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Abstract: The local microstructure, texture gradient and mechanical properties through the shoulder
dimension (10 mm) of upper and lower AA5182 aluminum sheets were investigated using electron
backscatter diffraction (EBSD) and Vickers microhardness after friction stir spot welding (FSSW).
Based on the microstructural features (mean grain size, grain boundary type and dynamic recrys-
tallization (DRX)), the upper sheet was found to be mainly composed of the stir zone (SZ) and
thermomechanically affected zone (TMAZ) due to the high deformation induced simultaneously by
the tool rotation and the shoulder download force, while the SZ, TMAZ, heat-affected zone (HAZ)
and base metal (BM) were detected in the lower sheet due to the limited effect of the shoulder
on the lower sheet. The texture changes, due to the nature of the deformation, demonstrated a
shear-type texture at the SZ to a plane strain compression deformation type texture at the TMAZ
and then a recrystallization texture at the HAZ and BM. The microhardness gradually decreased
with the increasing distance from the keyhole along the SZ, TMAZ and HAZ regions. Eventually, the
microstructure and microhardness evolutions were correlated based on the Hall–Petch relationship.

Keywords: aluminum; EBSD; friction stir spot welding; microstructure; texture

1. Introduction

Aluminum (Al)-based alloys are widely used in transportation industries owing
to their attractive properties such as high strength-to-weight ratio, high electrical and
thermal conductivities and good corrosion resistance [1–3]. Today, friction stir welding
(FSW) and friction stir spot welding (FSSW) techniques are frequently used in automotive
and aerospace structural applications, especially in materials with poor weldability by
conventional fusion welding such as aluminum or titanium alloys [3–11].

During FSW, a non-consumable tool formed of a shoulder and a pin is rotated and
plunged into two sheets and then translated in one direction. The combination of plastic
deformation and frictional heat induced by the rotating tool guarantees the bonding
between the two sheets by the formation of a solid-state weld [4,5,12]. The processing of
FSSW is similar to FSW but without the tool turning [13]. Therefore, FSSW involves three
steps: plunging, bonding and drawing out, which result in the formation of a keyhole in the
middle of the joint [14]. Consequently, FSW and FSSW produce a complex microstructure
in the welded material that can be divided into four distinct regions: (1) the base metal
(BM), (2) the heat-affected zone (HAZ), (3) the thermomechanically affected zone (TMAZ)
and (4) the stir zone (SZ) [10,15,16]. The material in the SZ undergoes both severe plastic
deformation and high temperature after the friction stir, which results in excellent grain
refinement due to the occurrence of dynamic recrystallization (DRX). In the TMAZ, the
material suffers from plastic deformation and heating but it is insufficient for DRX; hence,
this zone is usually characterized by a highly deformed microstructure. In the HAZ,
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the material is only affected by heat generated during welding and the microstructure,
especially the grain size, is similar to that of the BM. Finally, the BM is far away from the
weld and it is not affected by deformation or heating [10,16,17]. The crystallographic texture
can change through the weld joint, depending on the nature of the deformation processing.
Numerous papers can be found focusing only on the characterization of the texture in the
SZ that developed a shear texture type [18–23]. However, reports on the characterization of
the texture in the TMAZ and HAZ are very limited [9,21,24]. It is expected that the HAZ
has a similar texture to the BM and the texture of the TMAZ is more complicated due to the
heterogeneous plastic flow [9,21,24].

The heterogeneity of the microstructure and grain orientation (crystallographic texture)
along these zones directly affects the mechanical properties of the welded material and
therefore its performance [23]. Moreover, the final material will strongly depend on the
initial state in terms of grain size, grain morphology, the distribution and fraction of the
second phases [25–27]. Hence, in recent decades, various research and experimentation
has been conducted to elucidate the mechanisms responsible for the microstructural and
textural evolution [18–23,28–33], fractures [13,15,34] and material flow [14,21,35] during
processing and much of it has focused on the optimization of FSW parameters such as tool
rotation speed, downward force and tool geometry to improve the mechanical properties
and decrease the anisotropy in the welded materials [12,13,17,36–44].

For example, it was observed that the shear strength of the FSSW Al 5182 alloy is
significantly improved by increasing the rotational speed up to 1300 rpm [13]. In this case,
the high heat generated from the rotational speed causes the enlargement of the SZ and
assures good bonding [13]. Despite the various investigations, much work is still needed
for a full understanding of the microstructural and especially textural evolution of FSSW
and its associated mechanisms, notably in the TMAZ and HAZ.

Hence, the aim of the present study is the evaluation of the local textural and mi-
crostructural evolution of the SZ, TMAZ, HAZ and BM through the shoulder dimension
of the upper and lower Al5182 sheets after FSSW. In addition, the mechanical properties
obtained through the distribution of Vickers microhardness along the distance from the
keyhole center of the upper and lower sheets were correlated to these metallurgical evolu-
tions. Finally, the contribution of grain size strengthening to the local mechanical properties
was estimated by the Hall–Petch relationship [45,46]. It is believed that the present re-
sults can promote microstructure and texture control during the FSSW of non-treatable
Al-based alloys.

2. Materials and Methods

The chemical composition of the AA5182-O alloy is summarized in Table 1.

