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Abstract: The rapid worldwide spread of the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has created a series of problems. Detection platforms based on graphene field-effect transistors
(GFETs) have been proposed to achieve a rapid diagnosis of SARS-CoV-2 antigen or antibody. For
GFET-based biosensors, the graphene surface usually needs to be functionalized to immobilize the
bioreceptor and the non-covalent approach is preferred for functionalization because it is believed not
to significantly alter the electronic properties of graphene. However, in this work, the non-covalent
functionalization introduced by 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBASE) was
determined to lead to different changes in electrical properties in graphene samples with different
defect densities. The fabricated graphene biosensor can successfully detect SARS-CoV-2 antigen
with a concentration as low as 0.91 pg/mL. Further, by careful comparison, we determined that, for
GFET fabricated on graphene with a higher defect density, the current variation caused by PBASE
modification is greater and the background current noise in the subsequent antigen detection is also
larger. Based on this relationship, we can predict the background current noise of the biosensors by
evaluating the current change induced by the modification and screen the devices at an early stage of
graphene biosensor fabrication for process optimization.

Keywords: SARS-CoV-2; graphene; biosensor; non-covalent functionalization; background
current noise

1. Introduction

The worldwide epidemic of coronavirus disease 2019 (COVID-19) has threatened pub-
lic health and caused economic losses. Bioanalytical diagnostic technologies have played
an important role in mitigating the rapid spread of the virus and in the early treatment
of patients. The early treatment of COVID-19 is critical, as the causative virus (severe
acute respiratory syndrome coronavirus 2, SARS-CoV-2) may cause detrimental effects
on respiratory muscle despite the relatively mild symptoms [1]. Among the diagnostic
techniques currently available, reverse transcription–polymerase chain reaction (RT-PCR)
remains the gold standard for the diagnosis of COVID-19 [2]. RT-PCR technology requires
many complex steps, such as the isolation of RNA, reverse transcription, polymerase chain
reaction, and amplification product detection [3]. These complex processes will undoubt-
edly increase operating costs and trained professionals are necessary for this technology.
There are other limitations to this technology. RT-PCR requires considerable turnaround
times considering the multiple stages of sample transport, analysis, and reporting [2]. In
addition, this method is susceptible to false negatives and it should be used in combina-
tion with other diagnostic reports such as computed tomography (CT) X-ray scan of the

Crystals 2023, 13, 359. https://doi.org/10.3390/cryst13020359 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst13020359
https://doi.org/10.3390/cryst13020359
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0001-5119-5512
https://orcid.org/0000-0003-4298-1575
https://doi.org/10.3390/cryst13020359
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst13020359?type=check_update&version=2


Crystals 2023, 13, 359 2 of 15

chest [4]. Therefore, other convenient, rapid, and highly sensitive diagnostic techniques are
especially desirable.

