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Abstract: Wide bandgap semiconductors doped with transition metals are attracting significant
attention in the fabrication of dilute magnetic semiconductor devices (DMSs). The working principle
of DMSs is based on the manipulation of the electron spin, which is useful for magnetic memory
devices and spintronic applications. Using the density functional theory (DFT) calculation with the
GGA+U approximation, we investigated the effect of native defects on the magnetic and electronic
structure of Mn+2-doped 3C-SiC structure. Three structures were selected with variations in the
distance between two impurities of (Mn+2)-doped 3C-SiC, which are 4.364 Å, 5.345Å, and 6.171 Å,
respectively. We found ferromagnetic coupling for single and double Mn+2 dopant atoms in the
3C-SiC structure with magnetic moments of 3 µB and 6 µB respectively. This is due to the double
exchange because of p-d orbital hybridization. The p-orbitals of C atoms play important roles in the
stability of the ferromagnetic configuration. The impact of Si-vacancy (nearby, far) and C-vacancy
(near) of (Mn+2)-doped 3C-SiC plays an important role in the stabilization of AFM due to super-
exchange coupling, while the C-vacancy (far) model is stable in FM. All electronic structures of
Mn+2-doped 3C-SiC reveal a half-metallic behavior, except for the Si-vacancy and C-vacancy of
(nearby), which shows a semiconductor with bandgap of 0.317 and 0.828 eV, respectively. The Curie
temperature of (Mn+2)-doped 3C-SiC are all above room temperature. The study shows that native
vacancies play a role in tuning the structure from (FM) to (AFM), and this finding is consistent with
experiments reported in the literature.

Keywords: first principles calculation; Mn+2; 3C-SiC; vacancy; electronic structure; magnetic properties

1. Introduction

Dilute magnetic semiconductors (DMSs) prepared by doping with a small fraction
of transition metal (TM) ions are increasingly gaining popularity for spintronics appli-
cations, as shown in Figure 1a. In the electronic industry, spintronics is important and
receives significant attention [1,2]. This is because it provides a theoretical foundation, as
well as technological support for the invention of the next generation of microelectronic
devices [3,4]. In spintronic devices, electron charge and spin are used together to perform
multiple functions [1]. The advantages of using spin-related electronic devices include,
but are not limited to, an increase in the non-volatile device’s data memory capacity while
minimizing size and increasing data processing speed compared to conventional elec-
tronic devices. In addition, spintronic devices can be used to perform qubit (quantum
bit) operations for quantum computing [2]. However, the materials traditionally used for
semiconductor devices and integrated circuits, such as silicon (Si) and gallium arsenide
(GaAs), do not have magnetic ions and are non-magnetic, as shown in Figure 1b, and their
magnetic spins are generally rather small [2].
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Figure 1. (a) Dilute magnetic semiconductor, (b) a nonmagnetic semiconductor, does not contain a
magnetic ion.

In recent years, extensive research has been conducted on the fabrication of spintronic
devices based on diluted magnetic semiconductors (DMSs) with Curie temperatures higher
than room temperature [5]. Room temperature (RT) ferromagnetism has been observed in
transition metal-doped semiconductors of nitride and oxide [5–7]. The d-orbital exchange
interaction of the transition metals in DMS semiconductors is responsible for the fascinating
magneto-optical and magneto-transport properties, as well as some s and p-orbital hy-
bridization [8–10]. The exchange coupling hybridization of s, p, and d-orbitals is important
in determining the nature of DMS devices [11]. The ferromagnetism observed in transi-
tion metal-doped dilute semiconductors is explained by several mechanisms, including
super-exchange, Zener’s double exchange, and magnetic coupling [12–15].

Notably, 3C-SiC is an intrinsic semiconductor with a cubic crystal structure that has a
wide energy indirect bandgap of 2.39 eV. It has a wide range of practical applications in high
voltage [16], high power [17], high thermal conductivity [18], and thermal [19] electronic
devices. Due to these properties, 3C-SiC is an adequate semiconductor material for use in
integrated circuits [20,21]. Silicon carbide has several phases (polytypes), with the most
famous polytypes being the hexagonal, which includes 6H, 4H, and 8H, a rhombohedral
polytype 15R, and a cubic polytype 3C. The 3C polytype is special as it can be synthesized at
lower temperatures (1473 to 2273 K) compared to the hexagonal polytypes (2473 to 2773 K)
and exhibits a high electron mobility (up to 1000 cm2/(Vs)), which is attractive for the
fabrication of semiconductor devices [22].

