonds in complex 1.

D-H . . . A d(D-H) d(H . . . A) <DHA d(D . . . A) Symmetry Code

O1-H1A . . . O3 0.853 2.568 133.64 3.216
O1-H1A . . . O4 0.853 1.909 170.04 2.753
O1-H2A . . . O2 0.807 1.859 178.01 2.665 [x + 1, y, z]
O2-H3A . . . N8 0.819 1.973 173.17 2.788
O2-H4A . . . O3 0.866 1.953 167.15 2.803 [−x + 1, y − 1/2, −z + 1/2]
O2-H4A . . . O5 0.866 2.611 135.83 3.288 [−x + 1, y − 1/2, −z + 1/2]
C7-H7 . . . N1 0.93 2.483 124.23 3.103

C10-H10 . . . O5 0.93 2.513 139.78 3.278 [−x + 1, y − 1/2, −z + 1/2]
C11-H11 . . . O1 0.93 2.496 121.54 3.086
C17-H17 . . . N1 0.93 2.468 120.95 3.052
C25-H25 . . . O3 0.93 2.658 158.25 3.538 [x − 1, y, z]
C28-H28 . . . O4 0.93 2.584 168.86 3.501
C29-H29 . . . O5 0.93 2.586 139.48 3.348 [−x + 1, y − 1/2, −z + 1/2]

As shown in Figure 4, there is an alternating arrangement for the inner and outer
spheres of the complex. In this packing structure the complex cationic units form nearly
parallel layers along the bc plane, while a second layer of the crystal water, nitrate anion
and the free 4-Pic molecule interpenetrate the layers of the cationic complex. The two layer
structures are held together via a complicated set of weak and strong H . . . O bridges.

4.1.2. Structure of [Cu(HAld)(Ald)(N3)]; 2

This Cu(II) complex crystallizes in the monoclinic crystal system and space group
P21/n. The unit cell parameters are a = 6.8277(2) Å, b = 10.2203(2) Å, c = 18.8056(6) Å and
94.700(2)◦, V = 1307.86(6) A3, Z = 4. Compound 2 is a neutral complex in which the Cu(II)
is penta-coordinated with the two HAld/Ald− organic ligand combination as bidentate
NN-chelate, in addition to one terminally coordinated azide ion (Figure 5). In this structure,
the HAld/Ald− organic ligand combination represents one deprotonated mononegative
(Ald−) and one neutral (HAld) unit. Hence, the X-ray structure of this complex comprised
electrically neutral monomers of the [Cu(HAld)(Ald)(N3)] complex. Selected bond lengths
and angles for the coordination sphere are depicted in Table 4. The Cu-N(pyridine) lengths
are generally longer than the Cu-N(oxime) in both ligand units. The Cu1-N1 (2.0341(9) Å)
and Cu1-N2 (1.9967(9) Å) bonds in one unit are slightly longer than the corresponding
Cu1-N3 (2.0480(9) Å) and Cu1-N4 (1.9946(9) Å) bonds in the other ligand unit. The last
Cu1-N5 interaction with the azide ligand is the longest (2.2158(10) Å). Hence the structure
of the coordination sphere is more like a distorted square pyramid where the N-atoms
from the organic ligand units represent the base of the square while the N5 atom from the
azide anion acts as apical. Based on Addison criterion [53], the largest angles N4-Cu1-N1
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(β = 170.83◦) and N2-Cu1-N3 (α = 156.74◦) give a τ = (β−α)
60 value of 0.24 suggesting as a

distorted square pyramid CuN5 coordination environment.
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Table 4. Bond lengths (Å) and angles (◦) for complex 2.