Since the successful experimental realization of graphene sheets in 2004 [5], the fas-
cinating properties of graphene have attracted extensive interest. Graphene devices with
superior room temperature mobility of up to 140,000 cm2/V s have been reported [6].
When considering high-field transport, graphene also has an advantage over conventional
semiconductors due to its higher maximum carrier velocity [7]. In addition to the above
advantages, graphene is particularly suitable for sensor applications because its electronic
properties are very sensitive to changes in the external environment. For example, graphene
exhibits a highly sensitive electrical response to molecules adsorbed on its surface [8]. This
sensitivity stems from the two-dimensional nature of graphene (i.e., every atom in graphene
can be exposed to the adsorbed molecules) [9]. This property allows graphene to have the
largest sensing area per unit volume. A typical example of the ultra-high sensitivity of
graphene-based sensors is the gas sensor that can detect the adsorption of individual gas
molecules [10]. There have been tremendous efforts in applying graphene to novel sensors
for COVID-19 tests. A recent study shows that adding graphene films to the structure of a
surface plasmon resonance (SPR) biosensor can effectively improve the sensitivity of the
biosensor [11]. The proposed SPR biosensor can detect the SARS-CoV-2 antibodies at the
nM level. The field effect is also a very reliable sensing mechanism [12], and this effect has
led to the creation and mass application of graphene field-effect transistor (GFET)-based
biosensors. In GFET-based biosensors, the gate voltage can be applied to the graphene
channel through a solid dielectric layer or an electrolyte solution to change the electric field
distribution on the graphene surface, corresponding to the back-gated GFET (BGFET) and
the solution-gated GFET (SGFET) configuration, respectively. GFET-based biosensors have
enabled the detection of many biomarkers, such as DNA molecules [13], bovine serum
albumin (BSA) [14], and Immunoglobulin E (IgE) protein [15]. Functionalization of channel
surfaces in GFETs using SARS-CoV-2 spike antibody can provide biosensors with the ability
to detect viral antigen protein and SARS-CoV-2 virus from clinical samples [16]. More
importantly, this GFET-based biosensor can effectively discriminate between the antigen
protein of SARS-CoV-2 and that of the Middle East respiratory syndrome coronavirus
(MERS-CoV) [16]. In 2021, a GFET-based biosensor for ultrasensitive detection of the viral
antibody of SARS-CoV-2 has been developed [17], and the reported limit of detection (LoD)
for monitoring antibody has been reduced to an extremely low value (2.6 aM). Compared
to the antibody detection at the nM concentration level achieved in the SPR biosensor, the
GFET-based biosensor has a higher sensitivity. Although GFET-based biosensors are a
promising diagnostic technology, the surface of graphene itself is intrinsically chemically
inert due to the absence of dangling bonds [18]. Therefore, graphene surfaces often need
to be functionalized for subsequently selective detection of biomarkers. In the step of
functionalization of graphene surface, both covalent [19] and non-covalent [20] methods
can be used. In general knowledge, non-covalent functionalization via π-interactions can
attach functional groups to the graphene surface without disturbing electronic network [21].
However, the detailed evaluation and the comprehensive investigation of the effects of
non-covalent functionalization on the properties of graphene are still lacking. On the other
hand, for graphene biosensors, the background current noise is an important device metric.
This is because the LoD of biosensors is proportional to the average noise level (i.e., the
lower the noise level, the lower the LoD) [17]. Therefore, many efforts have been made
to reduce noise in GFET-based biosensors, such as sensing through the changes in the
intensity of the alternating current (AC) signal [22] and using peptide nucleic acid (PNA,
an electrically neutral molecule) as a probe for detection [23]. In addition to noise reduction,
for high-volume fabrication of graphene-based biosensors, a method that can evaluate the
noise performance of the final device during the fabrication process (without the device
being fully fabricated) is also essential for timely optimization of the fabrication process
to reduce costs. However, such a method is still lacking. According to a recent study [24],
a higher noise corresponds to a greater level of defectiveness in the material. Therefore,
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timely monitoring of defect levels in graphene materials during fabrication can also help to
assess noise in the final biosensors. In 2022, a graphene defect detection technique based
on advanced algorithm and electrical impedance tomography was reported [25]. However,
the evaluation of noise in graphene device was not reported in this study.

In this work, we fabricated SGFET devices as the detection platform for the SARS-
CoV-2 antigen protein and proposed a method to estimate the noise in the final biosensors
without completely fabricating the devices. The graphene devices were carefully fabri-
cated and the non-covalent functionalization of graphene surfaces was performed using
1-pyrenebutyric acid N-hydroxysuccinimide ester (PBASE). PBASE is a heterobifunctional
linker molecule that can adsorb to the graphene surfaces through π–π interactions (via a
pyrene group) and it also provides a standard N-hydroxysuccinimide (NHS) ester ligand
that can covalently immobilize SARS-CoV-2 antibody molecules [26]. Our SGFET-based
biosensor successfully detected SARS-CoV-2 antigen protein in phosphate-buffered saline
(PBS) at a concentration as low as 0.91 pg/mL. Multiple characterization tools were used to
monitor graphene devices in various steps of biosensing. Raman spectroscopy was used to
characterize the defect densities in different regions on graphene grown by chemical vapor
deposition (CVD). We fabricated SGFET devices on regions with different defect densities.
By this approach, we reported a detailed evaluation and comprehensive study of the influ-
ences of non-covalent functionalization on graphene with different defect levels. Although
it is generally perceived that the non-covalent functionalization does not significantly
change the electronic properties of graphene, the results of the transport measurements
in this work indicate that several graphene transistors prepared on graphene with differ-
ent defect levels (with the same device configuration) produce different responses to the
adsorption of PBASE molecules. More importantly, in subsequent measurements of the
real-time response of the biosensors toward SARS-CoV-2 antigen protein, the device that
is more affected during the non-covalent functionalization (i.e., the channel current (IDS)
of the device decreases more dramatically after non-covalent functionalization) exhibits
greater background current noise. A recent study has shown that defects in graphene can
enhance the adsorption of molecules [27]. Therefore, the greater variation in IDS of the
device prepared on graphene with higher defect level after the PBASE modification can
be attributed to the enhanced adsorption of PBASE due to the defects in graphene. The
higher defect level in graphene can also cause the greater noise. Our work first uses the
variation in IDS caused by the PBASE functionalization to reflect the macroscopic level of
defects in graphene, allowing the background current noise level in the final biosensors
to be predicted by convenient electrical measurements in the fabrication process. Accord-
ing to our study, the level of background current noise of the final fabricated biosensor
can be predicted by observing the change in IDS before and after the non-covalent func-
tionalization process introduced by PBASE. Therefore, we can screen devices with better
sensing performance (i.e., remove the devices with large current changes after non-covalent
functionalization) at an early stage of graphene-based biosensor fabrication based on the
experimental observations.