Due to the unique properties of 3C-SiC, the effect of a low transition metal (TM, where
TM is Mn) dopant atom concentration is investigated. The magnetic coupling behavior
and Curie temperature of the pristine and Mn+2 dopant configurations are evaluated as
candidate materials for dilute magnetic semiconductors. The 3C-SiC can be prepared
using a solid-state reaction and carbothermal reduction methods [23,24]. Ferromagnetism
with a Curie temperature near room temperature was observed experimentally in Mn-
doped 3C-SiC and 6H-SiC [25–27]. Additionally, Ref. [26] has reported 80 keV Mn ion
implantation at room temperature ferromagnetism in the 3C-SiC (001) epilayer, and the
magnetic moment per Mn increased after the implanted sample was annealed. The single
crystal of 6H-SiC implanted with Mn ions was investigated and it was found that the MnSi
configuration has the strongest magnetism [28]. These experiments suggest that doping
Mn ions in 3C-SiC is a practical way to create DMSs. Previous study on vacancies dopants
in 3C-SiC [29] were carried out; however, study on the magnetic properties is lacking.
The electronic and magnetic properties of Mn-doped 6H-SiC was studied using the ab
initio full potential-linearized augmented plan-wave (FPL-APW) method, and a model
to explain magnetic moment was proposed [30]. Furthermore, Mn doped with 3C-SiC
showed a high curie temperature and stable in ferromagnetic configuration [30,31]. The
magnetic and optical properties of Mn-doped SiC nanosheets showed improved absorption
in the visible region [32]. Previous studies showed that for ferromagnetism to occur and
remain stable in Mn+2-doped II-VI semiconductor DMSs, additional charge carriers might
be introduced [33,34]. The presence of n-type carriers (or electrons) introduced by oxygen
vacancies induces ferromagnetism in Mn+2-doped ZnO [35]. A structure stability changes
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from antiferromagnetic to ferromagnetism when a Zn vacancy is introduced to a Mn+2-
doped ZnTe and Te vacancy has no effect [36]. To our knowledge, several studies of
Mn+2-doped 3C-SiC [37–40] were carried out; however, no comprehensive studies on the
presence of the vacancy of VSi and VC on Mn+2-doped 3C-SiC structure were conducted,
which motivated us to investigate the electronic structure stability and magnetic properties
of (Mn+2)-doped 3C-SiC with vacancy defects as candidate systems for DMS using the
first-principles calculation.

2. Computational Method

The first-principles calculations were carried out using density functional theory
(DFT) [41] and projector-augmented wave (PAW) potentials [42], as implemented in the
Cambridge serial total energy module (CASTEP) [43]. The study utilized Perdew Burke-
Ernzerhof (PBE) of the generalized gradient approximation (GGA) to describe the exchange-
correlated potential. However, it found that GGA approximation underestimates the
bandgap, which has an inaccurate description of electronic and magnetic properties at
the ground state of the system. In addition, GGA fails to provide a correct positioning of
the d-orbitals of transition metals such as Mn, Cr, and Ni. It was discovered that hybrid
functionals can correct the DFT electronic band gap underestimation, but when considering
large structures, this may become computationally infeasible. To correct for the underestima-
tion of the band gap, computationally tractable Hubbard U corrections were implemented
in this study to account for the presence of electron–electron interactions [44–47]. We have
selected the Hubbard U values as USi−3p = 7.2 eV and UC−3p = 7.2 eV, respectively, to treat
the Si-3p and C-2p valence band. In addition to that, we set the Hubbard U for Mn atom
as 2.8 eV [36,48,49]. The bulk 3C-SiC crystal lattice and atomic positions were optimized
using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [50]. A cut-off plane wave
energy of 420 eV was used and the ultra-soft pseudopotential was employed to treat the
core electrons as valence states. To achieve good convergence, a 4 × 4 × 4 Monkhorst-Pack
k-point grid was selected for integration over the irreducible Brillouin zone. The space
group for the 3C-SiC structure is F-43m, with a lattice constant of a = b = c = 4.348 Å, as
illustrated in Figure 2a. The 3C-SiC crystal structure, depicted in Figure 2a, comprises two
face-centered unit cells. The C atom is situated at the center of the tetrahedron, and the
Si atom is located at the four upper corners of the tetrahedron. The primitive unit cell of
3C-SiC is shown in Figure 2b. In this work, the 3C-SiC unit cell was relaxed. The relaxed
unit cell was used to build a 2 × 2 × 2 supercell for the dopant and vacancy calculations.
The magnetic coupling properties of the 3C-SiC supercell structure with and without differ-
ent structures of Mn+2 doping was investigated. A Mn atom substitutionally replaced a Si
atom, resulting in a Mn concentration of 3.125% to study the magnetic properties of a single
(Mn+2)-doped 3C-SiC. Two Mn+2 atoms replaced Si atoms in the supercell of 3C-SiC for the
magnetic coupling investigation, resulting in a Mn concentration of 6.25%. The stability of
different configurations of the Mn-doped 3C-SiC compound was evaluated by calculating
the formation energy of natural vacancy charge defects:

