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Abstract: In this paper, a compact design and new structure of bowtie antenna with dual-band
characteristics for the 5G and public safety bands in intelligent transport systems (ITS) is presented.
The antenna consists of a double-sided bowtie radiating patch with partial ground plane. A triangular
complementary split-ring resonator (TCSRR) metamaterial (MTM) structure was etched on the
radiating patch, to develop a dual band and a single notch band between 3.85 and 4.65 GHz. The
proposed antenna had an overall size of 36 × 36 mm2 and was fabricated using a FR4 substrate with
a thickness and dielectric permittivity (εr) of 1.6 mm and 4.3, respectively. CST microwave studio
software was used for the design of antenna. The measured frequency results show impedance
bandwidths of 3.45–3.85 GHz and 4.65–5.4 GHz, for a voltage standing wave ratio (VSWR) less than
2. The proposed antenna operates at 3.5 GHz and 4.9 GHz, providing bandwidths of 400 MHz and
750 MHz, respectively, which cover the 5G and public safety bands. A prototype was fabricated and
measured based upon optimal parameters, and the experimental results showed consistency with the
simulation results. The proposed antenna provided a simulated/measured gain of 5.64 dBi/5 dBi
and 4 dBi/3.7 dBi at 3.5 GHz and 4.9 GHz, respectively. The enhanced bandwidth and better gain
results of the proposed antenna make it an ideal candidate for an ITS operating in the 5G and public
safety bands.

Keywords: public safety band; 5G; double sided bowtie; metamaterial

1. Introduction

It is well known that human existence has witnessed the rapid development of state-
of-the-art technologies and the quantity of information across all walks of life, covering
health, education, defense, and security. All these technologies and information can only
be ensured with fast and safe migration of humans, which leads to a strategic conception
of intelligent transportation systems (ITS). Interestingly, related to the existing version of
ITS, various efforts are already being made by academia, and specifically the automotive
industry [1–5], covering (a) state-of-the-art wireless communication technologies, allowing
vehicular communication based on diversified sensing facilities; (b) reliable information
systems, where vehicular communication utilizes live data, which can be used for car
navigation, for example guided parking, etc. This vehicular communication is not limited
to vehicle-to-vehicle (V2V) signals but also includes vehicle-to-infrastructure (V2I), such as
traffic lights and road signs, etc., involving transportation and traffic management systems.
We encourage readers to consult [6] for a detailed understanding of all developmental
stages of ITS, with their requirements and applications.

Amongst the key components for building an ITS, both the antenna and its operating
frequency play a vital role in vehicular communication systems. With careful consideration
of both the antenna and operating frequency band, the advanced features related to traffic
and transport management systems can be fully realized [2–6].
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We now consider the processes associated with the design of an antenna for an ITS.
In [7], an alternative in the form of a flexible microstrip antenna operating at a frequency of
5.9 GHz was offered to the automotive industry. This antenna can take a range of shapes
and work under many conditions, specifically for omnidirectional and directional radiating
patterns. A compact circularly polarized wide-beamwidth patch antenna was presented
for blind spot detection, involving capturing signals from both a wide elevation angle and
the entire azimuth range [8]. Moreover, this compact (small size) antenna can be mounted
on aerodynamic wireless devices [8]. In [9], a novel method was proposed for efficient
communication using multiple low-cost antennas with directional far-field functions. It was
further shown that antenna placement is independent of the optimum phase slopes and
far-field function, ensuring manufacturing tolerances. The proposed scheme was relevant
for low-cost sensor nodes with strict power consumption and complexity requirements.
Furthermore, a unidirectional symmetrical radiating pattern antenna with wide impedance
bandwidth was designed, fabricated, and tested in [10], and found to be a highly suitable
candidate for ITS applications. In 2009, enhanced performance and reliable communication
related to ITS were also explored in [11], using a circular array antenna, adding another
candidate to the pool. In another set of works [12], a microstrip phased array antenna
operating at 5.88 GHz was designed and analyzed to detect a blind spot of an ITS. In [13],
the propagation channel properties of antennas for enhanced performance were studied
by mounting them at different locations in a car. It was concluded that a pair of antennas
deployed on the roof and bumper provided more a comprehensive coverage than a single
antenna. In [14], circularly polarized (CP) antennas with hemispherical coverage were
designed, simulated, and fabricated in the 4.9 GHz public safety bands. A multi-band CP
antenna was developed in another set of works [15]. Moreover, in [16], with the help of
simulations and measured results, it was shown that wide-band CP antennas are suitable
front-end radiating candidates for a ITS. Here, we consider a novel type of compact antenna,
consisting of a half-mode cavity (or substrate). This type of antenna is desirable, as it can
operate at two frequencies. In [17], impedance bandwidths of 3.51% and 1.40% at 8.8
and 11.2 GHz were achieved, with corresponding peak gain values of 5.04 and 5.01 dBi.
In [18], gain values of 3.23 and 4.38 dBi were measured, corresponding to 5.2 and 5.8 GHz,
respectively. Moreover, the fabrication of such antennas is cost-effective compared to many
other antennas.

