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Abstract: Conventional deep-ultraviolet (UV) light-emitting diodes (LEDs) based on AlGaN crystals
have extremely low light-emission efficiencies due to the absorption in p-type GaN anode contacts.
UV-light-transparent anode structures are considered as one of the solutions to increase a light output
power. To this end, the present study focuses on developing a transparent AlGaN homoepitaxial
tunnel junction (TJ) as the anode of a deep-UV LED. Deep-UV LEDs composed of n+/p+-type AlGaN
TJs were fabricated under the growth condition that reduced the carrier compensation in the n+-type
AlGaN layers. The developed deep-UV LED achieved an operating voltage of 10.8 V under a direct
current (DC) operation of 63 A cm−2, which is one of the lowest values among devices composed of
AlGaN tunnel homojunctions. In addition, magnesium zinc oxide (MgZnO)/Al reflective electrodes
were fabricated to enhance the output power of the AlGaN homoepitaxial TJ LED. The output
power was increased to 57.3 mW under a 63 A cm−2 DC operation, which was 1.7 times higher
than that achieved using the conventional Ti/Al electrodes. The combination of the AlGaN-based
TJ and MgZnO/Al reflective contact allows further improvement of the light output power. This
study confirms that the AlGaN TJ is a promising UV-transmittance structure that can achieve a high
light-extraction efficiency.

Keywords: AlGaN; tunnel junction; light-emitting diode; deep-ultraviolet; MgZnO

1. Introduction

Aluminum gallium nitride (AlGaN)-based light-emitting diodes (LEDs) emit deep-
ultraviolet (UV) light and are used in several applications at different wavelengths such
as curing, sensing, and sterilizing water and air. These LEDs are considered replacements
for the mercury lamps used in water and air sterilizations [1–3]. Deep-UV light with
an emission wavelength below 290 nm can rapidly inactivate the deoxyribonucleic acid
of viruses and bacteria [4,5]. However, the light-emission efficiency (LEE) of deep-UV
LEDs is considerably lower than that of low-pressure mercury lamps. The wall-plug
efficiency of mass-produced deep-UV LEDs is a maximum of 10% because of the UV
light absorption of the p-type gallium nitride (GaN) contact layer [6–8]. A p-type GaN
contact layer is used in mass-produced deep-UV LEDs because a higher Al composition
p-type AlGaN can lead to a higher ionization energy of magnesium (Mg) acceptors and
a lower hole concentration [9–14]. Deep-UV LEDs with p-type AlGaN contact layers
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exhibited external quantum efficiencies (EQEs) of 10–20% when rhodium (Rh) electrodes,
patterned sapphire substrates, and resin encapsulations were used [15,16]. However, the
wall-plug efficiencies (WPEs) of these deep-UV LEDs were not still high because of the
increased contact resistivities between the electrodes and p-type AlGaN contact layers. By
contrast, suitable electrode materials such as vanadium are available for n-type AlGaN-
based cathode contacts [17–19].

One solution to this problem is to form a tunnel junction (TJ) for the anode contact
of a deep-UV LED, because an n-type electrode with a low contact resistance is available.
Table 1 lists previously reported LEDs having TJ-based anode contacts [20–31]. Some
issues are faced in realizing a TJ-LED with a high-Al composition. The first issue is
the difficulty of dehydrogenation from the buried p-type III-nitride layers. When using
metalorganic vapor phase epitaxy (MOVPE) growth that is suitable for manufacturing
LEDs, Mg acceptors are passivated by the hydrogen atoms in the growth ambient, resulting
in a high resistivity [32,33]. Then, hydrogen atoms mostly locate at interstitial sites in
III-nitrides [14]. An interstitial hydrogen atom is predicted to be charged positively and to
be mobile in the p-type layer, whereas it would have a negative charge and be less mobile
in the n-type layer [34]. Dehydrogenation from the p-type GaN layer buried under the
n-type GaN has been reported to be difficult [35]. To avoid this problem, TJ layers were
grown in the hydrogen-free ambient by methods such as plasma-enhanced molecular beam
epitaxy (PAMBE) [20,22,26–30] as it results in a lower differential specific resistivity (Rs)
compared with that in the case of conventional MOVPE growth [21,23–25,31]. Recently,
Akasaka et al. demonstrated the low resistivity of the n+-type GaN/p+-type GaN TJ using
MOVPE growth by optimizing the doping profile and growth condition [25]; this should
contribute toward the manufacture of GaN-based TJ contacts.