Eq
F = Ede f ect − Epure −mµMn − qE f + kµSi (1)

where Ede f ect and Epure are the total energies of the supercell containing (Mn+2)-doped
3C-SiC and the perfect 3C-SiC crystal in the same supercell, respectively. m is the amount
of Mn+2 dopant, k is the number of substituted Si atoms, respectively. µMn and µSi are the
chemical potentials of Mn and Si, respectively; q is the charge state of the defect at neutral
vacancy (0). E f is the fermi level, which is located between the top of the valance band (Ev)
and the bottom of the conduction band (Ec). The chemical potentials for Si and C are not
independent because both species are in thermal equilibrium with SiC, which must satisfy
the thermodynamic stability condition [51]

µSi + µC = µSiC(bulk) (2)
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where µSiC(bulk) is the chemical potential of SiC in the zinc-blend structure. The acceptable
ranges of µSi and µC are established by the heat enthalpy (∆HSiC

f ), which is determined as:

∆HSiC
f = µSiC(bulk) − µSi(bulk) − µC(bulk) (3)

where µSiC(bulk) and µC(bulk) are the chemical potentials of Si and C, respectively, in the
diamond crystal lattice, which is expressed by Equation (4) [51]

∆µ = µSi − µSi(bulk) −
1
2

∆HSiC
f =

1
2

∆HSiC
f − µC + µC(bulk) (4)
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The condition of µSi = µSi(bulk) in a Si-rich regime and µC = µC(bulk) in a C-rich regime
which theoretically limits by the tuning of the C/Si ratio during growth. Thus, the lower
and upper limits of the chemical potentials in Equation (3) can be defined as:

1
2

∆HSiC
f ≤ ∆µ ≤ −1

2
∆HSiC

f (5)
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The calculated value of the heat enthalpy ∆HSiC
f was determined to be −0.62 eV/SiC,

which is relatively consistent with the experimental value of −0.68 eV/SiC [52] and the
theoretical work of−0.644 eV/SiC [53]. According to the result from the phonon dispersion
of the 3C-SiC bulk report in [54], the structure is stable. The absence of negative vibrational
modes are the main parameters determining the stability of 3C-SiC. We expect that the
replacement of two Si atoms in the large supercell, which is considered in the calculation,
with Mn+2 will not exhibit significant changes in the system stability. Our assumption
agrees with the previous report of a Pd2S4 monolayer doped with transition metal with the
presence of a vacancy defect [55] and Mn+2 doped with ZnTe with Zn and Te as defective
vacancies [36].