Finally, we consider the most recent works [19], where a band of 700 MHz was
identified as jointly applicable for ICS and cell phones. The proposed planar antenna for the
700 MHz band showed a remarkable gain in radiation characteristics. Most of the previous
antennas had been designed at 5.9 GHz. Initially, the FCC allocated 5.9 GHz for real-time
vehicle safety communication. Now the FCC has proposed reallocating the 5.9 GHz band to
the 4.9 GHz band for V2X communication [20], because some bands in the range of 5.9 GHz
are used for gigabit-fast Wi-Fi channels. In 2002, the U.S. FCC designated the 50 MHz
spectrum, i.e., from 4.94 GHz to 4.99 GHz, for public safety purposes. However, achieving
reliable and fast connectivity is still a challenge, as a significant chunk of the available
bandwidth is utilized by Wi-Fi in the 5.9 GHz band. Consequently, IoV is restricted from full
utility, and this motivated considerations of another suitable spectrum band (e.g., 4.9 GHz)
for enhancing the functionality of vehicle-to-everything (V2X) technology. Interestingly, this
band was not utilized because of global policies, mainly adopted by the U.S.A. However,
the future of V2X is dependent on 4.9 GHz, which will allow the following:

• Fulfilling consumer needs enabled by 5G,
• Providing next-generation Wi-Fi connectivity
• Ensuring reliable communication for V2X under IoV.

This paper used a metamaterial (MTM) structure to design a double-sided bowtie an-
tenna for intelligent transport system communications operating in the public safety band.
Various applications of public safety and environmental sensing are outlined in [21]. Meta-
materials are an innovative class of artificially created materials that have electromagnetic
properties that do not occur naturally. The MTM mentioned in this manuscript are printed
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metamaterials. MTMs can also be fabricated all in metal and all dielectric [22,23]. The article
in [22] introduces a low-cost meta-surface spatial filter that can accept all polarizations
and is composed of cheap and thin layers of metal sheeting. The spatial filter in [22] is
entirely passive and does not include any dielectric substrates in its design. In [23], an MTM
absorber was made of pizza-shaped graphite film with a copper plate for the curve surface.
Interestingly, these materials are negative regarding their permittivity, permeability, and re-
fractive index. MTMs have a diverse range of applications in magnetic resonance imaging,
the biomedical industry, aerospace sensors, and automotive systems [24,25]. Furthermore,
MTMs are used to develop antenna–sensor and antenna systems for gain enhancement,
reconfiguration of the radiation pattern, beam steering, and transmit array, and will play
a vital role in future wireless communication systems [26–29]. MTM can also be used as
frequency-selective surfaces, for band rejection [30].

This paper proposes a dual-band compact double-sided triangular bowtie antenna
with a triangular complementary split-ring resonator (TCSRR) MTM structure. The antenna
was designed to operate at 3.5 GHz and 4.9 GHz, and its small size of 36 × 36 mm2 makes it
suitable for applications in ITS. The antenna uses an FR4 substrate with a dielectric constant
(εr) and thickness (h) of 4.3 and 1.6 mm, respectively. CST microwave studio software was
used for the simulation and parametric analysis of the antenna. Good VSWR and radiation
pattern characteristics were obtained in the frequency band of interest. Moreover, the
parametric analysis of antenna is performed. The final design of the proposed antenna was
fabricated and tested, and the results were comparable to the CST simulation. Additionally,
its novelty in comparison to the previously presented antennas is presented. The results
showed that the proposed antenna is an ideal candidate for sub-6 GHz 5G and public safety
band operation.