2. Experiment
2.1. SGFET Biosensor Fabrication

First, a 300 nm thick SiO2 dielectric layer was deposited on the silicon wafer using
plasma-enhanced chemical vapor deposition (PECVD). Then, a standard ultraviolet (UV)
photolithography process was employed to define the coplanar gate electrodes and external
lead electrodes of sensor devices. During this process, a layer of photoresist (AZ5214) was
spin-coated onto the surface of SiO2/Si substrate, at 4000 rpm for 1 min, followed by 100 ◦C
baking for 90 sec. After photolithography and development, 3 nm Ti/10 nm Au/10 nm Pt
were deposited by electron beam evaporation then the electrodes were manufactured by lift-
off. Then, a 100 nm thick Si3N4 layer was deposited by PECVD to passivate a large portion
of the external leads. After that, the photolithography process was used again to define
the etching window which exposes the gate electrode, some of the external leads, and the
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SiO2 substrate. Inductively coupled plasma (ICP) etching was employed to etch away the
Si3N4 dielectric inside the window. Graphene films were grown via the CVD method [28].
Then, the grown graphene films were transferred to the etched substrate via the reported
poly (methyl methacrylate) (PMMA)-assisted transfer approach [29]. Annealing treatment
at 250 ◦C under N2 atmosphere was used to enhance the conformity between graphene
and the substrate. The transferred graphene was patterned by combining electron beam
lithography and O2-plasma etching. The final step in the graphene-based biosensor device
fabrication process is the deposition of the source and drain electrodes connecting the
graphene channel to the exposed external leads. The source and drain electrodes of 3 nm
Al/2 nm Ti/10 nm Au/5 nm Pt were prepared by the combination of electron beam
lithography, electron beam evaporation, and lift-off process.

2.2. Functionalization of Graphene

First, the entire graphene biosensor chip was immersed into the methanol solution of
PBASE (Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai, China) at 5 mM
for 2 h at room temperature. Then, the chip was fished out of the PBASE solution and
gently rinsed several times with PBS and deionized water. Subsequently, the functionalized
biosensor device was soaked in 0.5 mg/mL SARS-CoV-2 antibody (SARS-CoV-2 antibody
and antigen were obtained from Coyote Bioscience Co., Ltd., Beijing, China) solution for
2 h. In the end, the graphene device was gently rinsed with PBS to remove the SARS-CoV-2
antibodies not immobilized on the graphene surface.

2.3. Experimental Characterization

The morphology and quality of graphene films before and after the PBASE functional-
ization were characterized by Raman spectroscopy, atomic force microscope (AFM) park
system, and scanning electron microscope (SEM, Hitachi S4800, acceleration voltage 3.0 kV).
The Raman spectra were acquired with a LabRAM HR Evolution Raman Spectrometer
(HORIBA Jobin Yvon) equipped with a 532 nm wavelength laser. The graphene surface
morphology after antigen detection was measured by AFM and SEM. The electrical perfor-
mance of biosensors was captured with a Keysight B1500A semiconductor device analyzer
and a probe station. In the extraction of device transfer curves, the drain-source voltage
(VDS) was fixed to 100 mV, and the gate voltage (VTG) was swept from −0.5 to 0.5 V. The
sweep rate of VTG was 20 mV/s. During the time-resolved detection of SARS-CoV-2 antigen
proteins, the VDS was fixed to 100 mV and the VTG was fixed to 200 mV. The SARS-CoV-2
antigen protein solutions of different concentrations were prepared by serial dilutions of
the stock solution of the antigen protein.

3. Results and Discussion

Figure 1 presents a three-dimensional (3D) schematic of the graphene-based biosensor
device fabricated in this work, an optical photograph of the biosensor device wafer, and
a micrograph of two biosensor devices. From the 3D schematic in Figure 1a, the PBASE
molecules were adsorbed onto the graphene channel surface through π-π interactions
to achieve non-covalent functionalization. Subsequently, the SARS-CoV-2 antibody was
immobilized onto the graphene surface through PBASE [16] to enable a SARS-CoV-2 antigen
protein detection platform. After the detection platform was prepared, the biorecognition of
the antigen protein by the immobilized antibody (as shown by the light gray dashed arrow
in Figure 1a) would occur when the PBS solution covering the SGFET device contained the
antigen protein. This led to a change in the electrical properties of the SGFET device.
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event of the antigen protein by the immobilized antibody. (b) The optical image of biosensor devices 
fabricated in bulk on a 100 mm wafer. The lavender half-ring indicated by the “Gate” mark is the 
in-plane gate electrode. Several thin lavender strips indicated by “Leads” are the external leads of 
the device. (c) The micrograph of two SGFET-based biosensors. Inside the slit between the source 
and drain electrodes is a graphene channel exposed to the electrolyte solution. The length of the 
exposed channel is 2 μm. 
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spectra in Figure 2, the position of G peak (𝜔 ) is 1578.895 cm  and the position of 2D 
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the Raman peaks might be due to the hole doping of graphene [37]. The hole-doping effect 
of PBASE can be attributed to its electron-withdrawing property [38]. 