Table 1. Summary of the III-nitride TJs reported previously, where VF is a forward operation voltage
and Rs is a differential specific resistivity.

Ref. TJ Structure Growth Method VF (V) Rs (Ωcm2)

[20] n+-GaN/GaInN/p+-GaN PAMBE 3.05 @100 Acm−2 1.2 × 10−4

[21] n+-GaN/p+-Ga0.6In0.4N MOVPE 4.0 × 10−3

[22] n+-GaN/p+-GaN MOVPE + NH3 - MBE ~5 @100 Acm−2 2.3 × 10−4

[23] n+-GaN/p+-GaN MOVPE 5.92 @2 Acm−2 2.6 × 10−1

[24] n+-GaN/p+-GaN µ-LED MOVPE ~4 @20 Acm−2 2.5 × 10−5

[25] n+-GaN/p+-GaN MOVPE ~4 @100 Acm−2 2.4 × 10−4

[26] n+-Al0.55Ga0.45N/ Ga0.8In0.2N
/p+-Al0.55Ga0.45N PAMBE 6.8 @10 Acm−2 1.5 × 10−3

[27] n+-AlGaN/ Ga0.8In0.2N
/graded p-AlGaN PAMBE 10.2 @10 Acm−2 N/A

[28] graded n+-AlGaN
/ Ga0.8In0.2N/p+-Al0.65Ga0.35N PAMBE 10.5 @20 Acm−2 1.9 × 10−3

[29] n+-Al0.65Ga0.35N/GaN
/p+-Al0.65Ga0.35N PAMBE ~10 @100 Acm−2 N/A

[30] n+-Al0.5Ga0.5N/GaN
/p+-Al0.5Ga0.5N MOVPE + NH3 - MBE ~9 @100 Acm−2 1.2 × 10−3

[30] n+-Al0.5Ga0.5N/p+-Al0.5Ga0.5N MOVPE + NH3 - MBE ~11 @100 Acm−2 1.7 × 10−3

[31] n+-Al0.65Ga0.35N/n+-GaN
/p+-Al0.65Ga0.35N MOVPE ~20 (4–6) × 10−3

[31] n+-Al0.65Ga0.35N
/p+-Al0.65Ga0.35N MOVPE ~50 N/A

The second issue is the fact that the formation of highly conductive TJs is more
challenging for AlGaN-based TJs than for GaN-based ones, as seen from Table 1. This is
caused by the increased tunneling barrier when the Al content increases. Deep-UV LEDs
with AlGaN-TJ anode contacts reportedly enhanced the LEE; specifically, the LEE was
high, and the operation voltages remained high in the range of 13–50 V [30,31]. To enhance
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the conductivity of the anode contact, Zhang et al. reported TJ double-heterostructures
comprising n+-AlGaN/(Ga)InN/p+-AlGaN, in which the polarization charges reduced
the TJ thickness [26–28]. The integration with the polarization doping technique using a
graded AlGaN TJ layer was also effective in attracting high density free holes, resulting in
enhanced tunneling probability [26].

A simpler way to increase the tunneling probability is to increase the doping concen-
tration of tunneling homojunction layers. However, the resistivities of high-Al-content
n-type AlGaN layers with high Si-doping concentrations (>6 × 1019 cm−3) were found
to be extremely high because of the self-compensation caused by cation–vacancy–silicon
(VIII–nSi) complexes [32–41]. Further, carbon atoms were reported to cause carrier compen-
sation by substituting nitrogen sites (CN) and to reduce the conductivities of n-type GaN
layers [42–45]. The similar carrier compensation via CN was predicted for an AlN-based
material [46]. The growth condition of the high-Si-doped n+-type AlGaN needs to be
controlled to suppress the carrier compensation defects and reducing the operating voltage
of AlGaN TJ LEDs.