2. Antenna Design

The dual-band compact double-sided triangular bowtie antenna with triangular com-
plementary split-ring resonator (TCSRR) element fed by a 50 Ω microstrip line is shown in
Figure 1, which was printed on an FR4 substrate with a thickness of 1.6 mm, permittivity
of 4.3, and loss tangent of 0.018. The primary antenna structure consists of a radiating
bowtie-shaped patch printed on the top and bottom layer with a partial ground plane, a
50 Ω microstrip modified feedline, and a triangular-shaped split ring resonator (TSRR)
etched from the radiating patch, to provide TCSRR MTM properties for the antenna. The
dimensions of the TSRR are shown in Figure 2a. The proposed antenna was connected to a
50 Ω SMA connector for signal transmission. The optimized dimensions of the proposed
antenna are listed in Table 1. Finally, based on the optimum design parametric value, the
proposed dual-band antenna was fabricated, and the simulation and measured results of
the S-parameter and 2D radiation pattern characteristics are shown and described in detail.
To study the parameters of the proposed dual-band bowtie antenna, one parameter was
changed at a time, while the others were left unchanged. Simulated results were obtained
using CST Microwave Studio.

Initially, the triangular split ring resonator (TSRR) CST simulation model shown in
Figure 2b was printed on an FR4 substrate (h = 1.6 mm, εr = 4.3, tan δ = 0.025). The unit-cell
was a metallic material printed on an FR4 substrate. The unit-cell design and analysis
were carried out using CST-Microwave Studio. For the design in CST, perfect boundary
conditions (PBCs) were applied to the unit-cell, which consisted of only one TSRR and had
two sides that were perfect electric conductors (PECs) along the y-axis, and two perfect
magnetic conductors along the z-axis (PMC). For excitation and radiation purposes, the
other two sides of the unit-cell (along the x-axis) were utilized for the wave ports [31].
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Table 1. The final dimensions of the proposed antenna.

Parameter Dimension (mm) Parameter Dimension (mm)

L 36 Lg 6

L1 6 W 36

L2 16.5 W1 8.7

L3 3.2 t1 0.75

L4 15 t2 0.6

L5 11.82 s 0.5

L6 9.46

L7 12

In Figure 3a–d, we present the step-by-step design of the antenna. The antenna design
started with a triangular patch bow-tie structure printed on the top layer, and the bottom
layer was the complete ground plane shown in Figure 3a. It is shown in Figure 4 that the
antenna resonated between 6.5–7.4 GHz in Step 1 at the center frequency of 7 GHz, and
the design was simulated using CST Microwave Studio. In Step 2, the complete ground
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was modified to a partial ground plane, as shown in Figure 3b. This helped to improve the
bandwidth from 900 MHz to 2.4 GHz compared to Step 1. The antenna resonated between
5.6–8 GHz in Step 2. In Step 3, one of the triangular patches was moved to the ground
plane, as shown in Figure 3c. This helped to shift the frequency range, and the antenna
operated between 2.9 and 5.2 GHz in Step 3. In Step 4, as shown in Figure 3d, a TCSRR
structure was etched on the triangular patches. This introduced a notched band between 4
and 4.6 GHz, and the antenna showed dual-band behavior. In Step 4, the final design of the
proposed antenna resonated at 3.3–4 GHz and 4.6–5.3 GHz. Therefore, the antenna showed
dual-band behavior. The antenna resonating frequency at each step shown in Figure 4.
The proposed antenna’s initial resonant frequency operated at 3.5 GHz, while its second
frequency operated at 4.9 GHz, covering the sub-6 GHz 5G spectrum and the public safety
band. A conventional microstrip patch antenna’s (MPA) overall size is 50 × 40 mm2 [32].
The dimensions of the proposed antenna are 36 × 36 mm2, which shows that the size was
reduced by 35.2% compared to a conventional MPA.
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Parametric Study of the Antenna Design

A TCSRR composed of two concentric metallic triangular rings with two gaps (‘s’)
etched on the sides of the rings is shown in Figure 2. An axial time-varying magnetic
field caused the flow of currents in the triangular split rings. The induced currents were
turned into displacement currents because of the gaps on the sides of the ring and flowed
from one ring to another through the inter-ring holes. The equivalent circuit model of the
TCSRR consists of equivalent inductance Ls and capacitance Cs, which model the metallic
triangular ring inductive behavior and distributed capacitance between the two triangular
rings, respectively. The Ls and Cs changed as a result of changing the t1, t2, and s of the
TCSRR, which affected the center frequency and bandwidth of the proposed antenna.

