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Abstract: Fe-30Mn-0.05C steel specimens with cold-rolled, partially recrystallized, fine-grained, and
coarse-grained microstructures were fabricated by means of 80% cold rolling followed by annealing
at 550–1000 ◦C. The initial and deformed microstructures were characterized, and the Charpy impact
properties were tested at room temperature (RT) and liquid nitrogen temperature (LNT). It was found
that the Charpy absorbed energy increased with the annealing temperature, while the specimens
showed different trends: parabolic increase at RT and exponential increase at LNT, respectively.
Compared with the fully recrystallized specimens, those with a partially recrystallized microstructure
exhibited lower impact energy, especially at LNT. This was because cracks tended to nucleate and
propagate along the recovery microstructure where stress concentration existed. The grain size
played an important role in the twinning behavior and impact properties. High Charpy impact
energy (~320 J) was obtained in the coarse-grained specimen having the grain size of 42.1 µm at both
RT and LNT, which was attributed to the activation of high-density deformation twinning. However,
deformation twinning was inhibited in the specimen with the average grain size of 3.1 µm, resulting
in limited work hardening and lower impact energy.

Keywords: Charpy impact energy; deformation twins; high-manganese steel; microstructure;
partial recrystallization

1. Introduction

In recent years, high-manganese austenitic steels have received considerable interest
as structural materials at cryogenic temperatures [1–4]. Because of their relatively low
cost, excellent work-hardening ability, high ultimate tensile strength, and high uniform
elongation compared with 9% Ni steel [5], austenite stainless steel [6–8], and medium-/high-
entropy alloys [9,10], high-manganese steels have become promising candidate materials
for liquified gas storage and transportation, ice breakers, and outer-space exploration [2,11].

The mechanical properties of high-manganese steels can be controlled by utilizing
deformation mechanisms, which vary with stacking fault energy (SFE) [12–14]. When
the SFE is in the range of 20–45 mJ/m2, deformation twinning occurs, while lower SFE
(<18 mJ/m2) is conducive to martensitic transformation [15]. Once the SFE is higher
than 45 mJ/m2, dislocation slip becomes the dominant deformation mechanism. As the
temperature decreases from RT to LNT, the SFE of the high-manganese steel usually
decreases by 20–50% [15]. Martensitic transformation in high-manganese steel can be
effectively suppressed by adding austenite-stabilizing elements such as Mn, Al, or C; at
the same time, the formation of deformation twins enhances the cryogenic mechanical
properties [3,14,16].

Besides the SFE, the initial microstructure exerts critical effects on the deformation
mechanism and mechanical properties of high-manganese steel [4,17–20]. Grain size plays
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an important role in the activation of deformation twinning and martensitic transforma-
tion [21]. It was found that Charpy absorbed energy can be increased by increasing the
grain size, which is due to the activation of a higher fraction of secondary twins in coarse
grains [17,20]. The high density of deformation twinning boundaries can provide capa-
cious room for gathering dislocations and result in a stronger dynamic grain refinement
effect, thereby improving the toughness and ductility of steel [22]. Moreover, Xie et al. [18]
indicated that the improvement in the cryogenic impact toughness of Fe-25Mn-3Al-3Si
steel was attributed to the TWIP and TRIP effects with the grain size increase from 2.7
to 47.8 µm. Additionally, the formation of deformation twins and martensitic phase was
inhibited by grain refinement. However, higher cryogenic strength, ductility, and toughness
were achieved in Fe-30Mn-0.11C steel at LNT, as the grain size was reduced from 47 to
5.6 µm [4]. The examination of deformed substructures showed that dislocation slip and
deformation twinning were the main deformation mechanisms of fine-grained specimens,
while martensitic transformation was hindered by grain refinement [4]. Different grain
size effects on the mechanical properties may be relevant to the chemical composition of
high-manganese steels, which determines the SFE. Meanwhile, the grain size impact on the
cryogenic impact toughness has not been adequately understood so far.

According to recent reports, the introduction of heterogeneities into metals and al-
loys with laminated composite structure, bimodal grain size structure, gradient structure,
or dual-phase structure can simultaneously enhance strength and ductility [2,19,23–25].
The excellent mechanical properties of such structures are attributed to considerable
back-stress hardening due to the accumulation of geometrically necessary dislocations
(GNDs) [23]. However, there are only a few studies on the cryogenic impact toughness
of high-manganese steels with heterostructures. It is established that the yield strength
is significantly improved, while the cryogenic impact toughness slightly decreases, in
high-manganese steels with bimodal grain size (0.2–0.4 µm) [2] or double-strengthened
structure comprising softened and hardened zones [19]. The cryogenic impact toughness is
relevant to the deformation twinning behavior in coarse grains or softened zones.