Bond Bond Length Bond Bond length

Cu(1)-N(4) 1.9946(9) Cu(1)-N(3) 2.0480(9)
Cu(1)-N(2) 1.9967(9) Cu(1)-N(5) 2.2158(10)
Cu(1)-N(1) 2.0341(9)

Bonds Angle Bonds Angle

N(4)-Cu(1)-N(2) 90.94(4) N(1)-Cu(1)-N(3) 106.57(4)
N(4)-Cu(1)-N(1) 170.83(4) N(4)-Cu(1)-N(5) 90.34(4)
N(2)-Cu(1)-N(1) 80.57(4) N(2)-Cu(1)-N(5) 101.56(4)
N(4)-Cu(1)-N(3) 79.98(4) N(1)-Cu(1)-N(5) 94.74(4)
N(2)-Cu(1)-N(3) 156.74(4) N(3)-Cu(1)-N(5) 99.88(4)

The analysis of the residual electron densities in the region of the oxygen atoms of
the oxime ligands showed two approximately equal peaks for the protons of the N-O-H
group. Therefore, a split position for this proton was added, the H1 and H2 positions. It
is obvious that the neutral protonated ligand (HAld) and the deprotonated anion (Ald)−

are statistically distributed 50:50 to the respective position. The fact that the displacement
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ellipsoids are more or less round leads to the assumption that this disorder has hardly any
influence on the crystal structure and the interatomic distances and bond angles.

As can be seen from Figure 5, the two organic ligand units are located syn to one
another and found stabilized by the intramolecular O-H . . . O hydrogen bridge shown
as a turquoise dotted line in Figure 6A. In addition, the structure of 2 showed some
intermolecular O . . . H and N . . . H hydrogen bridge contacts which connect the complex
molecules to build the 3D supramolecular structure of this complex (Table 5). In this
complex, all the intermolecular contacts belong to the weak C-H . . . O and C-H . . . N
interactions where the oxime oxygen and the azide nitrogen are the hydrogen bond acceptor
sites while the aromatic C-H bonds are the hydrogen bond donors. Presentation of the
packing scheme along the a-axis is shown in Figure 6B.
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Table 5. Hydrogen bonds in complex 2.

D-H d(D-H) d(H . . . A) <DHA d(D . . . A) Symmetry Code

O1-H1 . . . O2 0.84(3) 1.61(3) 2.4431(13) 174(4)
C3-H3 . . . O2 0.95 2.54 3.3761(15) 148 −1/2 + x, 3/2 − y, 1/2 + z
C7-H7 . . . N7 0.95 2.57 3.3751(15) 143 1−x, 2 − y, −z
C9-H9 . . . O1 0.95 2.35 3.2252(14) 152 x, 1 + y, z

C10-H10 . . . N5 0.95 2.54 3.2872(15) 136 1/2 − x, 1/2 + y, 1/2 − z
C11-H11 . . . N7 0.95 2.51 3.2984(15) 141 1 − x, 2 − y, −z
C12-H12 . . . N6 0.95 2.62 3.4037(15) 140 1/2− x, −1/2 + y, 1/2− z

An interesting feature of packing for the complex units in 2 is shown in Figure 7A.
The molecules of complex 2 are connected via the C-H . . . N and C-H . . . O interactions
along the ac plane. The aromatic ring systems are nearly parallel to one another, leading to
some π-π stacking interactions which connect the complex units through the a-direction
(Figure 7B). The shortest C . . . C contacts are C2 . . . C10 (3.383 Å) and C3 . . . C8 (3.325 Å).
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4.2. Analysis of Molecular Packing

The results of the Hirshfeld calculations are important for accurately analyzing the
molecular packing of crystalline compounds. Different maps such as dnorm, shape index
and curvedness are important for deciding the important contacts (Figures S1 and S2
(Supplementary Materials)). The fingerprint plot was used to quantitatively estimate the
different intermolecular contacts affecting the packing of this complex in the crystal. The
dominant contacts are the H . . . H (53.9%), O . . . H (14.1%), N . . . H (11.0%) and H . . . C
(18.8%) interactions (Figure 8). Not all these contacts showed the characteristics of strong
interactions. The red spots in the dnorm map are related to the short distance O . . . H,
N . . . H and H . . . C contacts. Moreover, the fingerprint plots of these contacts showed the
characteristic spikes of strong intermolecular interactions (Figure 8).

There is extensive number of the polar O . . . H interactions which are shorter than the
vdWs radii sum of the O and H atoms. Moreover, some significantly short N . . . H and H
. . . C interactions were detected. List of the short contacts and the corresponding interaction
distances are depicted in Table 6. The shortest interaction distances are 2.445, 2.676 and
1.682 Å, corresponding to N9 . . . H1A, H3A . . . C25 and O2 . . . H2A contacts, respectively.