Table 1. Chemical composition in weight percentage of AA5182-O alloy.

Mg Fe Mn Zn Si Cu Cr Ti Al

4.5 0.35 0.35 0.25 0.2 0.15 0.1 0.1 balance

The FSSW was conducted using an AA5182 upper sheet 1.2 mm thick and an AA 5182
lower sheet 2 mm thick. Note that the sheet reference frame is defined as rolling direction
(RD), transverse direction (TD) and normal direction (ND). A cylindrical threaded pin
(3.5 mm diameter and 1.8 mm height) and flat shoulder (diameter 10 mm) fabricated of
steel Z38CDV5 treated at 50HRC was used for the welding.

The welding was realized with clamping force of 6 kN, rotation speed of 1300 rpm
and plunge time of 2.5 s. These parameters were selected based on a previous study in
which the AA5182 joint weld exhibited good mechanical properties [13].

The local microstructure and texture analysis through the FSSW joints were carried out
by EBSD measurements on the longitudinal cross-section (RD-ND plane), which is normal
to the welding direction (WD), i.e., the vertical axis in Figure 1. Figure 1 shows the scanning
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electron microscope (SEM) micrograph of the longitudinal cross-section of AA 5182 after
FSSW and the EBSD scanning positions at the upper (y = 1 mm) and lower (y = 0 mm)
sheet, respectively. As indicated in the Figure 2, the measurements were performed at
the right (x = 2, 2.5, 3, 3.5, 4 and 5 mm) and left (x = −2, −2.5, −3, −3.5, −4 and −5 mm)
sides on both sheets from the keyhole centre (x = 0 mm), respectively. The scale value was
positive on the right side and negative on the left side.
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Figure 1. The SEM micrograph of the longitudinal cross-section of Al 5182 alloy after FSSW and the
EBSD scanning positions.

After the FSSW, a keyhole is formed at the centre of the FSSW joint due to the pin
morphology. In addition, an amount of flash can be seen at the upper sheet (see arrow)
resulting from the penetration of the shoulder, which is expected during the FSSW [41]. The
SEM micrograph also shows the formation of a hook (see Figure 2), which is the interface
between the upper and lower sheets near the SZ and is bent upwards towards the upper
sheet owing to the combination of plunging and stirring effects during welding [44]. The
bonding at the interfaces of the upper and lower sheets seems better on the left side.

The EBSD sample preparation consists of mechanical polishing followed by electrolyt-
ical polishing at 20 ◦C with a Struers A2 solution adapted to Al-based alloys with a voltage
of 45 V over 12 s. The EBSD measurements were performed using a TSL-EDAX-Hikari sys-
tem mounted on a scanning electron microscope FEG-SEM ZEISS Supra 55 VP operating at
20 kV. The acquisition and analysis of the scan areas of about 200× 200 µm2 with a step size
of 0.5 and/or 0.6 µm were processed by Orientation Imaging Microscopy, OIMTM software.

The grain size data were obtained using a grain tolerance angle of 5◦ and a minimum
grain size of 5 pixels. All datum points with a confidence index (CI) lower than 0.05
were excluded from the quantitative analyses, where CI quantifies the reliability of the
indexed pattern [47]. The mean grain size was measured using the equivalent diameter
approach. Grain boundaries with misorientation angles θ < 2◦ were excluded from EBSD
maps to avoid spurious boundaries caused by orientation noise [48]. Based on that, the
grain boundary types were divided into sub-grain boundaries or very low angle grain
boundaries (VLAGBs) with misorientation 2◦< θ < 5◦, low angle grain boundaries (LAGBs)
with 5◦< θ < 15◦ and high angle grain boundaries (HAGBs) with θ > 15◦, respectively.

The grain orientation spread (GOS) and the kernel average misorientation (KAM)
approaches implemented in OIM™ software were used to estimate the distribution of
plastic deformation of a grain by measuring its local misorientation. Grain orientation
spread is defined as the average deviation between the orientation of each point in the
grain and the average orientation of the grain, where grains with GOS lower than 1◦

are considered strain-free grains (undeformed or fully recrystallized grains) [49]. Grain
orientation spread value increases due to the development of misorientation within the
grain resulting from the accumulation of dislocations. In the present case, the grains were
separated into three groups: (1) undeformed or recrystallized grains having GOS value
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in the range of 0–1◦, (2) partially deformed or recovered grains having GOS value in the
range of 1–2◦ and (3) deformed grains having GOS > 2◦.

Kernel average misorientation is known as the average misorientation angle of a given
point with all its neighbors belonging to the same grain [50]. Here, the θKAM value was
calculated from the mean misorientation angle between a given point and its 3th neighbors
excluding misorientations greater than 5◦. Hence, the dislocation density can be obtained
following the equation [50]:

ρ =
αθKAM

ndb
(1)

where α = 3 for mixture of tilt and twist boundary types, b = 0.28 nm is the Burgers vector,
n = 3 for the third neighbor and d is the scan step size.

MTEX software was used to analyze the evolution of texture in the different locations
by calculating the orientation distribution function (ODF) using the harmonic method
(L = 22) and a gaussian function with a half-width of 5◦ to model each orientation [51].
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structure [52].