The design of the electrode structure for light extraction from the backside is also
important for deep-UV LEDs [47,48]. The output power can be enhanced using a highly
reflective electrode on the top. In visible-light LEDs, highly reflective metals combined with
UV-transparent and conductive oxide electrodes are widely used to improve the LEE [49,50].
Examples of such oxide elements include indium tin oxide [51,52], indium-doped zinc
oxide [53–55], aluminum-doped zinc oxide [56–58], and gallium-doped zinc oxide [59,60].
High reflective electrodes can be produced by stacking Al metals or a distributed Bragg
reflector on these oxide electrodes, resulting in a reflectivity of 80–90% [49,50]. Visible-light
LEDs with high LEE can also be obtained by applying these reflective structures. However,
these oxide materials have an absorption deep-UV region owing to bandgap energies of
3.34–4.3 eV. In a conductive oxide electrode onto an organic semiconductor, severe damage
to the oxide electrode was reported [61–64]. In the formation of oxide electrodes, it is also
important to control the interface between the semiconductor and the oxide electrode. We
focus on high-Al composition AlGaN TJ LEDs and magnesium zinc oxide (MgZnO)/Al
reflective electrode. MgZnO is suitable for suppressing the UV light absorption, and
its bandgap can be controlled in the range of 3.34 to 7.8 eV by controlling the Mg/Zn
composition [65,66]. A previous study reported that the MgZnO formed by sputtering had
two crystalline structures after recrystallization by annealing; both structures exhibited
high transmittance in the UV range and n-type conductivity [67]. The conductivity was
improved due to the mixture of both the wurtzite structure MgZnO (wz-MgZnO) and
rock salt structure (rs-MgZnO), or the oxygen vacancies in wz-MgZnO. The resistivity and
transmittance of MgZnO were 1.1 × 10−1 Ωcm and 20%, respectively [67]. There have been
reports of improving the LEE of UV-A LEDs using MgZnO [68,69], but there have been no
reports of UV-C LEDs.

In this study, we review the key challenges faced in deep-UV LEDs with AlGaN-based
TJ anode contacts. We simply investigated AlGaN-based tunnel homojunction to improve
the tunneling probability by controlling doping conditions. We originally suggest that the
growth conditions of the n+-type AlGaN of TJ are controlled such that carbon incorporation
can be suppressed at high Si doping to reduce the operating voltage of the AlGaN TJ LEDs.
The other original point is to apply deep-UV light transparent anode electrodes using
MgZnO/Al, which results in enhancing the LEE of deep-UV LEDs. The combination of
these technologies demonstrates the one of the lowest operation voltages of 10.8 V and the
highest output power of 57.3 mW among the AlGaN TJ deep-UV LEDs.

2. Materials and Methods

Deep-UV LEDs were grown using a metalorganic vapor phase epitaxy on c-plane

sapphire substrates with a miscut angle of 0.35◦ toward the sapphire [11
−
20] direction.

Trimethylaluminium, trimethylgallium, triethylgallium, Bis(cyclopentadienyl)magnesium,
monosilane gas, and ammonia gases were used as sources of Al, Ga, Mg, Si, and N
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under hydrogen gas, respectively. The sapphire substrates were thermally cleaned in
the H2 ambient, and then a 3-µm-thick AlN layer was grown using a two-step growth
technique [70]. Threading dislocation densities of screw and edge dislocations, including
mixed components, in the AlN underlayer were estimated using an X-ray rocking curve at
9 × 107 cm−2 and 1 × 109 cm−2, respectively [71]. The 1.3-µm-thick n-type Al0.62Ga0.38N,
doped with a Si concentration of 3 × 1019 cm−3, was grown on an AlN template [40,41].
Multiple-quantum wells, an Al0.85Ga0.15N electron blocking layer (EBL), a p-type AlGaN,
and a p+-type AlGaN were grown on the n-type AlGaN underlayer. The p+-type AlGaN
was doped with Mg at a concentration of 1.7 × 1020 cm−3. Subsequently, n+-type and
n-type AlGaN were grown under the same conditions as the n-type AlGaN underlayer, as
indicated in Figure 1b. The mesa was formed by dry etching using HCl gas. Thereafter, we
formed 20/150/50/100/240-nm-thick V/Al/Ti/Pt/Au electrodes as both n-type AlGaN
electrodes. They were simultaneously annealed under a nitrogen (N2) ambient at 720 ◦C
for 30 s. The annealing process contributes to Mg activation under lateral hydrogen
diffusion from the exposed mesa-parts of the p-type layers [30,31,72–74]. For comparison,
we prepared a conventional pn-diode-based LED with a thin p-type GaN contact layer
grown on a p-type AlGaN shown in Figure 1a. We adopted indium zinc oxide (IZO)
for the anode. The emitted UV light was fully absorbed at the IZO electrode. The LED
and anode sizes and the thickness of the sapphire substrate were 1 mm2, 0.56 mm2, and
200 µm, respectively. The light output power was measured using an integrating sphere.
For the former, we prepared an AlGaN homoepitaxial TJ LED (TJ#1 to TJ#5) with various
Si concentrations and C incorporations in the n+-type AlGaN layer, as summarized in
Table 2 [75]. The carbon concentration was approximately 3.0 × 1018 cm−3 (TJ#1 and TJ#2),
and it was reduced to 6.5 × 1017 cm−3 (TJ#3 to TJ#5) by changing the growth pressure from
50 mbar to 100 mbar. In the case of the latter, we prepared MgZnO/Al electrodes for the TJ
LED with TJ#5. We deposited a 50-nm-thick MgZnO electrode by QAM4 RF magnetron
sputtering by ULVAC at a substrate temperature of 200 ◦C, and a typical lift-off process
was employed. The sputtering target for MgZnO was prepared as a 2-inch MgZnO sintered
material of purity 4N by Shonan Electron Material Laboratory, which has the MgO:ZnO
mixing atomic ratio of 1:2. The RF power, sputtering gas, and gas pressure were 100 W, Ar,
and approximately 3.4–3.5 × 10−1 Pa, respectively. After forming the MgZnO electrode,
the conductivity was improved by annealing it at 850 ◦C for 5 min under an N2 ambient.
For the cathode, Ti/Al electrodes were deposited using the electron beam (EB) method and
were alloyed at 450 ◦C under an N2 ambient. Al/Ti/Pt/Au electrodes, with a thickness of
300/50/100/240 nm, were formed on the MgZnO electrode via the EB method to obtain
a highly reflective electrode. The reflectance of the electrodes for TJ LEDs was measured
using a UV-2700 UV-visible spectrophotometer (UV-VIS) from Shimizu Corporation. For
comparison, Ti/Al electrodes for the TJ LED anode were prepared using the same process
as the cathode. A cross-sectional image and Mg and Zn distribution images for MgZnO on
n-type AlGaN were observed using a scanning transmission electron microscope (STEM).