3. Results and Discussion

The pristine cubic 3C-SiC unit cell was fully optimized with the calculated lattice
constant of 4.169 Å, which is relatively consistent with the available experimental data of
4.359 Å [19]. The computed bandgap is 2.379 eV for the fully optimized structure, as shown
in Figure 3a, which is in reasonable agreement with the experiment bandgap of 2.39 eV
and the theoretical work [56]. As shown in Figure 3b, the spin up and spin down states are
completely symmetrical for the total density of state (TDOS). This implies that the pristine
3C-SiC compound is a nonmagnetic structure. Figure 3c,d show the partial density of state
(PDOS) of Si and C atoms respectively. The s- and p-orbitals of the Si atoms contribute to
the conduction band, with s- and p-orbitals of the C atoms contributing significantly to the
valance band. The conduction band and valence band exhibit a gap around the Fermi level,
which confirms the semiconducting ground state.
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To induce magnetism in the pristine 3C-SiC compound, the Mn+2 ion substitutes the Si
atom in the 2× 2× 2 supercell of the 3C-SiC compound, as shown in Figure 2c. This dopant
concentration is equivalent to 3.125% of Mn+2 ion in the 3C-SiC lattice. The Hubbard U
parameter for the Mn+2 ion (UMn) = 2.8 eV. The Hubbard U parameter provides a better
description of the Mn d-orbitals. The optimized calculated bond distance of Mn-C is
1.883 Å, which is smaller than the bond length of Si-C 1.89 Å. The bond length change can
be associated with the difference in the atomic radii. The atomic radius of Mn+2 (1.44 Å) is
bigger than the atomic radius of Si (1.10 Å). The spin-polarized and non-spin-polarized
total energy were calculated; we found that the spin-polarized state with a total magnetic
moment of 3 µB is more negative compared with the non-spin-polarized state. Figure 4
shows the calculated band structure of a single Mn+2-doped 3C-SiC structure. There is
an exchange coupling interaction at the Fermi level due to the presence of a Mn+2-ion
in the 3C-SiC lattice, resulting in a half metallic character. However, the pristine 3C-SiC
compound has an indirect band structure. In the spin down and spin up channel of the
valence band, flat levels around −2 eV are observed, which are attributed to the Mn+2

dopant ion. It can be observed that the splitting of the valence band is much less than that of
the conduction band. This means that the spin-splitting of the valence band is higher than
the conduction band. The induced magnetism and the change in the energy band structure
of the Mn+2-doped 3C-SiC compound results from the s-d and p-d orbital hybridization.
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Figure 4. Spin polarized band structure of (Mn+2)-doped 3C-SiC. Fermi level denoted by a black
dash line.

The total density of states (TDOS) and the partial density of states (PDOS) of the Mn+2-
doped 3C-SiC compound are calculated. An asymmetry of the up and down spin channel
can be seen in the TDOS, as presented in Figure 5a. This indicates that the Mn+2 dopant ion
results in spin changes in the lattice of the 3C-SiC. Th p-d hybridization is responsible for
the asymmetry of the spin up and spin down states in the TDOS. At the Fermi level, the
C-2p states and some contribution from the Si-2p states hybridize with the Mn-3d states.
The C-2p states were observed to hybridize with the Mn- 3d states. At the Fermi level,
the strong coupling of Mn-3d states and 2p states of the four nearest-neighbor C atoms
produce a local magnetic moment, as shown in Figure 5b. The magnetic dipole moment,
mostly localized on Mn+2 impurities in (Mn+2)-doped 3C-SiC and the four nearest-neighbor
of C atoms possesses a modest portion of the magnetic moment, which confirms the p-d
hybridization, as shown in Figure 2d.
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The orbital of (Mn+2)-3d splits into three-fold degenerate state antibonding t2g (d(xy), d(yz),
d(xz)) and two-fold degenerate state nonbonding eg (dx2−y2 , dz2 ), according to crystal tetra-
hedral field theory. The splitting is due to the electrostatic interaction between Mn+2 and
four nearest neighbor C atoms [37]. The eg (dx2−y2 , dz2 ) states are characterized by low-lying
levels, while the t2g (d(xy), d(yz), d(xz)) exhibits higher-lying levels, as shown in Figure 6a.
The configuration of (Mn+2) is e2

g↑t
3
g↑. As seen in Figure 5b, the majority of the Mn:d are

not fully occupied and minority are not occupied at all at the Fermi level. The tetrahedral
crystal field splitting of the antibonding state t2g is weak compared to the nonbonding
states of eg as an octahedral complex system; therefore, geometric spin occupation will
always be high, as illustrated in Figure 6a. All the transition metals in the first row of the
periodic table exhibit weak crystal field splitting in the tetrahedral complex, including
(Mn+2). However, for the (Mn+2) impurity doped in 3C-SiC at the silicon site, the eg majority
spin up is fully occupied and only 0.33 of the majority spin up is occupied at t2g states
because of the weak antibonding states of t2g [32]. The accurate spin geometry orientation
is e2

g↑t
1
g↑, as shown in Figure 6b.
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Figure 6. Geometrical spin orientation of Mn+2 (a) Mn+2 (Td) at ground state, (b) Mn+2 at silicon site
of doped 3C-SiC, where Td indicated tetrahedral configuration.