The measured texture in the TMAZ, HAZ and BM regions is presented in the observed
RD-ND plane. For the SZ, it is well documented that the shear texture reference frame is not
constant and changes with the rotation of the tool [9,11,19]. Accordingly, in the transverse
cross-section of the weld material (TD-ND plane), the shear direction (SD) is tangential
to the tool surface, the shear plane normal (SPN) is perpendicular to the tool surface and
rotation direction axis (RA) is aligned with the inclined vertical surface of the tool [9,11,19].
Usually, rotations are performed around the reference directions (RD, TD, or ND) of the
EBSD measurement to match the shear texture developed in the SZ with the ideal reference
frame SPN-SD plane.

In the present case, the textures of the SZ regions are presented in RD-ND plane and
the identification of the different shear texture components of the obtained {111} pole figure
and ODF is simply performed by a direct comparison with the ideal shear component
positions in the different RA-SD, SPN-SD and RA-SPN planes [52] as shown in Figure 2.
The positions of ideal shear texture components for face-centered cubic (FCC) materials
projected in RA-SD, SPN-SD and RA-SPN planes are summarized in Table 2 [52]. The
shear texture in FCC materials is formed typically from A-fiber ({111}//SP) composed
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of A,
−
A, A∗1 and A∗2 components and B-fiber (<110>//SD) comprised of A,

−
A, B,

−
B and C

components [52]. It is believed that the presentation of the SZ texture in the RD-ND plane
(EBSD measurement plane) can be used to track the material flow within the weld.

Table 2. Position of ideal shear texture components for FCC materials projected in RA-SD, SPN-SD
and RA-SPN planes [52].

Notation RA-SD Plane SPN-SD Plane RA-SPN Plane

Miller index
{hkl}<uvw>

Euler angles (◦)
(ϕ1, Φ, ϕ2)

Miller index
{hkl}<uvw>

Euler angles (◦)
(ϕ1, Φ, ϕ2)

Miller index
{hkl}<uvw>

Euler angles (◦)
(ϕ1, Φ, ϕ2)

A {1
−
11}<110> (60, 54.7, 45) {112}<1

−
10> (0, 35.2, 45) {110}<1

−
12> (54.7, 90, 45)

−
A {

−
11
−
1}<

−
1
−
10> (120, 54.7, 45) {211}<0

−
11> (50.7, 65.9, 63.4) {101}<

−
1
−
21> (35.26, 45, 90)

A∗1 {11
−
1}<112> (90, 54.7, 45) {101}<

−
1
−
21> (35.26, 45, 90) {121}<

−
101> (129.23, 65.9, 26.5)

A∗2 {11
−
1}<2

−
11> (30, 54.7, 45) {011}<

−
2
−
11> (144.7, 45, 0) {211}<0

−
11> (50.7, 65.9, 63.4)

B {1
−
12}<110> (50.7, 65.9, 63.4) {111}<1

−
10> (0, 54.7, 45) {110}<1

−
11> (35.26, 90, 45)

−
B {

−
11
−
2}<

−
1
−
10> (0, 35.26, 45) {111}<0

−
11> (60, 54.7, 45) {101}<

−
1
−
11> (54.7, 45, 90)

C {001}<110> (45, 0, 0) {110}<1
−
10> (0, 90, 45) {011}<0

−
11> (90, 45, 0)

The microhardness distributions on the longitudinal cross-section of each sheet were
obtained using a Vickers microhardness tester (LECO M400H) with a 50 g load for 20 s and
a spacing of 0.5 mm along the y = 0 (lower sheet) and 1 mm (upper sheet) lines (Figure 1),
respectively.

3. Results
3.1. Microstructure and Texture of BM

Figure 3 presents the orientation imaging micrography (OIM) in inverse pole figure
(TD-IPF) and GOS maps of the BM of the upper and lower sheets, respectively. The HAGBs
are indicated by black lines. The mean grain size and fraction of recrystallized grains are
shown in the upper part of the TD-IPF and GOS maps. Both sheets exhibit a typical static
recrystallization microstructure formed of equiaxed and recrystallized grains (about 91 and
96%) with mean grain size of 19.5 µm in the upper sheet and 16.6 µm in the lower sheet.
These differences are obviously due to the thermomechanical forming processes. The initial
textures of both sheets are presented in Figure 3 via {111} pole figure and ODF sections at
ϕ2 = 0 and 45◦, respectively. The ideal deformation and recrystallization textures of the
rolled FCC alloys are also shown in Figure 3 and their descriptions in the RD-ND plane are
given in Table 3. The texture of the upper sheet is dominated by the Cube component while
the texture of the lower sheet exhibits the presence of static recrystallization components
(Cube, Goss (G1) and rotated Goss (G2)) and the retained deformation Brass (Bs) component.
The presence of retained deformation texture components such as Brass or Copper is often
reported in hot-rolled Al-based alloys [53–56].
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Table 3. Position of ideal deformation and recrystallization texture components for rolled FCC
materials projected in RD-ND plane.