Table 2. Summary of the evaluated parameters for all LEDs. PN and TJ indicate the PN junction
and TJ LEDs, respectively. [Si] and [C] are directly measured for the samples TJ#1, TJ#3, and TJ#4,
whereas [Si] and [C] in samples TJ#2 and TJ#5 (labeled by *) are estimated from the dates for TJ#1,
TJ#3, and TJ#4. Copyright 2021 The Japan Society of Applied Physics [75].

Sample p-AlGaN p+-AlGaN n+-AlGaN
Al Composition [Si] (cm−3) [C] (cm−3)

PN
#1 50% 50%
#2 50% 50%

TJ

#1 50% 50% 6.3 × 1019 1.8 × 1018

#2 50% 50% 1.3 × 1020 * 1.8 × 1018 *
#3 50% 50% 6.3 × 1019 3.1 × 1017

#4 50% 50% 1.3 × 1020 3.1 × 1017

#5 60% 60% 1.3 × 1020 * 3.1 × 1017 *
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3. Results and Discussions
3.1. AlGaN Homoepitaxial Tunnel-Junction Deep-UV LEDs with n-Type AlGaN Based on
Suppressed Complex Defect Formation

Forward voltage–current density characteristics for samples PN#1, TJ#1, TJ#2, TJ#3,
and TJ#4 are presented in Figure 2 and were measured by direct current (DC) operation
at 300 K. The forward voltage (6.6 V) of the conventional PN LED (PN#1) was provided
at 63 Acm−2. The characteristics were similar to those reported previously [16,76,77]. The
forward voltage of the TJ LEDs (TJ#1 and TJ#2) was extremely high and operated at ap-
proximately 16 V at 4 Acm−2. These TJ LEDs could not provide sufficient current injection;
however, a slightly decreasing forward voltage trend was observed for TJ#2 relative to TJ#1.
The forward voltages of TJ#3 and TJ#4 were 12.1 V and 10.3 V at 63 Acm−2, respectively,
which was significantly reduced by more than 6 V compared to TJ#1 and TJ#2. The high-
doping Si concentration of the n+-type AlGaN was effective in reducing the forward voltage
of the AlGaN TJ LEDs. Further, suppressing the C incorporation was more effective than the
high Si-doping concentration of the n+-type AlGaN in reducing the forward voltage. The
operating voltage of AlGaN TJ LEDs could be reduced because the carrier concentration
of n+-type Al0.6Ga0.4N was increased by suppressing the C incorporation. The electrical
characteristics of the n-type AlGaN at 300 K under the van der–Pauw Hall effect were
measured. The carrier concentration and resistivity of the n+-type Al0.6Ga0.4N with a Si
concentration of 1.2 × 1020 cm−3 based on TJ#2 were extremely low (<1.0 × 1016 cm−3) and
semi-insulating because of the compensation by CN, as shown in Figure 3a and ref. [68].
Those at a Si concentration of 1.2 × 1020 cm−3 based on TJ#4 were 3.5 × 1016 cm−3 and
23 Ωcm, respectively, because of the suppression of C incorporation in the n+-type AlGaN.
This improvement contributed to the reduction in the forward voltage for TJ#4 compared
to TJ#2.