3.1. Spins Coupling of Pure (Mn+2)-Doped 3C-SiC

To investigate magnetic coupling stability, we substituted Si atoms with two atoms
of Mn+2 in 3C-SiC supercell, which led to a concentration of 6.25% of Mn+2 dopant. As
illustrated in Figure 2e–g, three distinct configurations of Mn+2 dopant atoms were selected.
The bond distance of Mn+2- Mn+2 for configuration-1 is 4.364 Å, 5.345 Å for configuration
−2 and 6.171 Å for configuration-3. The formation energy was calculated using Equation (1)
and the energy difference between the FM and AFM states, with ∆E = EFM − EAFM deter-
mined for each structure. The result is listed in Table 1. Configuration-1 has the highest
∆E and the lowest formation energy. This means that the preferred defect structure is
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configuration 1. For homogeneous Mn substitutions, it was observed that the strength of
the coupling interaction diminishes as the distance between the two Mn+2 atoms increase.
Similar results were found in ref [37].

Table 1. Calculated energy ∆E between FM and AFM for two (Mn+2)-doped 3C-SiC supercells,
measured in meV and formation energy Eq

F in the 1, 2, and 3 structures.

Configuration
dMn1−Mn2

(Å) Eq
F

(meV)
∆EFM − ∆EAFM

(meV)
Coupling

Before After

Structure -1 4.348 4.364 2.88 −218 FM

Structure -2 5.325 5.345 3.75 −259 FM

Structure -3 6.149 6.171 4.83 −290 FM

The spin polarized TDOS and PDOS without vacancy of double (Mn+2)-doped 3C-SiC
in the ferromagnetic configuration was investigated to ascertain the origin of its ferromag-
netic character, as shown in Figure 7a,b. The two Mn dopant atoms in the 3C-SiC showed
an exchange coupling state at the Fermi level. Therefore, Mn+2 exhibits a half metallic
semiconductor as shown in Figure 7a. Furthermore, it can be shown from Figure 7b that the
spin-polarized PDOS is primarily induced by the strong hybridization of the Mn-3d state
and the C-2p state at the Fermi level, with the p-d exchange coupling, also known as Zener’s
double exchange coupling, being responsible for the ferromagnetism [12]. Fundamentally,
the double exchange implies that 3d or 4d states produce coupling bands at the Fermi
levels in the host band gap, resulting in partially empty bands. However, the 2p state
at the nearest-neighbor C atoms plays a major role in the stability of the ferromagnetic
state. Table 1 shows that the Mn+2 dopant ion is stable in the FM state for the considered
three structures.
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Using a simple two-level model, we can see how the magnetic state at the ground
with the highest probability would be formed, as shown in Figure 8a,b. The unperturbed
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exchanges split of 3d orbitals on the isolated Mn1 and Mn2 are on the left side for FM
arrangement and on the right side for AFM arrangement, respectively. In the FM arrange-
ment, both nonbonding and antibonding levels of one spin are partially occupied, which
results in energy gain due to the FM interaction. However, in the AFM arrangement, both
the nonbonding and antibonding levels couple with each other, resulting in no net energy
gain. Therefore, the FM coupling is energetically favorable compared to the AFM coupling.
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3.2. Magnetic Coupling of Mn Doped 3C-SiC with Native Defect