In order to better control the mechanical properties of high-manganese steels by
tailoring their microstructure, it is very important to understand the relationship between
microstructure and impact toughness. In this work, the Fe-30Mn-0.05C steel specimens with
cold-rolled, partially recrystallized, fine-grained, and coarse-grained microstructures were
fabricated by means of 80% cold rolling and subsequent annealing at different temperatures.
Charpy impact energy and deformation mechanisms were investigated at RT and LNT
using the Charpy impact test and electron backscatter diffraction (EBSD) analysis.

2. Materials and Methods

The steel used in the present study has the nominal composition in the range of Fe-
30Mn-0.05C (wt.%) (see Table 1). Steel was first melted using a vacuum induction furnace.
The ingot was afterward heated to 1150 ◦C and held for 3 h at this temperature; then, it was
forged at 600–800 ◦C to produce a 55 mm thick plate. The hot forged plate was cold-rolled
for a thickness reduction of 80%, cut and subsequently annealed at 550 ◦C for 2 h and at
600, 700, and 1000 ◦C for 1 h, respectively. After that, the plates were quenched in water.
The above cold-rolled and annealed steel plates were labeled as CR, A550, A600, A700, and
A1000, respectively.

Table 1. Chemical composition of Fe-30Mn-0.05C (wt.%) steel.

Mn C S Fe

30.2 0.052 0.018 Bal.
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The phase composition of the specimens was investigated with X-ray diffraction (XRD)
using a D/max 2400 diffractometer equipped with a Cu Kα radiation source. The scanning
rate of 2 deg min−1 and the range of 40–100◦ were applied during the XRD measurements.
The microstructural characterization of the steel specimens was implemented on their
normal direction (ND)–rolling direction (RD) sections. In particular, electron backscatter
diffraction (EBSD) was performed using a field-emission scanning electron microscope
(FE-SEM) equipped with an EDAX EBSD system. The step size in EBSD scanning was
200 nm. Data acquisition and analysis were carried out using the OIMA software, version
7.0. The EBSD specimens were prepared by electro-polishing at room temperature for 60 s
at 20 V using a 10 vol% perchloric acid alcohol electrolyte.

Flat, dog-bone-shaped tensile specimens with dimensions of 12 mm (gauge length) ×
2 mm (width) × 2 mm (thickness) were cut by electro-discharge-machining the cold-rolled
and annealed sheets along the RD. Tensile tests were performed at RT with a Zwick tensile
machine at a strain rate of 10−3 s−1 up to fracture. Charpy V-notch (CVN) samples with a
standard size of 10 × 10 × 55 mm3 and a V-notch radius of 0.25 ± 0.025 mm were used in
the experiments. Charpy impact tests were carried out at RT and LNT using an MTS impact
tester with a capacity of 600 J. The mechanical tests were repeated at least 3 times for each
type of specimens, and the average value was calculated to guarantee the experimental
reliability. Micro-hardness (HV) tests were conducted using a QNESS Q10 tester.

3. Results
3.1. Initial Microstructure Characterization

EBSD maps describing the microstructures on the ND-RD planes of the Fe-30Mn-0.05C
steel specimens are presented in Figures 1–3.

Figure 1a shows the microstructure of CR specimen where elongated grains, shear
bands and deformation twins are observed, indicating that high dislocation density was
introduced by cold rolling [26]. The X-ray diffraction pattern (Figure 1b) reveals that the
microstructure was mainly composed of a face-centered cubic (FCC) austenite phase. The
strain-induced γ-austenite-to-ε-martensite transformation occurred during cold rolling due
to low/medium SFE and high stress [27]. The intensity of martensite diffraction peaks is
relatively low, and the volume fraction of ε-martensite calculated based on the XRD data
is ~20%.
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Since the specimens have the same initial microstructure and stored energy, the anneal-
ing temperature has a significant effect on the recrystallization kinetics [28]. The fraction of
the recrystallized microstructure increases with the annealing temperature. According to
Figure 2, the A550 and A600 specimens have composite structures consisting of partially
recrystallized and recovered microstructures due to the medium annealing temperatures.
Moreover, the A600 specimen possesses a relatively higher recrystallization fraction than
the A550 steel. In the present study, a grain with the interior grain orientation spread
below 2.5◦, most of its boundary misorientation angles higher than 15◦, and a grain size
larger than 1 µm is considered as a recrystallized grain. Additionally, the area fraction
was assumed to be equal to the volume fraction. Accordingly, as shown in Figure 2b,d,
the estimated volume fractions of the recrystallized grains of the A550 and A600 speci-
mens are 20% and 33%, respectively. After annealing at over 700 ◦C, the recrystallization
process is complete. The microstructures of both A700 and A1000 specimens consist of
equiaxed austenite grains. Some grains (Figure 3a,c) contain annealing twins without any
pronounced internal subgrains. The average grain sizes of the A700 and A1000 specimens
were 3.1 and 42.1 µm, respectively (see Figure 3b,d).
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3.2. Mechanical Properties