Figure 1. Three-dimensional (3D) schematic, the optical image, and the micrograph of the solution-
gated graphene field-effect transistor (SGFET)-based biosensors. (a) The 3D schematic of the SGFET-
based biosensor fabricated in this work and the bias configuration in electrical measurements. PBASE,
1-Pyrenebutyric acid N-hydroxysuccinimide ester. PBS, phosphate-buffered saline. VTG: gate voltage.
VDS: drain-source voltage. The light gray dashed arrow indicates the biorecognition event of the
antigen protein by the immobilized antibody. (b) The optical image of biosensor devices fabricated
in bulk on a 100 mm wafer. The lavender half-ring indicated by the “Gate” mark is the in-plane
gate electrode. Several thin lavender strips indicated by “Leads” are the external leads of the device.
(c) The micrograph of two SGFET-based biosensors. Inside the slit between the source and drain
electrodes is a graphene channel exposed to the electrolyte solution. The length of the exposed
channel is 2 µm.

During the electrical measurements (the bias configuration is shown in Figure 1a),
the application of the VTG leads to the formation of two electrical double layers (EDLs)
at the gate electrode/electrolyte solution and the graphene channel/electrolyte solution
interfaces, which can be regarded as insulating layers [30]. Thus, these EDLs can be
described in terms of parallel plate capacitors with a geometrical capacitance per unit
area CEDL = εrε0/λD, where εr is the relative permittivity of electrolyte, ε0 is the vacuum
permittivity, and λD is the Debye length [31]. For the graphene channel/electrolyte solution
interface, in addition to the interfacial capacitance derived from the EDL, the contribution
of quantum capacitance (CQ) should also be considered [32]. The total capacitance of
the graphene channel/electrolyte solution interface includes both the capacitance of the
EDL and the CQ of graphene itself. Therefore, the total gate capacitance of the SGFET
biosensor is composed of a series connection of the capacitance of the two EDLs at the gate
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electrode/electrolyte solution and the graphene channel/electrolyte solution interfaces
and the quantum capacitance of the graphene [33]. In the conventional structure of SGFET
devices, a large gate electrode out of plane is often required, such as an Ag/AgCl reference
electrode [14] or a metallic wire made of Pt [30]. This out-of-plane gate electrode increases
the difficulty of the operation and the complexity of the measurement setup. An alternative
architecture for SGFET, in which the source, drain, and gate electrodes are in the same plane,
has been reported [34]. In this device structure, an in-plane metallic gate electrode replaces
the conventional metallic wire and this in-plane metallic gate electrode provides an efficient
transistor gate-controlling. Therefore, we also adopted this integrated device configuration
including in-plane gate electrodes (as shown in Figure 1a,b) to fabricate SGFET biosensor
devices at scale on a 100 mm wafer (as depicted in Figure 1b). Furthermore, considering
that the capacitance of EDL is proportional to the contact area of the interface, the area
of the in-plane gate electrode/electrolyte solution interface (Sgate) of the device in this
work is much larger than the area of the graphene channel/electrolyte solution interface
(Sgraphene) (Sgate/Sgraphene > 104, as shown in Figure 1b,c). This design is employed to
reduce the effect of the capacitance of the gate electrode/electrolyte solution interface.
Hence, during the operation of SGFET devices, the total gate capacitance only needs to
include the contributions of the capacitance of the EDL at the graphene channel/electrolyte
solution interface and the quantum capacitance of graphene, as demonstrated in the
previous literature [31].

As the first step in the functionalization of SGFET-based biosensors, the non-covalent
functionalization introduced by PBASE molecules needs to be carefully characterized and
systematically studied. Raman spectroscopy is a powerful non-destructive characterization
tool for carbon materials, and it allows the evaluation of doping in graphene [35]. In the
Raman spectrum of graphene, the prominent Raman features are G peak and 2D peak. The
G peak is attributed to the doubly degenerate zone center E2g mode [36], and the 2D peak
involves phonons at the K + ∆k points in the Brillouin zone [37]. From the Raman spectra
in Figure 2, the position of G peak (ωG) is 1578.895 cm−1 and the position of 2D peak (ω2D)
is 2664.844 cm−1 before the PBASE molecules modified the graphene surface. However,
after the non-covalent functionalization induced by PBASE, the ωG shifts to 1581.337 cm−1

and the ω2D shifts to 2666.086 cm−1. The non-covalent functionalization of PBASE induces
blueshifts in both G and 2D peaks, meanwhile the shift of G peak (2.442 cm−1) is larger than
that of 2D peak (1.242 cm−1), suggesting that the blueshifts of the Raman peaks might be
due to the hole doping of graphene [37]. The hole-doping effect of PBASE can be attributed
to its electron-withdrawing property [38].
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Figure 2. The Raman spectra of graphene film before and after the non-covalent functionalization of
graphene surface using PBASE molecules.