In this section, the magnetic ground state of the Mn-doped 3C-SiC structure with
native defects (i.e., vacancies) was studied, as depicted in Figure 8. The Si and C vacancies
are introduced by removing one Si and C atom from the supercell. Two models for vacancy
defects were selected, as illustrated in Figure 9a–d. Figure 9a is the nearby model, in
which Vsi is close to the Mn+2 dopant. In the far model, Vsi is removed far from the double
impurities of Mn+2. The same method is also used for VC. In the nearby model for VC, the
vacancy was inserted between (Mn+2)-(Mn+2), as illustrated in (Figure 9c). The calculated
energy difference ∆E between ferromagnetic and antiferromagnetic properties of (Vsi, VC)
is shown in Table 2. The energy difference between FM and AFM of the Si-vacancy (nearby,
far) is positive, indicating that it is stable in AFM at ground state. For VC, the calculated
energy difference of the (nearby, far) model is positive and negative, respectively. When
the C-vacancy is close to the Mn+2 dopant atom, the resulting structure is stable in the
AFM configuration. However, if the C-vacancy is far away from the (Mn+2)-(Mn+2)-doped
3C-SiC, the structure is found to be in the FM configuration. The defect due to Si-vacancy
located nearby or far from the Mn+2-doped 3C-SiC alters the magnetic ground state from
FM to AFM. The defect due to C-vacancy, which is located near the Mn+2-dopant atom in
the 3C-SiC lattice, has an effect on the magnetic ground state from FM to AFM. The far
defect has no effect. Both FM and AFM interaction can be induced by doping SiC with
Mn ions [57], and this is related to the inhomogeneity of Mn ion distribution [24,27,57–59].
AFM ordering is observed for greater than 5% of Mn dopant atoms in 3C-SiC, thus, there is
competition between the AFM and FM ordering because of the dopant [60]. The intrinsic
character of the material is responsible for the magnetic ordering of the FM–AFM transition;
it is not due to inhomogeneity [61–65]. We found that the Mn+2 ions are homogenously
distributed in the 3C-SiC lattice in the presence of a native defect. This plays an important
role in the magnetic transition from the FM to AFM configuration, which is consistent with
the existing literature. The unperturbed exchange-split of the 3d orbitals for isolated Mn1
and Mn2 atoms with vacancies are shown on the left and right side of Figure 10a,b for FM
and AFM arrangement, respectively.
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Table 2. Calculated energy difference ∆E = EFM − EAFM for two models (nearby and far) in (Mn+2)-
doped 3C-SiC with Si and C vacancy defect. The ∆E in all models is measured by meV.

Type of Doping ∆E (Nearby Vacancy) ∆E (Far Vacancy)

(Mn+2)-doped 3C-SiC +Vsi 398 meV 239 meV

(Mn+2)-doped 3C-SiC +Vc 227 meV −405 meV
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Figure 10. Schematic energy levels for two interaction Mn-3d with their spin (a) FM vacancy
(b) AFM vacancy.

The effect of native defects in the Mn-doped SiC lattice is discussed below. The four
different vacancies evaluated are as follows: (1) Si-vacancy (VSi) nearby, (2) Si-vacancy
(VSi) far, (3) C-vacancy (VC) nearby, (4) C-vacancy (VC) far. These native defects in double
Mn+2-doped 3C-SiC lattice indicate the possibility of existence in either the AFM and FM
configuration. The VSi near system (see Figure 9a) has a net zero magnetic moment for the
AFM ground state, having an energy difference ∆E of 398 meV compared to the FM phase
(see Table 2). The band structures (see Figure 11c,d) showed that the spin down states shift
slightly in higher energies compared to spin up states. There is a considerable bandgap of
0.317 eV in both spin states, implying that the VSi near defect system is an antiferromagnetic
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semiconductor. The total and partial DOS profile (see Figure 11a,b) showed the significant
role of C-p and Mn-d orbitals in the vicinity of the Fermi energy level. Apart from the
vicinity of the Fermi level, the DOS profile is symmetric when showing the AFM signature
for the VSi near configuration (see Figure 11a,b). Considering the VSi far configuration
(see Figure 9b), a similar energy shift in spin down states is observed, as depicted by the
band structure (see Figure 12c,d). The DOS profile showed the symmetric distribution in
both spin channels (see Figure 12a,b). This agrees with the zero magnetic moment of the
configuration. For the double Mn+2-doped 3C-SiC lattice with near C-vacancy (VC near) as
shown in Figure 9c, AFM is found. The spin polarized DOS are symmetrical in nature with
zero magnetic moment (see Figure 13a,b). A considerable bandgap of 0.828 eV is observed
in both spin states of band structure (see Figure 13c,d), which shows that the VC near is an
AFM semiconductor. Surprisingly, when a C vacancy is created at a far site (see Figure 9d)
from the double Mn+2 cations, the VC far defect system is metallic in nature for the spin
up channel (see Figure 14c, while for the spin down channel, it is semi-conducting (see
Figure 14d). Thus, the VC far system is half metallic with a total magnetic moment of 8 µB.
The p-d hybridization is observed with the spin up and the spin down state showing 100%
spin polarization necessary for half metallicity (see Figure 14a,b). Furthermore, the integer
value of the total magnetic moment (8 µB) complies well with the Slater–Pauling criteria for
half metals [65]. It is pertinent to mention that all the considered vacancy configurations
have intermediate states at/around the vicinity of the Fermi level due to p-d hybridized
states. The total magnetic moments and the band structures of all studied system are
summarized in Table 3.
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Table 3. Calculated magnetic moment of (Mn+2)-doped 3C-SiC and band structure type of stud-
ied systems.