In the neutral Cu(II) complex 2, the crystal stability is controlled by a large number
of intermolecular contacts such as the H . . . H (27.4%), N . . . H (27.7%), O . . . H (14.7%),
H . . . C (13.6%) which are considered the most dominant contacts in the crystal packing
(Figure 9). Only the O . . . H, N . . . H and C . . . C interactions appeared as red regions
in the dnorm map, indicating that these contacts are shorter than the vdW radii sum of
the interacting atoms (Table 6). The N7 . . . H11, O2 . . . H3 and C3 . . . C8 interactions
are the shortest and the corresponding interaction distances are 2.406, 2.424 and 3.325 Å,
respectively. Moreover, the SI map showed the characteristic red/blue triangles for the π-π
interactions (Figure 9).
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Table 6. Short distance contacts in compounds 1 and 2.

Contact Distance Contact Distance Contact Distance

1 2

N3 . . . H24B 2.498 O3 . . . H25 2.517 C3 . . . C8 3.325
N3 . . . H4 2.591 O2 . . . H2A 1.682 N7 . . . H7 2.461

N9 . . . H1A 2.445 O3 . . . H4A 1.839 N7 . . . H11 2.406
H13 . . . C25 2.684 O5 . . . H4A 2.529 N7 . . . H2B 2.521
H3A . . . C25 2.676 O5 . . . H12C 2.513 N6 . . . H12 2.519
H20 . . . C9 2.749 O5 . . . H10 2.397 N5 . . . H10 2.442
O4 . . . H1A 1.781 O5 . . . H29 2.472 O2 . . . H3 2.424
O3 . . . H1A 2.482 O4 . . . H28 2.453 O2 . . . H4 2.531

O1 . . . H9 2.236

4.3. AIM Studies

The free N3
− ion is symmetric as the two N-N bonds are equidistant. In contrast,

the coordinated azide is asymmetric and the two N-N bonds are not equivalent [54,55].
In this regard, the atoms in molecules (AIM) calculations [51,56–61] were used to judge
this behavior in the studied Co(II) and Cu(II) complexes. The calculated AIM topological
parameters of the N-N bonds are presented in Table 7. From the first glance, the two N-N
bonds of the coordinated azide are not equivalent. The difference in the N-N distances are
0.04 and 0.02 Å in complexes 1 and 2, respectively where the NA-NB bonds are generally
longer than the NB-NC ones (Figure 10). Hence, the formation of the metal azide bond
affects its symmetry.
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Table 7. The topological parameters of the azide N-N bonds.

Bond dN-N ∆d ρ(r), a.u ∇2ρ(r) a V(r)/G(r) b

Complex 1
NA-NB 1.189(6) 0.04 0.4847 −1.3846 2.884
NB-NC 1.149(7) 0.5424 −1.4216 2.670

Complex 2
NA-NB 1.192(1) 0.02 0.4833 −1.2346 2.743
NB-NC 1.172(1) 0.5105 −1.2270 2.623

a Laplacian of electron density; b Ratio of potential to kinetic energy density.
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The electron density (ρ(r)) at the bond critical point was used as a measure for the bond
strength. The ρ(r) values of the NA-NB bonds are calculated to be 0.4847 and 0.4833 a.u. in
complexes 1 and 2, respectively. The corresponding values for the NB-NC bonds are 0.5424
and 0.5105 a.u., respectively. These results are in agreement with the NA-NB bonds longer
than the NB-NC ones in both complexes. Moreover, the results indicated that the degree of
asymmetry is higher in the case of complex 1 than 2. On the other hand, the ρ(r) values at
the N-N BCPs are higher than 0.1 a.u. and the ∇2ρ(r) values are negative, indicating clear
covalent interactions (Table 7).

Another application of the AIM parameters is to identify the nature and strength of
the different M-N and M-O bonds in the studied systems (Table 8). The low electron density
(ρ(r) < 0.10 au) values and positive H(r) as well as the positive ∇2ρ(r) and V(r)/G(r) < 1
for the Co-N bonds with the organic ligand indicated mainly closed shell coordination
interactions [62–65]. The same is true for the Co-O bond with the coordinated water
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molecule. The Co-N(azide) bond has more negative H(r) and slightly higher V(r)/G(r) than
the Co-N(4-Pic). The slightly negative H(r) and V(r)/G(r) marginally higher than 1 for all
Cu-N bonds in 2 revealed very few covalent characters. On the other hand, the high ρ(r)
values are indicative on the bond strength. As can be seen from Table 8, shorter coordination
interaction for a given bond has higher ρ(r) values at the BCP than the longer one.