AFM is also commonly used as a valuable tool to characterize the surface morphology
of the graphene sheet before and after the PBASE modification [16]. Figure 3 shows
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the changes in the surface morphology of graphene film before and after the PBASE
modification and the corresponding height profiles and histograms. The AFM images
of graphene film before and after PBASE modification are shown in Figures 3a and 3b,
respectively. The root mean square (RMS) surface roughness of graphene is extracted from
an area of 2.5 × 2.5 µm2 (within the white dashed box in the AFM images in Figure 3a,b).
Before the adsorption of PBASE molecules onto the surface of graphene, the RMS roughness
of graphene is ∼ 2.356 nm and that of the SiO2 substrate is ∼ 2.168 nm. The relatively
high surface roughness of graphene and SiO2 substrate is due to some over-etching of the
underlying SiO2 substrate during the ICP etching of the Si3N4 dielectric.
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Figure 3. Atomic force microscope (AFM) characterization of graphene morphology before and after
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boxes in (a) and (b), respectively. The area of each box is 2.5 × 2.5 µm2.

After the PBASE adsorption, the RMS roughness of graphene is ∼ 2.304 nm and that
of the SiO2 substrate is ∼ 2.179 nm. The surface roughness of the SiO2 substrate does
not change much before and after the modification. However, there is a slight decrease
in the surface roughness of the graphene film after the adsorption of PBASE. The self-
assembly of PBASE molecules on the graphene surface was reported to planarize the
defective graphene surface due to the strong π − π stacking [39]. This is probably the
reason for the slight reduction in graphene surface roughness after the adsorption of
PBASE. As shown in the corresponding height profiles before and after non-covalent
functionalization (Figure 3c,d), the height of the PBASE self-assembled molecules (SAM)
layer is ∼ 1.153 nm. This value is similar to the height value of the PBASE SAM layer
reported in other literature [39]. In addition, before PBASE adsorption, the height histogram
of graphene almost overlaps with that of the SiO2 substrate (Figure 3e). However, after
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the PBASE modification of the graphene surface, the height histogram of the graphene
sheet is significantly separated from that of the SiO2 substrate, and the overall height
of the graphene is clearly larger than that of the SiO2 substrate (Figure 3f). The SEM
images in Figure S1 (see Supplementary Materials) also illustrate the successful PBASE
adsorption. Before the PBASE functionalization, the surface of the graphene channel was
clean (Figure S1a). However, after PBASE modification, several bright spots appeared
on the originally clean graphene surface (marked by the arrows in Figure S1b). The
characterization results of AFM and SEM adequately demonstrate the successful non-
covalent functionalization of graphene via PBASE molecules.

To demonstrate that the prepared SGFET biosensors can effectively capture the SARS-
CoV-2 antigen proteins, the graphene channel morphology of the SGFET device after
monitoring the time-resolved current response to antigen protein was characterized by
AFM. As can be seen from the AFM image in Figure 4a, many high spots appear on the
surface of the graphene channel after the antigen detection, indicating that the antigen
proteins are adsorbed onto the graphene surface. In addition, the RMS roughness of the
graphene sheet after antigen detection increases to ∼ 4.254 nm, while there is a smaller
increment in the RMS roughness of the SiO2 substrate (from ∼ 2.179 nm to ∼ 2.914 nm,
compared to the roughness of SiO2 in the AFM image after PBASE modification). From
the corresponding height profiles (Figure 4b), the height of the graphene film after antigen
detection increases by ∼ 5.247 nm. Compared with the height histograms after PBASE
adsorption (Figure 3f), the separation between the height histogram of the graphene sheet
and that of the SiO2 substrate is further increased after antigen detection (Figure 4c). The
SEM image also confirms the adsorption of the antigen on the graphene surface after the
detection. As shown in Figure S1c, a larger bright spot (marked by an arrow) appeared on
the graphene surface after the detection of antigen protein. This indicates the adsorption of
the antigen on the graphene surface.
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Figure 4. AFM characterization of graphene morphology after the detection of SARS-CoV-2 antigen
protein, and the corresponding height profile and histograms. (a) The AFM image of graphene film
and SiO2 substrate after the antigen detection. (b) The height profile along the white dashed line in
(a). (c) The histograms of the height of graphene and SiO2 substrate after the antigen detection. The
histograms are extracted from the white dashed boxes in (a) and the area of each box is 2.5 × 2.5 µm2.