The difference in the forward voltages between TJ#3 and TJ#4 suggests that the Si
overdose above 6 × 1019 cm−3 is effective in improving TJ despite the reduction in the
carrier concentration with an increase of Si concentration, as shown in Figure 3b. The
reduction of the carrier concentration can be attributed to the self-compensation of VIII–
nSi complexes [32–41]. However, the depletion layer width was found to be reduced to
approximately 10 nm for the Si doping concentration of 1.2 × 1020 cm−3 [78]. Therefore, the
Si overdose can contribute to a reduction in the depletion layer width, which results in an
increase in the tunneling probability. Another possibility is trap-assisted tunneling through
defects formed by the Si overdose, although further investigation is required. Therefore,
we concluded that both the C reduction and high Si doping are key factors in reducing the
forward voltage of AlGaN-based TJs.
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The present TJ structure has a very thick TJ layer compared to the depletion layer
width of approximately 10 nm shown in Figure 1b, and this can be a cause of the excess
series resistance of the n+-type AlGaN layer. To further reduce the operation voltage to
8.8 V at a DC current of 63 Acm−2, we optimized the TJ thickness [79].

3.2. Sputtered Polycrystalline MgZnO/Al Reflective Electrodes for Enhanced Light Emission in
AlGaN-Based Homoepitaxial Tunnel Junction DUV-LED

We evaluated MgZnO/Al reflective electrodes for an Al0.6Ga0.4N TJ LED (TJ#5) to
enhance the LEE. The TJ LED of TJ#5 was grown under optimized condition similar to
those of TJ#4. These forward voltages were slightly increased by approximately 0.6 V when
the Al composition of the p-type AlGaN increased from 50% (TJ#4) to 60% (TJ#5). The
characteristics of PN LED#2 were an output power of 35.7 mW, an operating voltage of
7.2 V, an emission wavelength of 285 nm, and an EQE of 2.3% at a DC current of 63 A cm−2.

The current density–forward voltage characteristics of the AlGaN TJ LEDs using
conventional Ti/Al and MgZnO electrodes are illustrated in Figure 4a. The forward voltages
of the AlGaN TJ LEDs using Ti/Al and MgZnO/Al electrodes were 10.8 V and 10.3 V,
respectively, at a DC operation of 63 Acm−2. The forward voltage offset of approximately 1
V was observed for the AlGaN TJ LED using MgZnO/Al electrodes compared with that
using the Ti/Al electrodes at a current density of 30–60 Acm−2. In addition, the forward
voltages of the TJ LEDs using both Ti/Al and MgZnO/Al electrodes are comparable at a
current density above 30 Acm−2. Therefore, we realized carrier injection into the TJ LED
using MgZnO/Al electrodes. For more details, the contact resistivity and band alignment
of the interface between the MgZnO electrode and n-type AlGaN contact layer are reported
in ref [80].
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Figure 3. Si concentration dependence of (a) resistivity, (b) carrier concentration, and (c) mobility of n-
type Al0.62Ga0.38N. The red square (�) and black circle (•) represent the values of C concentrations of
1.8 × 1018 cm−3 and 6.5 × 1017 cm−3, as grown under pressures 50 mbar and 100 mbar, respectively.
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Figure 4b shows the current density–emission power characteristics and emission
wavelength spectra of the AlGaN TJ LEDs. The emission wavelength is 284 nm at a DC
operation of 63 Acm−2. The output powers of the AlGaN TJ LED with the Ti/Al electrodes
and the conventional LED for reference were almost identical from ref. [75,80]. The out-
put powers of the AlGaN TJ LEDs with conventional Ti/Al electrodes and MgZnO/Al
electrodes are 32.8 and 57.3 mW, respectively, at a DC operation of 63 Acm−2. The output
power of the TJ LED using MgZnO/Al electrodes is enhanced to approximately 1.7 times
using the Ti/Al electrodes. The external quantum efficiencies (EQEs) of the TJ LED using
the Ti/Al electrodes and MgZnO/Al electrodes are 2.15% and 3.75%, respectively, at a
DC operation of 63 Acm−2, as shown in Figure 4c. The highest output power is realized
for AlGaN TJ LEDs. A maximum EQE of 3.78% is achieved for the AlGaN TJ LED using
MgZnO/Al electrodes. The reflectance at an emission wavelength of 284 nm for the TJ LED
with the Ti/Al electrodes and MgZnO/Al electrodes was 9.5% and 20.2%, respectively. The
Ti/Al electrodes exhibited low reflectivity because of the alloyed metal. In addition, the
MgZnO/Al electrodes exhibited high reflectivity because of the nonalloyed Al separated
from the cathode annealing process. Therefore, it contributed to the high reflectance of the
TJ LED with MgZnO/Al electrodes.