This section discusses the simulation studies that varied the TCSSR slot widths “s”
used for the band notch function. The return-loss and VSWR characteristics for s = 0.4, 0.5,
and 0.6 mm are shown in Figure 5a,b. The operating frequency and notch band for different
values of s are shown in Table 2. Table 2 shows that increasing the slot width s enhanced
the notch band range, while reducing s resulted in a drop in the notch band range, but at
the same time, caused the antenna’s center frequency to deviate from 3.5 GHz and 4.9 GHz.
The 3.5 GHz and 4.9 GHz center frequencies operate in the 5G and the public safety bands,
respectively. Reducing the notch band range created interference between the 5G and
the public safety bands. Thus, the optimal operating range and rejecting frequency band
were achieved at s = 0.5 mm. The antenna operated between 3.3–4 GHz and 4.6–5.3 GHz,
and the rejection band was between 4 and 4.6 GHz at s = 0.5 mm. The 600 MHz rejection
bandwidth was sufficient to avoid interference between the two operating frequency bands
mentioned above.

Table 2. Operating frequency and notch bands for different values of s.

s (mm) Operating Band Rejection Band

0.4 3.1–3.8/4.4–5.31 3.8–4.4

0.5 3.3–4/4.6–5.3 4–4.6

0.6 3.5–4.2/4.8–5.5 4.2–4.8
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3. Result and Discussion

The proposed dual-band antenna based on a bowtie shape was fabricated, and its
return loss characteristics were measured and analyzed. The fabricated prototype of the
proposed antenna is depicted in Figure 6. The simulated and measured return loss and
VSWR characteristics are depicted in Figure 7a,b. The fabricated antenna provided dual-
band operation at 3.45–3.85 GHz and 4.65–5.4 GHz, and band-notched between 3.85 and
4.65 GHz. As shown in Figure 7b, the VSWR was below two in the frequency ranges of
3.45–3.85 GHz and 4.65–5.4 GHz. The measured results show that the antenna provided a
bandwidth of 400 MHz and 750 MHz in the 5G and public safety bands, respectively. The
proposed antenna S-parameters were measured using a Keysight Technologies FieldFox
N9916B Vector Network Analyzer.
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There was a slight deviation between the simulated and measured return loss results,
as shown in Figure 7a,b. This slight discrepancy was primarily due to the fabricated antenna
substrate loss tangent and the effect of SMA soldering [33]. This fabrication error could be
solved in future by using a high-end low-loss Rogers substrate and precise soldering.

Figures 8 and 9 show the simulated and measured radiation patterns of the E- and
H-planes at 3.5 GHz and 4.9 GHz and the radiation pattern measurement setup. The
radiation patterns primary objective was to show the antenna’s radiation intensity from a
diverse range of angles. The proposed antenna operated similarly to the standard printed
monopoles when looking at the radiation patterns in Figures 8 and 9. It can be seen in
Figure 8a that the simulated and measured radiation patterns in the E-plane at 3.5 GHz
achieved a maximum gain of 5.64 dBi and 5 dBi at 90◦. The maximum simulated and
measured gain for the H-plane at 3.5 GHz was 4.9 dBi, and 4.2 dBi at 0◦ can be observed
in Figure 8b. Similarly, at 4.9 GHz, the simulated/measured radiation pattern shown in
Figure 9a,b has a maximum gain of 4 dBi/3.6 dBi at 30◦ and 4 dBi/3.7 dBi at 0◦ for the E-
and H-plane, respectively. The radiation pattern at 3.5 and 4.9 GHz looked similar, but with
different gains and angles. Figure 9c shows the radiation pattern measurement setup. A
microwave source was connected to the transmitting antenna (Horn antenna). The antenna
under test (proposed antenna) was mounted on a rotatable positioner and employed as
a receiving antenna. Line of sight was maintained between the proposed antenna and
the horn antenna. The receiving antenna was connected to a network analyzer (NA) to
measure the H-plane pattern. The reading was recorded from the NA after rotating the
receiving antenna stand in 10◦ increments, from 0 to 360 degrees on its axis. The antenna
was rotated back to 0◦ after completing a full 360◦. The radiation pattern measurement was
repeated in the E-plane rotating both the transmitting and receiving antenna by 90◦.
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Figure 9. Simulated radiation pattern of the proposed antenna at 4.9 GHz: (a) E−Plane, (b) H−Plane,
(c) radiation pattern measurement setup.

The 3D radiation patterns of the proposed antenna at 3.5 GHz and 4.9 GHz are shown
in Figure 10a,b. It can be seen from Figure 10 that the proposed antenna achieved a
maximum gain of 5.64 dBi and 4.1 dBi at 3.5 GHz and 4.9 GHz, respectively.