Figure 4 shows the tensile engineering stress–strain curves and the related work-
hardening curves of Fe-30Mn-0.05C steels recorded at RT. The tensile properties of these
steels are summarized in Table 2, as well as their Charpy V-notch impact absorbed energy
measured at RT and LNT.
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In Figure 4, the A600 and A700 specimens exhibit discontinuous yielding behavior,
while other specimens demonstrate continuous yielding. Discontinuous yielding was
normally observed in metals with grain sizes in the near-micrometer range, which was
attributed to a lack of dislocation sources [29–31]. The tensile properties strongly depend on
the microstructure. The CR specimen possesses the highest yield strength (YS) and ultimate
tensile strength (UTS) with the lowest uniform elongation (UE). The ultrahigh YS was due
to the high prestored dislocation density introduced by 80% cold rolling. The limited UE
was attributed to early plastic instability, which resulted from limited work-hardening
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capacity (see Figure 4b). With the increase of annealing temperature, YS and UTS decrease,
while UE and work-hardening rate increases, owing to recrystallization and recovery. It is
worth noting that the A700 specimen with d = 3.1 µm exhibits a higher UE than that of the
A1000 specimen with d = 42.1 µm, which is mainly ascribed to extensive work-hardening
ability. Therefore, grain size refinement is an effective method to simultaneously increase
strength and ductility. Moreover, the tensile test results indicate that the YS can be enhanced
by grain refinement and partially recrystallized structure, which is consistent with previous
reports [31–35].

Table 2. Tensile properties and Charpy impact energy of Fe-30Mn-0.05C steel.

Specimen YS/MPa UTS/MPa UE/% TE/% RT Cev/J LNT Cev/J

CR 1256 1470 2.0 7.0 26 14
A550 1030 1085 5.8 13.0 171 36
A600 582 760 29.3 43.1 228 81
A700 430 699 40.3 51.7 278 172

A1000 213 525 39.4 49.4 330 325

The Charpy impact energy gradually increasea with the annealing temperature at
both RT and LNT, while the specimens showed different trends: parabolic increase at RT
and exponential increase at LNT, respectively. In other words, the Charpy impact energy
increases with the increase of the recrystallized-grain volume fraction. The CR specimen
possesses a low impact absorbed energy, less than 30 J at RT and LNT. For A550, A600,
and A700 specimens, the impact absorbed energy at LNT decrease by 79%, 64%, and 38%,
respectively, compared with those at RT. It is, however, noteworthy that extraordinary
impact absorbed energy, more than 320 J, was obtained both at RT and at LNT for the A1000
specimen with a coarse-grained microstructure. The Charpy impact behavior of the A700
and A1000 specimens with fully recrystallized microstructures indicate that the impact
absorbed energy could be improved by increasing the grain size.

4. Discussion
4.1. Hardness Analysis of Impact Specimens

To understand the effect of the microstructure on the Charpy impact properties at
RT and LNT, the A600, A700, and A1000 specimens were further investigated. Figure 5
shows the microhardness plot as a function of depth in the intermediate fracture surface
of the Charpy V-notch impact specimens. The microhardness test region is highlighted
with a red line in the inset map of Figure 5. The hardness test direction is in the direction
normal to the crack propagation direction. The hardness underneath the fracture surface of
the A600 specimen at RT was higher than that at LNT, indicating more deformation at RT
during impact. In the A700 specimen, the difference between the microhardness values
at RT and LNT decreased. In turn, the microhardness values of the A1000 specimen were
close to each other. The microhardness near the fracture was about HV 340 higher than the
initial HV 150, suggesting extraordinary work hardening during the impact process. The
trend of hardness was consistent with the impact results. The increase in hardness values
underneath the fracture surface was assumed to be related to the formation of high-density
twins and dislocations, which contributed to work hardening [36]. However, the detailed
microstructure-based strengthening [37,38] and toughening mechanisms [39] at RT and
LNT need further detailed and systematic investigations, taken into account not only the
grain size effect but also the strain gradient effect, by advanced characterization methods
including in-situ techniques [40].
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4.2. Fracture Mechanisms of Fe-30Mn-0.05C Steel
4.2.1. Fractography of Impacted Specimens