To accurately evaluate the device performance of the SGFET biosensors, we monitored
the channel currents of several graphene transistors at different functionalization steps and
after the real-time detection of antigen proteins. The results of electrical characterization
are depicted in Figure 5. Throughout the electrical measurements, 1 mM PBS solution was
selected as the electrolyte solution covering the in-plane gate electrode and the exposed
graphene channel to provide effective solution-gating. In this study, the graphene films
grown by CVD have different defect levels in different regions. Raman spectroscopy was
employed to confirm the defect density in different regions of graphene. The D peak related
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to defects [40] (at ∼ 1350 cm−1) was always observed in different regions and the D to
G peak intensity ratios (I(D)/I(G)) were different in various regions (Figure S2). Three
representative graphene regions were labeled as “Region 1”, “Region 2”, and “Region
3”. The I(D)/I(G) values corresponding to the three regions were extracted by fitting
peaks with the Lorentzian function [41] (Figure S2b–d). The corresponding I(D)/I(G)
values for Region 1, Region 2, and Region 3 are 0.191, 0.193, and 0.204, respectively. The
I(D)/I(G) increases as the defect density increases, and this ratio reaches its maximum
value when two defects are closer than the average distance an electron–hole pair travels
before scattering with a phonon [42]. In all regions, the intensity of G peak remains lower
than that of 2D peak (Figure S2a), indicating that the I(D)/I(G) has not reached its top and
the defect density is still small [41,42]. Therefore, the density of defects is higher in the
region with higher I(D)/I(G) value. Three SGFET biosensor devices were fabricated in
Region 1, Region 2, and Region 3, and labeled as “Device 1”, “Device 2”, and “Device 3”,
respectively. Thus, the graphene channel in Device 1 has the lowest defect density and that
in Device 3 has the highest defect density. These devices have the same device architecture
(channel lengths (Lg) are both 2 µm and channel widths are both 20 µm). In addition,
the drain-source voltage (VDS) of SGFET was kept at 100 mV during the measurement
to avoid possible chemical reactions on the graphene surface [43]. The stability of the
fabricated sensor is assessed by repeated electrical characterization of the device. The
results of the characterization are shown in Figure S3. An interval of 12 h separated the
two repeated electrical characterizations. The device transfer curves obtained from the two
measurements almost overlap, which illustrates the stability of our prepared devices. The
detailed measurement arrangements are as follows: First, electrical measurements were
performed on the SGFET devices before modification, and the transfer curves were recorded.
At this point, the devices were labeled as “Bare Graphene”. Subsequently, the non-covalent
functionalization of the graphene surface introduced by PBASE molecules was performed,
and the transfer curves of the graphene devices were measured again after the adsorption.
At this point, the devices were labeled as “PBASE”. Next, the graphene sensors were
treated with an antibody incubation process to immobilize the antibody onto the graphene
surface. After the incubation of the SARS-CoV-2 antibody, the devices were measured
again to record the transfer curves. These devices were labeled as “Antibody” at this stage.
Finally, the fabricated graphene biosensors were used to perform consecutive SARS-CoV-2
antigen detection for different concentrations of antigen protein solutions (the experimental
details and recipes for antigen detection will be described in detail next). After the antigen
detection, the transfer curves of the graphene biosensors were measured again. At this
time, these devices were labeled as “Antigen”. The transfer curves of the graphene devices
for all the above stages are summarized in Figure 5a–c. Interestingly, the effect of PBASE
adsorption on drain–source channel current (IDS) of graphene transistors differs very
significantly in different devices (even with the same device geometry and functionalization
process). In Device 1, the PBASE adsorption has a small effect on the IDS. In Device 2,
after PBASE modification, there is a clear reduction in the device current. However, in
Device 3, the PBASE-induced non-covalent functionalization causes a substantial reduction
in the IDS. The curves for the transconductance (Gm) of these devices as a function of VTG
also illustrate a consistent trend (Figure 5d–f). In Device 1, the Gm of graphene transistor
is almost the same before and after non-covalent functionalization (except for some tiny
differences). For Device 2, a slightly larger difference in the Gm curves of the device before
and after the PBASE adsorption than that of Device 1 is observed. For Device 3, the device
has significantly different Gm characteristics before and after the PBASE modification of
the graphene surface. Considering that the defects enhance the adsorption of molecules
on graphene [27,44], the different extent of change in electrical properties after the PBASE
adsorption can be attributed to the different defect levels in various devices. In Device 3,
the defect density in graphene is the highest and therefore the adsorption of PBASE is the
strongest, thus causing the greatest change in the electrical properties.
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Figure 5. Electrical measurements of prepared SGFET biosensors. (a–c): The transfer curves of three
SGFET biosensors labeled as “Device 1”, “Device 2”, and “Device 3”, respectively. IDS: drain–source
channel current. (d–f): The transconductance (Gm ) curves as a function of VTG for Device 1, Device 2,
and Device 3, respectively. The labels “Bare Graphene”, “PBASE”, “Antibody”, and “Antigen” refer to
the unmodified graphene device, the graphene device after PBASE adsorption, the graphene device
after SARS-CoV-2 antibody immobilization, and the graphene device after SARS-CoV-2 antigen
detection, respectively. In all electrical measurements, the VDS of the devices was always maintained
at 100 mV. Device 1, Device 2, and Device 3 have the same channel length (Lg, 2 µm ) and channel
width (20 µm ).