The mixture of different compositions was used to form the MgZnO layer on the
n-type AlGaN, as shown in Figure 5 and Table 3. The crystal structures of MgZnO were
expected to consist of a mixture of both wurtzite and rock salt structures [67]. The surface of
n-type AlGaN was roughened through dry etching, as shown in Figure 5. The low contact
resistances of n-type AlGaN can be obtained through plasma etching treatments [81,82].
Therefore, the low contact resistance is possibly formed due to the rough surface of n-type
AlGaN, although the mechanism is not clear.

Table 3. Summary of Mg and Al compositions for MgZnO on n-type AlGaN.

Region Number Mg
(%)

Zn
(%)

1 11 89
2 17 83
3 77 23
4 42 58

Average 47 53
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Figure 5. (a) High resolution STEM image, (b) Mg composition distribution image, (c) Zn composition
distribution image of MgZnO on n-type AlGaN.

Figure 6a shows the absorption coefficient spectrum of only the n-type Al0.6Ga0.4N
template and MgZnO (50 nm) on the n-type Al0.6Ga0.4N template. The absorption coeffi-
cients of both increased near 4.8 eV. The absorption coefficient of MgZnO on the n-type
Al0.6Ga0.4N template increased near 4.0 eV. The band gap of wz-MgZnO is reported to be
approximately 3.34–4.0 eV, which depends on the Mg composition [58]. The UV light ab-
sorption near 4.0 eV is attributed to wz-MgZnO. Figure 6b shows the thickness dependence
of the transmittance of MgZnO based on the calculation from its absorption coefficient
α = 1.6 × 105 cm−1 at the emission wavelength of 284 nm in the fabricated TJ LED. The
transmittance of the MgZnO at a thickness of 50 nm is approximately 40%. We estimate a
transmittance of more than 80% by reducing the MgZnO thickness to less than 10 nm to
enhance the output power of AlGaN LEDs. For example, the reflectance of the MgZnO/Al
(10/300 nm) can be improved to approximately 40%, which is three times higher than that
of MgZnO (50/300 nm) in this work. However, the MgZnO still has the critical issue of a
high absorption coefficient in order to further improve the LEE. It should be controlled by
bifurcating the crystal structures with both wurtzite and rock salt structures for polycrys-
talline MgZnO [65–67]. Furthermore, the TJ LED structure can be optimized by utilizing
optical cavity effects for improving LEE with other enhancement approaches [83,84]. The
thickness of the n-type AlGaN in contact with the AlGaN TJ should be optimized in the
near future to realize a higher output power.
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4. Conclusions

We have achieved an improvement in the performance of high-Al-composition Al-
GaN TJ deep-UV LEDs by controlling the growth of n-type AlGaN and polycrystalline
MgZnO/Al electrodes. Two essential factors were considered to reduce the operating
voltage of AlGaN TJ LEDs by changing the growth conditions: suppression of C incorpora-
tion and doping of n+-type AlGaN with a high Si concentration. The AlGaN TJ LED was
operated at a voltage of 10.8 V at a DC operation of 63 Acm−2. Highly reflective MgZnO/Al
electrodes were fabricated as anodes for AlGaN TJ LEDs to enhance the output power of
the AlGaN TJ LEDs. The TJ LED using MgZnO/Al electrodes achieved an output power of
57.3 mW at an emission wavelength of 284 nm under a DC operation of 63 Acm−2, which
was 1.7 times higher than that achieved using a conventional Ti/Al electrode. In the near
future, further improvements in output power can be achieved by reducing the thickness
of the MgZnO layer in AlGaN TJ LEDs.
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