Figure 6 shows the SEM fractographs of impacted specimens. The A600 specimen
exhibited shallow dimples on their fracture surface at RT (Figure 6a), while cleavage and
many secondary cracks were found at LNT (Figure 6b). In the case of the A700 specimen,
the fracture surfaces impacted at RT also demonstrated multiple dimples, but a quasi-
cleavage fracture surface was observed in the sample after impact at LNT. The above results
indicate that the fracture mode in the A600 and A700 specimens was transformed from
ductile fracture to cleavage or quasi-cleavage fracture as the temperature decreased from RT
to LNT. It should be noted that the fracture morphology of the A1000 specimen (Figure 6e,f)
contained ductile fracture features with a large number of elongated, shallow dimples
independently of the impact temperature.

4.2.2. Microstructure Characterization after Impact Tests

The specimens for microstructure characterization were extracted from the vertical–
sectional (RD × ND) regions close to the fracture surface of impact-tested samples. The
deformed microstructures of the specimens at the depth of about 200 µm from the interme-
diate fracture surface were examined using EBSD, and the corresponding images are shown
in Figures 7–9. Figure 7 shows the IPF and the corresponding kernel average misorientation
(KAM) maps of the A600 specimen after impact tests at RT and LNT where no deformation
twins have been observed. The average KAM value is a signature of local misorientation,
and the higher the KAM value is, the heavier the plastic deformation is [9]. The average
KAM values of the A600 specimen at RT and LNT were calculated to be 1.48 and 0.97,
respectively. Obviously, the A600 specimen underwent severe plastic deformation in a
uniform manner during the impact at RT (see Figure 7b,d). In turn, a heterogeneous KAM
distribution was observed in the A600 specimen after LNT impact. While the recovery mi-
crostructure zones exhibited the highest KAM values, the recrystallized regions possessed
the lowest KAM values, indicating the non-uniformity of strain distribution. Moreover,
micro-cracks formed at the boundaries of the recovery microstructure due to the stress
concentration during the impact process at RT (see Figure 7a,b). Once the test temperature
was reduced from RT to LNT, cracks might propagate along the recovery microstructure
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(see Figure 7c,d), resulting in lower impact energy. It was inferred that the lower impact
energy of the A600 specimen with a partially recrystallized microstructure could probably
be due to the stress/strain concentration in the recovery microstructure. The detailed
processes for crack initiation in the heterogeneous microstructure need further detailed
investigations, and these may be directly related to the interactions between dislocations
and boundaries during deformation [41].
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Figure 6. SEM fractographs of impact specimens (a,b) A600, (c,d) A700, and (e,f) A1000 at (a,c,e) RT
and (b,d,f) LNT. Blue arrows point to secondary cracks. Green dashed lines indicate cleavage flat
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Figure 8 displays the grain boundaries and the corresponding KAM maps of the A700
specimen after the impact tests at RT and LNT. The high and low angle grain boundaries
and the Σ3 twin boundary are delineated in black, red, and blue, respectively. Since the
relative amount of twin boundaries captured using EBSD at RT and LNT was less than
10%, those were suggested to be the annealing-induced twin boundaries that pre-existed
before impact testing. Similarly, the A700 specimen, after RT impact, exhibited higher
KAM values than that at LNT. It is generally accepted that the deformation mechanism
of high-manganese steel specimens depends on the SFE, which is affected by grain size,
testing temperature, and chemical composition [1,15,42]. The temperature- and grain size-
dependent SFE of the A700 specimen was calculated based on the thermodynamics model
(the calculation procedure can be found in our previous work [4]). The SFE of the A700
specimen decreased from 27.5 mJ/m2 at RT to 22.4 mJ/m2 at LNT. The optimal SFE for
deformation twinning in TWIP steel specimens is roughly between 18 and 45 mJ/m2 [15].
In addition, twin formation usually takes place at low SFE. However, deformation twinning
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in this study was insignificantly near the middle of the crack extended within the A700
specimen at both RT and LNT (see Figure 8). Except for SFE, the twinning behavior is
also strongly dependent on grain size [33,43–46]. Rahman et al. [43] indicated that twin
initiation stress increased with the decrease in grain size in TWIP steel with grain size of
0.7–84 µm during cyclic tensile deformation. The deformation twins in the fine-grained
specimen were much thinner than those in the coarse-grained specimen. Additionally, an
increase in the nucleation stress of deformation twinning with the decrease in grain size
from 31 nm to 11.1 nm was observed using molecular dynamics (MD) simulations [45]. The
twinning stress is generally described by the following equation [43,44]:

σT =
γ

mb
+

KH−P
tw√

D
(1)

where m is the Taylor factor, γ is the SFE, b is the Burgers vector, KH−P
tw is the Hall–Petch

constant for twinning, and D is the grain size. According to this equation, fine grain size
results in increased activation stress for mechanical twinning [45,47,48]. In the present
study, the possible reason for the absence of deformation twins in the A700 specimen
could be related to the small grain size, leading to the high critical resolved shear stress.
Moreover, nanoscale deformation twins might have not been identified due to limited
EBSD resolution. Nevertheless, the plastic deformation mechanism within the intermediate
fracture surface of the A700 specimen was mainly dislocation slip.
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Charpy V-notch impact specimen at (a,b) RT and (c,d) LNT. (a,c) Grain boundary maps and mis-
orientation angle statistical results (insets). (b,d) Corresponding KAM maps and statistical KAM
data (insets).

Figure 9 displays the IPF + IQ maps and the corresponding KAM distributions of
the A1000 specimen after the impact tests at RT and LNT. The average KAM values of
the A1000 specimen at RT and LNT were calculated to be 2.20 and 2.15, respectively,
which indicated a considerable degree of plastic deformation. In contrast to the A700
specimen, deformation-induced twins were prevalent in the A1000 specimen after the RT
and LNT impact tests. Both the primary and secondary twinning systems were activated
and interacted with each other. Furthermore, twin clusters were predominant after LNT
impact. The SFE values of the A1000 specimen were estimated to be 19.6 mJ/m2 at RT and
15.0 mJ/m2 at LNT. It should be noted that SFE values calculated using different models
were slightly different [49]. Nevertheless, the theoretical SFE values were close to the typical
critical SFE for twinning (~18 mJ/m2). Moreover, the sample with grain size of 42.1 µm
decreased the critical twinning stress compared with that of the A700 specimen (3.1 µm).
Accordingly, deformation twining served as an important deformation mechanism in the
A1000 specimen at both RT and LNT. When the SFE is less than 18 mJ/m2, martensitic
transformation is favored during plastic deformation, with γ-austenite transforming into
ε/α′-martensite [15]. Figure 10 depicts the X-ray diffraction patterns of the A1000 specimen
before and after the RT and LNT impact tests. There were ε-martensite-related peaks in the
specimen before the impact test. The volume fractions of ε-martensite phases measured
using XRD analysis in the A1000 specimen before and after impact at RT and LNT were
~18%, ~21%, and ~23%, respectively. According to these results, martensitic transformation
was not obvious after RT and LNT impact due to the high strain rate (~103 s−1) during the
test, which is consistent with previous reports [13,50].
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4.3. Effect of Initial Microstructure on Charpy Impact Energy

Generally, the strength of metals or alloys is inversely related to their toughness, which
is called the strength–toughness trade-off. As shown in Figure 4 and Table 2, the yield
strength of the specimens gradually decreased with the increase in annealing temperature,
while the Charpy impact energy at RT and LNT continuously increased. It has been
previously demonstrated that the dramatic work hardening in the plastic zone ahead
of the crack tip during deformation retards crack propagation, resulting in an increase
in toughness [36,51]. In the CR specimen with a cold-rolled structure, the YS was very
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high, but the work-hardening capacity was limited due to the difficulty in storing more
dislocations [52], thereby hindering plastic deformation and reducing toughness at both
RT and LNT. In the A550 and A600 specimens, recrystallized grains could accumulate
dislocations to sustain work hardening and plastic deformation. The toughness became
higher as the volume fraction of recrystallization increased from 20% to 33%. However,
during impact testing, cracks formed and propagated along the recovered microstructures
(see Figure 7) due to inhomogeneous deformation, which resulted in lower work hardening
near the fracture and greatly reduced the absorbed energy. Therefore, the Charpy impact
energy values of partially recrystallized A550 and A600 specimens were significantly lower
than those of fully recrystallized A700 and A1000 specimens at both RT and LNT.