Table 8. The AIM parameters for compounds 1 and 2.

Bond Bond Length ρ(r); a.u. H(r) a; a.u. V(r)/G(r) b ∇2ρ(r) c

Complex 1
Co1-O1 2.091(2) 0.0401 0.0023 0.974 0.3519
Co1-N1 2.102(3) 0.0616 −0.0088 1.104 0.3040
Co1-N4 2.159(4) 0.0419 0.0008 0.991 0.3589
Co1-N5 2.211(3) 0.0360 0.0017 0.975 0.2868
Co1-N6 2.181(4) 0.0396 0.0008 0.991 0.3380
Co1-N7 2.197(3) 0.0377 0.0013 0.982 0.2989

Complex 1
Cu1-N1 2.034(1) 0.0553 −0.0050 1.041 0.4637
Cu1-N2 1.997(1) 0.0588 −0.0043 1.032 0.5258
Cu1-N3 2.048(1) 0.0552 −0.0049 1.042 0.4513
Cu1-N4 1.994(1) 0.0798 −0.0191 1.175 0.3597
Cu1-N5 2.216(1) 0.0381 0.0000 1.000 0.2947

a Total energy density; b potential to kinetic energy density; c Laplacian of electron density.

4.4. Natural Charges

Decomposition of the charge distribution at the different ligand groups coordinated
to the metal ion enabled us to assess the amount of electron density transferred from the
ligand groups as Lewis base to the metal ion as Lewis acid. Natural charge calculations of
complexes 1 and 2 were used to predict the amount of electron density transferred from
the ligand groups to the donor atoms. A summary of natural charges at these fragments is
presented in Table 9. The charges at the metal centers are +0.9623 and + 0.7655 for complexes
1 and 2, respectively instead of +2. Hence, there is 1.0377 e and 1.2345 e were transferred
from the ligand groups to Co(II) and Cu(II), respectively. In case of the former, 0.5804 e was
transferred from the four 4-Pic ligand units while the azide and water molecule transferred
0.2862 and 0.1278, respectively. In the case of the latter, 0.3354 e was transferred from the
neutral HAld while the anionic Ald− and azide ions transferred 0.6198 e and 0.2973 e to
the Cu(II) site, respectively.

Table 9. The natural charges at metal center, ligand groups.

1 2

Co 0.9623 Cu 0.7655
4-Pic 0.5804 HAld 0.3354
H2O 0.1278 Ald− −0.7207
N3
− −0.7138 N3

− −0.7207
NO3

− −0.9567

5. Conclusions

The molecular and supramolecular structures of the monomeric complexes [Co(4-
Pic)4(H2O)(N3)]NO3*H2O*4-Pic (1) and [Cu(HAld)(Ald)(N3)] (2) were presented. In com-
plex 1, the CuN5O coordination geometry is a slightly distorted octahedron while the
CuN5 coordination sphere in complex 2 has a square pyramidal configuration. In both
complexes, the azide ion is terminally coordinated with the metal ion. For the organic
ligands used in this work, the 4-picoline (4-Pic) is a monodentate ligand in 1 while the
pyridine-2-carboxaldoxime (HAld) is a bidentate chelate in 2. The crystal packing is dom-
inated by H . . . H, O . . . H, N . . . H and H . . . C interactions in 1 based on Hirshfeld
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analysis. For 2, the H . . . H, N . . . H, O . . . H and H . . . C are the most dominant contacts.
The charges at the metal centers are calculated to be +0.9623 and +0.7655 for complexes
1 and 2. Moreover, AIM is used to identify the nature and strength of the M-N and M-O
bonds. Selection of the prober organic ligand could have a great impact on extending the
dimensionality of the metal complex. Hence, more functional ligands will be introduced in
our future work for this task.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst13020346/s1, X-ray single crystal diffraction measurement;
Computational details; Figure S1 Hirshfeld surfaces of 1. Figure S2 Hirshfeld surfaces of 2.
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