Notation RD-ND Plane

Rolling component Miller index
{hkl}<uvw> *

Euler angles (◦)
(ϕ1, Φ, ϕ2)

Brass (Bs) {111}<
−
1
−
12>/{111}<11

−
2> (90, 55, 45)/(270, 55, 45)

Copper (Co) {110}<1
−
11> (30, 90, 45)

Goss 1 (G1) {011}<100> (0, 45, 0)
Goss 2 (G2) {001}<110> (45, 0, 0)
Cube (Cu) {001}<0

−
10> (90, 0, 0)

* {hkl}//(RD, ND) plane and <uvw>//RD.

3.2. Microstructure and Texture Evolution after FSSW
3.2.1. Microstructure Evolution after FSSW

Figures 4 and 5 present the evolution of the microstructure via TD-IPF and GOS
maps of the upper and lower sheets as a function of distance from the keyhole center of
the welded Al 5182 alloy. In both sheets and both sides, the TD-IPF maps show that the
microstructure is significantly heterogeneous along the shoulder diameter. Basically, the
microstructure is formed from fine grains near the keyhole corresponding to the SZ and
the grain size increases with increasing distance from the keyhole center. A significant
texture gradient along the distance from the keyhole center is also noticed. The evolution
of texture is presented in the next section. The GOS maps indicate that the fine grains are
mostly fully recrystallized (having GOS 0–1◦) and deformed grains (having GOS > 2◦)
appear with increasing distance typically belonging to the TMAZ, followed by large grains
mostly recovered (green grains, having GOS 1–2◦) belonging to the HAZ, and finally the
microstructure in some places, such as at x = −5 mm (left side) and x = 5 mm (right side)
of the lower sheet, is fully recrystallized, which corresponds to the BM. It is interesting
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to note that the BM is not reached in the upper sheet through the entire distance (up to
x = −5 and 5 mm).
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Figure 4. The TD-IPF and GOS maps showing the evolution of the microstructure as a function
of distance from the center of the keyhole (left side) at upper sheet (y = 1 mm) and lower sheet
(y = 0 mm), respectively.

For more details, the evolution of mean grain size, DRX (GOS 0–1◦), recovered or
partially deformed (GOS 1–2◦) and deformed (GOS > 2◦) grain fractions, VLAGBs, LAGBs
and HAGBs at different locations are shown in Figure 6. Based on the microstructural
variations, the different joint zones in the upper and lower sheets are identified and
highlighted in the plots shown in Figure 6.

Globally, the upper sheet along the shoulder diameter is formed of 50% SZ, 41.6%
TMAZ and 8.4% HAZ, while the lower sheet is composed of 16.7% SZ, 25% TMAZ, 41.6%
HAZ and 16.7% BM. Two main differences can be noticed in the weld joints. First, the
deformation is more pronounced in the upper sheet than in the lower sheet and second the
microstructure evolution is not symmetrical at the right and left sides of the weld.
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Figure 5. The TD-IPF and GOS maps showing the evolution of the microstructure as a function
of distance from the center of the keyhole (right side) at upper sheet (y = 1 mm) and lower sheet
(y = 0 mm), respectively.

The first difference can be evidenced by the evolution of microstructural parameters
shown in Figure 6. Indeed, the right side of the lower sheet contains the four typical joint
zones: SZ, TMAZ, HAZ and BM. In this area, the mean grain size increases with increasing
distance from the keyhole (SZ and TMAZ) and then saturates when it reaches the HAZ and
BM. The fraction of DRX (GOS 0–1◦) decreases with increasing distance from the keyhole
between the SZ and TMAZ and then increases in the HAZ region to reach a high fraction
of about 94% at the BM. It is interesting to note that the HAZ region is characterized by a
high fraction of partially deformed grains (green grains, GOS 1–2◦). The HAGB fraction
decreases with increasing distance and then rapidly increases when it reaches the HAZ and
continues to increase at the BM. Consequently, the fractions of VLAGBs and LAGBs increase
between the SZ and TMAZ due to the generation of dislocations and their rearrangement
and then decrease when reaching the HAZ and BM.

Meanwhile, the evolution of the microstructural features at the right side of the upper
sheet, such as the continuous decrease in DRX and HAGB fractions up x = 5 mm, indicates
the presence of only the SZ and TMAZ regions. It seems that the SZ and TMAZ width
is larger in the upper sheet due to the extra severe plastic deformation induced by the
download force of the shoulder (compression deformation).
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Figure 6. Evolution of (a,d) mean grain size, (b,e) DRX (GOS 0–1◦), partially deformed (GOS 1–2◦)
and deformed (GOS > 2◦) grain fractions and (c,f) grain boundary types (VLAGBs, LAGBs and
HAGBs) as a function of distance from the keyhole center at the upper and lower sheet, respectively.

Concerning the second noted difference, for example, the SZ is not detected at
x = −2 mm of the lower sheet (Figure 4) since the large mean grain size (d = 11.7 µm)
and the low fraction of DRX (15.4%) recorded in this position indicate that this area belongs
to the TMAZ rather than the SZ. Moreover, on the left side of the upper sheet, the width of
the TMAZ (1 mm) is smaller than for the right side (about 2 mm). The change of the joint
weld on both sides may indicate that the right side undergoes more deformation than the
left side. Such differences could be created due to the nature of the stirring process and the
tool movement on both sides. This is similar to the heterogeneity observed between the
advancing and retreating sides in the conventional FSW technique [57].