The simulated current distribution for the proposed bowtie antenna at the center
frequencies of 3.5 GHz and 4.9 GHz is shown in Figure 11a,b. This helps to understand the
reasons for the dual-band behavior of the antenna. Higher and lower current distributions
in the antenna are represented by red and blue, respectively, in Figure 11. As can be
observed in Figure 11a, at 3.5 GHz, the current was more dominant along the TCSRR of
double-sided triangular patches and edges of the modified stepped feedline. The current
flows were oppositely directed along the TCSSR edges. According to Figure 11b, at the
center frequency 4.9 GHz, the current flows were more dominant around the edges of
TCSRR etched from the triangular patch in the ground plane and across the feedline.
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Figure 12 depicts the peak gains of the proposed antenna in the frequency range of
2–6 GHz. The proposed antenna had a gain of 5.64 dBi and 4.1 dBi at 3.5 GHz and 4.9 GHz,
respectively. As illustrated in Figure 12, there was a substantial reduction in the maximum
gain in the notched frequency region between 4 GHz and 4.6 GHz. The antenna gains at
frequencies beyond the notched frequency band ranged from 3 dBi to 5.64 dBi.

Table 3 presents a comparison of the existing antennas that operate at 3.5/4.9 GHz
with the proposed antenna. All the previous antennas presented in the comparison table
are single-layer designs, consisting of a top layer, bottom layer, and substrate. The top
layer is a patch in all cases, but the bottom layer is either a complete ground plane or a
partial ground plane/without a ground plane. Table 3 shows that the antenna operating
4.9 GHz and 3.5 GHz achieved a bandwidth and gain of 3.6% and 4 dBi, and 10.5% and
2.42, respectively [34,35]. In [34], the gain improved slightly compared to [35], but the
bandwidth of [34] was less than in [35]. Similarly, in [36–38], the antenna operated at
an 3.5/4.9 GHz improved gain, but the bandwidth was too small. The bowtie antenna
proposed in this work improved the bandwidth and gain simultaneously at 3.5 GHz and
4.9 GHz. Therefore, this shows that the proposed antenna is an ideal candidate for the
sub-6 GHz 5G and public band spectrum and could be useful for V2X communications.
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Table 3. Comparative study of the proposed antenna with the existing designs.

Ref. Dimension (mm) εr

Operating
Frequency

(GHz)
Bandwidth (%) Gain (dBi) Efficiency

(%)
No. of
Layers

[34] 0.18λo × 0.24λo × 0.013λo 4.3 4.9 3.6 4 98 Single

[35] 0.33λo × 0.34λo × 0.018λo 4.3 3.5 10.5 2.42 - Single

[36] 0.54λo × 0.45λo × 0.017λo 3.55 3.5/4.8 5.7/4 2.45/4.56 - Single

[37] 1.76λo × 0.88λo × 0.009λo 4.3 3.5/4.9 5.7/4 6/8 70/70 Single

[38] 0.79λo × 0.79λo × 0.025λo 4.3 4.76/5.86/9.2 2/12/18.2 6.35/5.57/3.9 82/85/91 Single

[39] 0.6λo × 0.6λo × 0.041λo 2.2 4.7/6.5/7.7/8.5 3.19/2.07/6.75/14.11 5.45/5.42/7.05/5.64 - Single

[40] 0.67λo × 0.65λo × 0.04λo 2.2 5.57/7.17/7.65 - 4.1/3.95/3.54 60/50/65 Single

[41] 0.75 λo × 0.75λo × 0.016λo 2.2 2.6/3.5/5.5 36/17/9 6/6.7/7 97/95/94 Single

[42] 0.2λo × 0.21λo × 0.009λo 4.4 3.5/5.8 8.5/2.5 1.83/137 94/79 Single

This work 0.4λo × 0.4λo × 0.018λo 4.3 3.5/4.9 12/16 5.64/4 89/73 Single

4. Conclusions

A dual-band double-sided bowtie antenna for ITS was introduced. It was shown that
a TCSSR etched on the bowtie radiator patch allow developing a double band and a single
notch band between 3.85 and 4.65 GHz. In this design, the proposed antenna functions
at 3.45–3.85 GHz and 4.65–5. 4 GHz. This shows that the antenna operates at the sub-6
GHz 5G and public safety bands. Recently, the FCC has allocated the public safety band
(4.9 GHz) for ITS communication. The return loss of the antenna was measured and it
agreed well with the simulation results. The proposed antenna has the advantages of a
low cost, compact size, and ease of fabrication. The experimental results showed that the
realized antenna had a very compact size, simple structure, operating frequency, good
bandwidth, and high gain, and can be a good candidate for ITS and 5G applications.
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