Type of Doping Phase Type Magnetic Moment (µB) Band Structure Type

Pure 3C-SiC Non-magnetic (NM) 0 2.379 eV
Semiconductor

Single (Mn+2)-doped 3C-SiC FM 3 Half-metallic

(Mn+2)-(Mn+2)-doped 3C-SiC FM 6 Half metallic

(Mn+2)-(Mn+2)-doped 3C-SiC + VSi(Nearby) AFM 0 0.317 eV
Semiconductor

(Mn+2)-(Mn+2)-doped 3C-SiC + VSi(Far) AFM 0 Half metallic

(Mn+2)-(Mn+2)-doped 3C-SiC + VC(Nearby) AFM 0 0.828 eV
Semiconductor

(Mn+2)-(Mn+2)-doped 3C-SiC + VC(Far) FM 8 Half metallic

3.3. Curie Temperature Estimation

The Curie temperature (Tc) for single and double Mn+2-doped 3C-SiC structures can be
determined by taking the difference between ferromagnetic and antiferromagnetic energies,
which is based on the mean-field theory and holds for diluted magnetic semiconductors.
The Tc can be presented as [66,67]:

kBTC =
2
3

c ∑j 6=i Jij =
2
3

∆E/c =
2
3

∆E/N (6)

where Jij , c, kB, exchange coupling constants for the two local magnetic moments at
positions i and j and the concentration of Mn+2 and the Boltzmann constant, respectively.
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TC can be written as TC = 2
3

∆E
NkB

, where N denotes the number of the magnetic particle.
According to Equation (6), the obtained Curie temperature for the Mn+2-doped 3C-SiC
system is shown in Table 4. The mean-field theory used to derive the Curie temperature is
adequate unless for an extremely low dopant concentration [68]. The calculated Curie tem-
perature is higher than room temperature for Mn+2-doped 3C-SiC structures, irrespective
of Mn+2 dopant atom configuration, as well as for C-vacancy (far) configuration.

Table 4. The predicated Curie temperature of (Mn+2)-doped 3C-SiC.

Type Configuration Curie Temperature (k)

structure-1 843

structure-2 1000

Structure-3 1121

Nearby Si-vacancy -

Far Si-Vacacny -

Nearby C-vacancy -

Far C-vacancy 1566

4. Conclusions

Density functional theory calculations were used to investigate the effect of native
defects on the structural stability, electronic, and magnetic properties of a Mn+2-doped
3C-SiC compound. We obtained that the ferromagnetic-induced spin polarization due to
single and double Mn+2 dopant ions in the 3C-SiC compound is from the double exchange
between the p-d hybridization. The p-orbitals of the C atoms play an important role
towards the stability of the ferromagnetic character. The total magnetic moments for
single and double Mn+2-doped 3C-SiC are 3 µB and 6 µB respectively. The introduced
Si-vacancies (near, far) have antiferromagnetic stability at the ground state of (Mn+2)-doped
3C-SiC. The C-vacancy (nearby) results in an AFM at ground state, while C-vacancy (far) is
ferromagnetic at the ground state with a total magnetic moment of 8 µB. The study presents
evidence that the structural stability, electronic, and magnetic properties of Mn+2-doped
3C-SiC can be altered by the presence of native vacancies. This effect of native vacancies on
the magnetic properties of the material was found to be consistent with prior experimental
results reported in the literature. The predicted Curie temperatures are above the room
temperature of the Mn+2-doped 3C-SiC; as such, this configuration will be a good candidate
for a spintronic device, thus, forming the basis for the synthesis of SiC-based DMSs.
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