3.2.2. Texture Evolution after FSSW

Figures 7 and 8 present the texture evolution via {111} the pole figure and ODF sections
at ϕ2 = 0 and 45◦ as a function of distance from the center of the keyhole at the upper
sheet (y = 1 mm) and lower sheet (y = 0 mm), respectively. The positions of ideal shear
and rolling texture components in {111} the pole figure and ODF sections at ϕ2 = 0 and
45◦ of FCC materials are shown in Figures 2 and 3 and their descriptions are given in
Tables 2 and 3, respectively.
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There is the obvious development of a pronounced texture gradient in the upper and
lower sheets through the distance from the keyhole center. It is clear from Figures 7 and 8
that the textural characteristics near the keyhole (SZ) are typical of simple shear deformation.
Then, the texture gradually transforms from shear texture to typical plane strain compres-
sion texture with increasing distance from the keyhole center (TMAZ, HAZ and BM).

Based on Figure 2, the positions of the shear texture components of the SZ for the left
side (at x = −2 and −2.5 mm) of the upper sheet show that the RD-ND plane is parallel to
the SPN-SD plane, while their positions at the right side (at x = 2, 2.5 and 3 mm) change to
the RA-SD plane (RD-ND//RA-SD). For the lower sheet, the shear texture is located only
at the right side (at x = 2 and 2.5 mm) and their positions indicate that the RD-ND plane is
aligned with the RA-SPN plane. The identification of different texture components through
the joints and the positions is complicated; hence, Table 4 summarizes the major texture
components developed in the SZ, TMAZ, HAZ and BM.

Table 4. The main texture components developed in different areas of the welded Al 5182 alloy.

SZ TMAZ HAZ BM

Upper sheet

Left side C, B, A, A∗2 , Cu and G1
(at 2–3 mm)

Co and G1
(at 3.5–4 mm)

Cu and G1
(at 5 mm) —

Right side C, B, A and G1
(at 2–3 mm)

Cu, G1 and Bs
(at 3.5–5 mm) — —

Lower sheet

Left side — Cu, Co and G1
(at 2 mm)

Cu, G1 and Bs
(at 2.5–4 mm)

Cu and Bs
(at 5 mm)

Right side A, B, A∗2 and G1
(at 2–2.5 mm)

Cu and Bs
(at 3 mm)

Cu, G1 and Bs
(at 3.5–4 mm)

Cu
(at 5 mm)

The texture of the SZ at the upper sheet exhibits the presence of C, A, B, A∗2 , shear
components and recrystallization texture components such as Cube and Goss components.
The SZ of the lower sheet seems to show similar texture evolution except for the absence of
C and Cube components. Local texture inhomogeneity is detected in the SZ. For example,
the texture is gradually rotated about the TD at x = 2 mm (about 10◦) and at x = 3 mm (about
30◦) from the keyhole center as shown on the right side of the upper sheet (see Figure 8).
The instability of the shear texture of the SZ through the distance is widely reported in
various welded materials and it is explained by the complexity of deformation and strain
heterogeneity induced by the tool geometry [9,18,20–23,32,33,43].

The typical shear texture disappears at the TMAZ regions and is replaced by a typical
texture for plane strain compression with the development of Copper and Brass compo-
nents. It is interesting to note that the recrystallization texture components (Cube and Goss)
are still present in the TMAZ regions. The texture of the HAZ regions is characterized by
the presence of Cube, Goss and Brass (only in the lower sheet) components that are very
similar to the texture of both BMs (Figure 3). The texture differences between the upper
and lower sheets can also be related to the initial texture of both BM sheets (Figure 3).

3.3. Microhardness Evolution

Figure 9 displays the evolution of microhardness as a function of distance from the
keyhole center for the upper and lower sheets, respectively. The SZ, TMAZ, HAZ and BM
regions are highlighted in the microhardness plots. The microhardness of the BM is about
80 HV.
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The highest value of microhardness of about 95 HV is detected in the SZ (at x = 2 mm
from the keyhole center) of both sheets due to the development of grain refinement. Then,
the microhardness gradually decreases with increasing distance from the keyhole along
the TMAZ and HAZ regions. The high values of the TMAZ in comparison with those
for the HAZ regions can be explained by the increase in dislocation density due to the
plastic deformation during the FSSW. The microhardness of the HAZ is similar to the BM
in the lower sheet, reaching a value of 80 HV. The range of microhardness variation of
several Al-based alloys is found around 67–110 HV through the SZ, TMAZ, HAZ and BM
regions [58–61].

4. Discussion

The evolution of the microstructure and texture along the shoulder dimension of the
upper and lower sheets of the welded Al 5182 alloy was found to be very heterogeneous
due to the development of different zones (SZ, TMAZ, HAZ and MB). Below, each joint
zone of the weld alloy is discussed separately.