A series of consecutive detections of SARS-CoV-2 antigen proteins were performed
using the graphene biosensor detection platform developed in this work, and the results
are shown in Figure 6. The concentration of the stock solution of SARS-CoV-2 antigen
protein is 2 mg/mL. Before conducting the antigen detection, the concentration of the
antigen solution was serially diluted from the stock solution to 100 ng/mL, 10 ng/mL,
100 pg/mL, and 10 pg/mL. Before the antigen protein detection, 50 µL 1 mM PBS solution
was added to the graphene biosensor surface, keeping the solution covering both the
in-plane gate electrode and the graphene channel. During the recording of the real-time
responses, the VTG was kept at 200 mV. After monitoring the device channel current for a
period, 10 pg/mL, 100 pg/mL, 10 ng/mL, and 100 ng/mL antigen solutions were added
sequentially to the PBS solution. The volume of each added solution is 5 µL. The real-time
current responses of Device 1, Device 2, and Device 3 toward SARS-CoV-2 antigen proteins
are plotted in Figure 6a–c, respectively. For Device 1, a significant current response was
detected for the addition of 10 pg/mL antigen solution, while the minimal background
current noise was also observed. Considering that the biosensor surface was originally
covered with 50 µL PBS solution, Device 1 actually succeeded in detecting antigen protein
solution with a concentration as low as 0.91 pg/mL ( 10 pg/mL×5 µL

55 µL ). For Device 2, the
current response of the biosensor upon the antigen proteins was hardly discernible due
to the increased background current noise. The background current noise in Device 3
increases further and the current response of the biosensor toward the antigen proteins
becomes more difficult to discriminate. Combined with the changes in electrical properties
of the devices before and after the adsorption of PBASE (Figure 5), it seems that the more
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the devices are affected by the PBASE modification, the greater the background current
noise. Consequently, the more difficult the real-time current response to the antigen is to
be discriminated. To quantitatively demonstrate this finding, the change in the IDS of the
three devices induced by the PBASE adsorption at VTG = 200 mV and VDS = 100 mV was
calculated, and the background current noise of the three devices while monitoring the
real-time response was extracted. The change in IDS is calculated by the following equation:

Change in IDS (%) =
IPBASE − IBare

IBare
, (1)

where IPBASE is the IDS of the PBASE-modified device and IBare is the IDS of the device
without the PBASE modification. The background current noise was estimated from the
standard deviation (SD) of the real-time monitoring current of the device for 150 s prior to
the addition of the antigen solution, as reported in the previous literature [45]. The relation-
ship between the calculated change in IDS and the background current noise is presented
in Figure 6d. It is very clear that the greater the effect of PBASE modification on the IDS
of SGFET biosensor, the larger the background current noise of the biosensor in real-time
detection. The accuracy of this relationship is confirmed by multiple complementary char-
acterizations (Raman spectroscopy, the measurement of transfer curves, and the monitoring
of real-time current responses) that yield consistent regularity. It has been discussed above
that the electrical properties of SGFET prepared on graphene region with higher defect den-
sity change more after the PBASE modification (due to the enhanced adsorption of PBASE).
The proportional relationship between the calculated change in IDS and the I(D)/I(G) is
plotted in Figure S4a, indicating that the degree of change in IDS correlates with the level
of defect. Furthermore, according to a recent study, a higher noise indicates a higher level
of defectiveness in the material [24]. In addition, in graphene grown by CVD, the defects
are the dominant source of noise [46]. Thus, the larger background current noise in the
fabricated devices can be attributed to the higher defect density in the graphene channel as
well, which is confirmed by the relationship between the background current noise and the
I(D)/I(G) in Figure S4b. Through the multiple characterization approaches described above
(as shown in Figure 6d and Figure S4a,b), it was revealed that the clear physical origin of
the relationship between the calculated change in IDS and the background current noise is
the level of defect density in the graphene channel. Therefore, based on this clear physical
mechanism, the relationship between the calculated change in IDS and the background
current noise discovered in this study is accurate. Based on this relationship, if a device has
a large change in IDS before and after the PBASE non-covalent functionalization, then we
can predict that the device would have a high level of background current noise in real-time
detection without performing a subsequent device fabrication process. Excessive back-
ground current noise is detrimental to the detection of analytes. Therefore, the relationship
between the change in IDS induced by the PBASE modification and the background current
noise of the biosensor during the real-time detection discovered in this study is of great
significance in biosensor applications. The manufacturing cost of our process for preparing
a batch of graphene-based biosensor devices is approximately USD 1000, which includes
the cost of experimental consumables, the cost of materials used in the experiments, the cost
of using the equipment, and the cost of using the clean environment. Therefore, cost control
is a key issue for graphene-based biosensor applications. The relationship discovered
in our study facilitates the removal of devices with large current variations due to the
non-covalent functionalization, and this screening strategy of SGFET devices through the
non-covalent functionalization process can not only reduce the consumption of biological
reagents in the subsequent functionalization steps, but also ensure the high performance of
the graphene biosensor.
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Figure 6. Detection of SARS-CoV-2 antigen protein and the relationship between the change in
graphene biosensor current induced by PBASE modification and the background current noise of
graphene biosensor. (a–c): The real-time current responses of Device 1, Device 2, and Device 3 upon
SARS-CoV-2 antigen proteins, respectively. During the measurements, the VTG was kept at 200 mV
and the VDS was kept at 100 mV. (d) The relationship between the calculated change in IDS of the
graphene biosensor before and after the non-covalent functionalization of the graphene surface via
PBASE and the estimated background current noise of the biosensor during the real-time detection of
antigen proteins.