Deformation twinning is the key microstructural mechanism to improve the fracture
toughness of metals, which contributes to extensive work hardening to blunt the crack [36].
The dominant plastic flow mechanism in the A700 specimen with an average grain size
of 3.1 µm was dislocation slip, and few deformation twins were observed during plastic
deformation at RT and LNT (see Figure 7). This was due to the small grain size, which
increased the critical twinning stress. However, twin bundles and secondary twinning
systems were observed in the A1000 specimen with grain size of 42.1 µm (see Figure 9),
and the impact energy was significantly improved. The results indicate that deformation
twinning could be extensively activated by increases in grain size but inhibited by grain
refinement [33,43,48]. In addition, according to Figure 5, the hardness values in the fracture
region of the A1000 specimen were much higher than those in the initial state of the
steel, indicating the higher work hardening. Evidently, the deformation twinning played
a dominant role in the enhancement of work hardening, thereby increasing the impact
energy at both RT and LNT. Twin boundaries effectively reduced the dislocation mean
free path and acted as strong planer obstacles to the dislocation motion (known as the
dynamic Hall–Petch effect) [53]. At the same time, twin boundaries with high interfacial
strength retarded both crack nucleation and propagation, promoting homogeneous plastic
deformation at the crack tip region [17]. Furthermore, the formation of deformation twins
also dissipated a part of the mechanical energy [18]. Therefore, the stress concentration
was effectively relieved, and the crack tip became blunt in the A1000 specimen, resulting in
higher impact energy at RT and LNT.

According to the above results, the difference between the RT and LNT impact tough-
ness of Fe-30Mn-0.05C steel decreased with the increase in annealing temperature. In the
A600 and A700 specimens, in which the deformation mechanism was dislocation slip,
the fracture mode changed from ductile fracture to cleavage or quasi-cleavage fracture as
the test temperature decreased from RT to LNT (see Figure 6). Moreover, the degree of
plastic deformation decreased with the decrease in temperature (see Figures 5, 7 and 8).
It has been recognized that the fracture mechanism is the result of competition between
dislocation source opening and crack extension at the crack front [54]. Lowering the tem-
perature increases Peierls–Nabarro lattice friction, which leads to an increase in strength,
thus making the dislocation source operation more complex [1,9]. In addition, cross-slip
is more difficult at LNT, and dislocations are confined to specific slip planes due to the
decrease in SFE, which increases stress concentration [55,56]. As a result, the Charpy im-
pact energy of the A600 and A700 specimens significantly decreased with the temperature.
In contrast to the A600 and A700 steel specimens, the differences in impact toughness,
fracture mode, and degree of plastic deformation of the A1000 specimen at RT and LNT
were minor, and deformation twinning was the dominant deformation mechanism (see
Figures 6 and 9). This might be due to the increased number of deformation twins and two
groups of twins intersecting at LNT (see Figure 9), which contributed to the enhancement
of the work-hardening ability and thus improved the cryogenic impact energy of steel [57].

5. Conclusions

In summary, Fe-30Mn-0.05C steel specimens with cold-rolled, partially recrystallized,
fine-grained, and coarse-grained microstructures were obtained by means of 80% cold
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rolling followed by annealing at different temperatures. The effect of the initial microstruc-
ture on the Charpy impact energy and deformation mechanisms at RT and LNT was
investigated. The main conclusions are as follows.

(1) The Charpy impact energy values of partially recrystallized A550 and A600 speci-
mens were significantly lower than those of fully recrystallized A700 and A1000 specimens
at both RT and LNT. This was due to large stress concentration in the recovery microstruc-
ture, which resulted in crack formation and propagation along the interface of the recovery
microstructure, especially at LNT.

(2) The grain size played an important role in the Charpy impact energy of high-
manganese steel. In the A1000 specimen with the average grain size of 42.1 µm, deformation
twinning was prevalent during impact testing, which ensured higher work hardening and
Charpy impact energy at RT and LNT. However, deformation twinning was inhibited in
the A700 specimen with a grain size of 3.1 µm, resulting in lower Charpy impact energy.
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