4.1. Microstructure and Texture Evolution in Different Joint Zones
4.1.1. The SZ Region

The width of the SZ in the upper sheet coincides with the region where the upper and
lower sheets are bonded (as can be seen in Figure 1). The grain refinement is very rapid
due to the severe plastic deformation and heating, which makes the identification of DRX



Crystals 2023, 13, 540 13 of 25

mechanisms impossible. However, many investigations demonstrated that, for materials
with high stacking fault energy such as Al, the continuous DRX (CDRX) mechanism is
responsible for grain refinement [30]. The grain size recorded in the SZ of the upper sheet
(4.8 µm at x = −2 mm and 5.5 µm at x = 2 mm from the keyhole center) was similar to that
for the SZ in the lower sheet (5.0 µm at x = 2 mm), which may indicate that the shoulder
contact on the upper sheet does not affect the grain structure of the SZ.

The microstructure of the SZ in the upper sheet is characterized by an onion ring
structure resulting from the periodical deposition of material layers. The presence of an
onion ring structure in the SZ is the most characteristic feature of friction stir welds. In
general, the formation of such a specific structure is caused by the rotation of the tool and the
forward movement extrudes the metal around to the retreating side of the tool [40,62–66].
It was proposed in the case of the FSW technique that the onion ring structure starts
on the retreating side of the weld and competes with tunnel defects originating at the
advancing side of the weld [63]. Consequently, the formation of a noticeable onion ring
structure indicates fewer tunnel defects [63]. Some investigations showed that the onion
ring structure is more noticeable on the advancing side than on the retreating side of the
weld [63,65]. Principally, the rotation and translation of the tool have the same direction
in the advancing side, which causes an increase in strain and heat, while the rotation
and translation directions are the opposite on the retreating side, which leads to a lower
strain [57]. However, other investigations observed that the onion ring structure was more
located on the retreating side of the weld [40]. The definition of advancing and retreating
sides cannot be used in FSSW since the translation movement is absent. However, it is
obvious that in the present case the onion ring structure is more pronounced on the right
side than on the left side of the upper sheet. The location of the onion ring seems to depend
on the tool geometry and its interaction with the material [40,63].

Figure 10 shows more detailed microstructural and textural examinations of the onion
ring structure formed in the SZ region of the upper sheet located at x = 2 mm (right side)
from the keyhole center. Figure 10 shows the onion ring structure in which the two materials
of the upper and lower sheets are well mixed. However, there is the obvious formation of
large and small bands with a thickness approximately equal to 12.1 and 4.5 µm, respectively.
In addition, the small bands contain fine grains with a mean grain size lower than 4.5 µm,
while the mean grain size of the large bands is higher than 4.5 µm.

The GOS map of the zoomed area shown by the black frame displays that the grains
of the small bands are fully recrystallized, while the majority of the grains belonging to
the large bands are partially or completely deformed. The texture evolution shown by
the ODF sections at ϕ2 = 0 and 45◦ in both bands is slightly different. Moreover, with the
domination of C and Goss components in both bands, grains in the small bands develop a
rotated Cube component (R-Cube {110}<1–10>, (0◦, 90◦, 45◦). The rotated Cube component
is known as a typical recrystallization texture component often developed in FCC materials,
while the SZ of the lower sheet shows no evidence of an onion ring structure. In addition,
the SZ on the left side of the lower sheet is not detected at 2 mm from the keyhole center,
indicating that the material in this region was not reached by the rotation of the tool.
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Figure 10. The TD-IPF maps, GOS map of the zoomed area and ODF sections at ϕ2 = 0 and 45◦

showing the microstructure and texture of large and small bands belonging to the onion ring structure
of SZ region at 2 mm from the center of the keyhole (right side) of the upper sheet, respectively.

The SZ of the upper sheet is characterized by the development of C, B and A com-
ponents. In addition, the left side shows the presence of the A∗2 component. Concerning
the lower sheet, the shear-type texture, formed of A, B and A∗2 components, is located
only on the right side, which is in good agreement with the evolution of microstructural
parameters (Figures 5 and 6). In addition, the C component seems absent in the SZ of the
lower sheet compared with the upper sheet. This difference could be related to the local
shear strain. For example, it was reported that the B component transformed into the C
component under shoulder rotation [22]. This is seemingly in accordance with the present
results, since the shoulder is not in direct contact with the lower sheet. The presence of the
C and A∗1/A∗2 components may indicate that the material has undergone a small amount of
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shear strain, while the development of the B/
−
B components means that the material has

experienced a high magnitude of shear strain [18,21]. Accordingly, the AA 5182 present
has been subjected to medium shear strain in the SZ.

It is noteworthy that the Goss component is also present in all of the SZ. The Cube
component is also detected in the SZ left side of the upper sheet. In addition, the R-Cube
is detected in the small bands (Figure 10). The presence of these texture components
in the SZ has rarely been reported in FSW Al-based alloys [28]. It is well known that
the development of these texture components is characteristic of the occurrence of static
recrystallization. It seems that the heat generated from tool rotation is high enough to
cause static recrystallization. The temperature cycle during the FSSW of AA 5182 recorded
at the periphery of the tool (keyhole border) is shown in Figure 11. As can be seen, the
temperature increases rapidly up to 320 ◦C then slowly increases to reach a maximum
value of 418 ◦C. The peak temperature reached is in the range of the recrystallization
temperature of the AA 5xxx series [67–69]. Hence, it is expected that static recrystallization
will occur during the FSSW in which typical recrystallization texture components such as
Cube, R-Cube, Goss and R-Goss can be generated.
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Figure 11. Temperature cycle during the FSSW of AA 5182 recorded at the periphery of the tool
(keyhole border) [38].