4. Conclusions

In this work, the graphene transistor-based biosensors were fabricated and used as
assay platforms to successfully detect the SARS-CoV-2 antigen proteins. The fabricated
biosensor can produce a significant current response upon exposure to the antigen so-
lution with a concentration as low as 0.91 pg/mL. Multiple characterization tools were
employed to characterize the morphology and quality of graphene film, and the changes
in graphene during functionalization were also evaluated. The different levels of defect
density in graphene were confirmed by the values of I(D)/I(G) in Raman spectra. For three
different graphene regions, the values of I(D)/I(G) are 0.191, 0.193, and 0.204, respectively.
Effective adsorption of PBASE molecules and antigen proteins on the graphene surface was
confirmed by AFM and SEM characterization. We fabricated graphene biosensors in the
three graphene regions with different defect densities. Electrical measurements of graphene
biosensors were performed to monitor the electrical properties of the devices during the
various steps of functionalization. The real-time current responses of several graphene-
based biosensors toward SARS-CoV-2 antigen proteins were also measured. The change
in channel current of graphene transistors before and after the PBASE adsorption and the
background current noise of the fabricated biosensors were extracted based on the results
of electrical characterization and real-time detection. After careful analysis, we determined
that in the graphene region with larger defect density, the biosensor has a larger change in
channel current after PBASE adsorption and exhibits a higher background current noise in
the real-time detection upon antigen proteins, which hinders the observation of the current
response. The most dramatic change in IDS observed in electrical measurements after
the PBASE adsorption is −58.17%, corresponding to the maximum background current
noise of 27.2698 nA. The physical mechanism behind this relationship is that the defects
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in graphene both enhance the adsorption of PBASE and contribute to the background
current noise in the biosensors. Based on the above relationship discovered in this work,
the change in IDS due to PBASE modification can be regarded as an indicator to evaluate
the final performance of the biosensor, and we can thus predict the level of background
current noise of the fabricated graphene biosensors even before the biosensors are fully
prepared. Consequently, a method to screen out the poorly performing devices early in the
fabrication of graphene biosensor devices is proposed: first, the current of graphene devices
is measured before and after the non-covalent functionalization introduced by PBASE, and
then the devices with large current changes are discarded in time. The proposed screening
strategy can save the bioreagents required for subsequent functionalization and ensure the
performance of the fabricated biosensor.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst13020359/s1, Figure S1: The scanning electron microscopy
(SEM) images of (a) the graphene channel before the PBASE functionalization, (b) the graphene
channel after the PBASE functionalization, and (c) the graphene channel after antigen detection.
The arrows in (b) mark the bright spots due to the PBASE adsorption. The arrow in (c) marks the
larger bright spot due to the antigen adsorption; Figure S2: (a) The Raman spectra of chemical vapor
deposition-grown graphene in different regions. (b–d): the low-frequency regions in the Raman
spectra in three different graphene regions: Region 1, Region 2, and Region 3, respectively; Figure S3:
Device transfer curves obtained from two electrical measurements performed on the same fabricated
biosensor before the PBASE functionalization. There was an interval of 12 h between the 1st and 2nd
measurements; Figure S4: (a) The relationship between the calculated change in the drain–source
channel current (IDS) of the graphene biosensor before and after the PBASE functionalization and the
D to G peak intensity ratio (I(D)/I(G)) in Raman spectra. (b) The relationship between the estimated
background current noise of the biosensor and the I(D)/I(G) in Raman spectra.
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