4.1.2. The TMAZ Region

The width of the TMAZ was not the same in the upper and lower sheets or on the
left and right sides. The larger width of 1.5 mm (from 3.5 to 5 mm) was located on the
right side of the upper sheet, while the thin widths of 0.5 mm and 1 mm were located
on the right side (from 2.5 to 3 mm) and left side (from 1.5 to 2.5 mm) of the lower sheet,
respectively. This could be attributed to the download force imposed mainly on the upper
sheet by the shoulder. The fractions of VLAGBs and HAGBs are higher in this region in
comparison with the SZ and HAZ (Figure 6). The microstructure of the TMAZ near the
SZ is mainly characterized by elongated deformed grains (having GOS > 2◦) and some
small, recrystallized grains (having GOS 0–1◦) located at the grain boundaries. This is
characteristic of discontinuous DRX (DDRX) [70]. Examples are shown in the zoomed area
of regions at −3.5 mm in the upper sheet and −2.0 mm in the lower sheet as indicated
in Figure 12. Most of the grain boundaries (GBs) are serrated due to the difference in
dislocation density between the two sides of the grain boundaries. The misorientation
between the serrated GB and deformed grains increases, leading to the development of
sub-grain boundaries (VLAGBs) that transform into LAGBs and then into small grains
with HAGBs as indicated by the white arrows in Figure 12. The corresponding {111} pole
figures of deformed and DRX grains shown in Figure 12 indicate that DRX grains globally
develop a similar texture to the deformed grains.
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The DRX is very weak in these regions and the deformed grain fraction (GOS > 2◦) in
the TMAZ (Figure 6) increases with increasing distance from the keyhole center, demon-
strating that the effect of the heat generated from the tool rotation decreases with increasing
distance and hence prevents the occurrence of DRX. The elongated deformed grains are
mostly fragmented and contain a relatively high fraction of VLAGBs and LAGBs inside
them (see grains 1–5 in Figure 12). This is a characteristic of CDRX through the sub-grain
development (SGD) mechanism [70]. It is evident that the stored energy depends on the
grain orientation. For example, the fraction of LAGBs is higher in grains 4 and 5 than
in grain 2. Several investigations demonstrated the dependency of stored energy on the
crystallographic texture in conventional and severely deformed FCC materials [52,71–74].

It is worth noting that the SGD mechanism can maintain the orientation of the de-
formed grains (see grains 2 and 3) or can gradually change the orientation of the subsequent
segments from the original orientation, as can be noticed in grains 1, 4 and 5 in Figure 12.
This explains the persistence of orientations such as Cube and Goss, while the presence of
the texture gradient explains the development of complex rolling textures (mostly deviated
from their ideal positions) observed in the TMAZ region, especially along the upper sheet
(Figure 8).
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4.1.3. The HAZ Region

Details characteristic of the evolution of the microstructure and texture in the HAZ
are not well documented in the literature. The HAZ is defined as a region from the weld
joint in which the microstructure is only affected by the heat generated by the tool; hence,
it is expected that the microstructure and the texture will be quite similar to the BM but
with a larger grain size due to the grain growth process. This may explain the decrease
in dislocation density in the HAZ compared to the BM of naturally aged AA 6063 [32].
Nevertheless, experimental results demonstrated that the grain size of the HAZ was found
to be lower than for the BM in welded aluminum_steel joints and this was explained by the
use of low welding temperatures [31].

In the present case, the mean grain size of the HAZ was very similar to the BM
(Figure 6) but with a significant increase in the GOS value; i.e., the majority of the HAZ
grains are partially deformed (green grain, GOS 1–2◦), which means the presence of
dislocation activity in the HAZ region compared to the BM.

To quantify the amount of strain (dislocation density) in the HAZ region, the KAM
maps of regions located at x = −3.5 and x = −4 mm from the keyhole center of the lower
sheet (left side) are shown in Figure 13. The KAM map of BM (at x = −5 mm) is also
calculated for comparison and shown in Figure 13. It is obvious that the microstructure
of the HAZ is more deformed than the BM and the deformation increases with increasing
distance from the BM. It seems that the distortion in the HAZ at x = −4 mm started at the
triple junction where sub-grain boundaries with misorientation of 2–5◦ start to accumulate
as indicated by arrows in the grain boundary type map of the zoomed area (red box). Then,
the number of sub-grain boundaries increases and propagates along the entire grain of the
HAZ at x = −3.5 mm as indicated in the zoomed area (yellow box). The dislocation density
was calculated based on Equation (1) and the results are shown in Figure 13. The dislocation
density of the BM is about 6.7 × 1013 m−2 and it increases to 9.3 and 12 × 1013 m−2 at
x = −4 and −3.5 mm, respectively. Such results demonstrate that the HAZ suffers from
some amount of deformation. Further investigations are needed to explore the source of
the strain distribution near the HAZ regions.

In contrast, the texture evolution of the HAZ and BM seems very similar and shows
principally the presence of the Cube, Goss and Brass components (Table 4). The evolution
of the volume fractions of these components is shown in Figure 14. The volume fractions
of the texture components were calculated with an orientation tolerance of 15◦ from their
ideal position. The fraction of the Brass component is similar in the three positions. The
Cube component first increases at x = −4 mm and then decreases at x = −3.5 mm, while
the fraction of the Goss component increases in both HAZ regions.

To identify the orientation of the different grains in both HAZ regions (at x = −3.5
and −4 mm of the lower sheet), their microstructures are partitioned as grains having GOS
values of 0–1◦, 1–2◦ and >2◦ and their corresponding textures are shown in Figure 15. The
number of grains with GOS 0–1◦ (DRX grains) and GOS >2◦ (deformed grains) were very
low in the region at x =−3.5 and−4 mm, respectively; hence, they were not implemented in
Figure 15. As can be observed, the grains with GOS = 0–1◦, considered fully recrystallized,
have Cube and rotated Goss (G2) orientations. This result explains the decrease in the
Cube texture component in the HAZ at x = −3.5 mm since the DRX is restricted, while
the orientations of grains with GOS = 1–2◦ for both regions change to near Goss and
Brass orientations. The Brass and Goss components are still present in grains with higher
deformation (GOS > 2◦). In addition, grains with a new orientation located near the Copper
one, as indicated by its ideal position in the ODF sections, are developed by crystal lattice
rotation induced by slip processing [75]. The Copper orientation is known as a deformation
texture component in FCC materials. In addition, the Copper texture component was
observed in the TMAZ region.
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It is worth noting that the HAZ width of the lower sheet is quite similar on the left
(from x = −2.5 to −4 mm) and right sides (from x = 3 to 4 mm) and the microstructural
and textural characteristics are very similar, which indicates a homogeneous heat coupled
with the same amount of deformation input during the welding. Meanwhile, the HAZ
in the upper sheet is located only at x = −5 mm from the keyhole center (left side). The
microstructure and texture of this zone are slightly different from those of the lower sheet.
For example, the Brass component is absent in comparison with the HAZ of the lower
sheet. This is expected, since the microstructures of the BM of the upper and lower sheets
are slightly different, as already shown in Figure 3.

4.1.4. The BM Region

The evolution of the microstructure and texture revealed that the BM was not reached
along the shoulder dimension (10 mm) in the upper sheet, while the BM in the lower sheet
was detected at x = −5 and 5 mm (the extremity of shoulder dimension) due to the absence
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of the download force of the shoulder. To localize the BM in the upper sheet, additional
EBSD measurements were performed at x = 5.5 and 6 mm (on the left and right sides) from
the keyhole center, and the corresponding microstructures (TD-IPF and GOS maps) and
textures (ODF sections at ϕ2 = 0 and 45◦) are shown in Figure 16. As can be seen, the
microstructures and textures at x = −5.5 and 5.5 mm still exhibit the characteristics of the
HAZ region and then the BM is attained at x = −6 and 6 mm from the keyhole center.
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4.2. Relationship between Microstructure and Mechanical Properties of the Joint

It is interesting to note that the microhardness difference between the different zones
(SZ, TMAZ and HAZ and BM) is not sharp, which may assure good deformation compati-
bility between the joint and the BM.

The hardening induced by the deformation processing of materials is generally at-
tributed to the concomitant occurrence of dislocation hardening and grain size harden-
ing [76]. Based on the microstructural evolution discussed earlier, it can be concluded that
the grain size hardening is more important through the joint (BM, HAZ, TMAZ and SZ)
than dislocation hardening.

For further analysis, the microhardness values were plotted as a function of the
reciprocal of the square root of the mean grain size for the different (BM, HAZ, TMAZ
and SZ) welded zones following the Hall–Petch equation [45,46] and the result is shown in
Figure 17:

Hv = Hv0 +
kH√

d
(2)

where Hv0 is the friction hardness associated with the resistance of the crystal lattice to the
movement of dislocations and kH is a Hall–Petch constant, which indicates the contribution
of the grain boundaries to the hardening.
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As can be noticed, Figure 17 demonstrates the validation of the Hall–Petch relationship.
The extrapolated value for the friction hardness and slope of the Hall–Petch equation gives
values of Hv0 = 63.8 HV and kH = 68.1 HV µm1/2, respectively.

Indeed, the SZ is highly deformed but grain refinement occurs by DRX where the
dislocations gradually transform into HAGB. The evolution of the microstructure of the
HAZ and BM regions shows already weak dislocation density. Nevertheless, it seems that
the values for the TMAZ slightly deviate compared to those for the HAZ and SZ due to
the presence of deformation features as discussed in Section 4.1.2. In this zone, it can be
assumed that grain size and dislocation density simultaneously participate in the hardening
of the TMAZ region.
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5. Conclusions

• Local microstructure and texture were evidenced in the upper and lower sheets
through the shoulder dimension (10 mm) during the FSSW of the AA 5182 alloy.

• The upper sheet was mainly composed of the SZ and TMAZ due to the high deforma-
tion induced simultaneously by the tool rotation (shear deformation) and the shoulder
download force (compression deformation), while the lower sheet was formed of the
SZ, TMAZ, HAZ and BM due to the limited effect of the shoulder on the lower sheet.

• The change of the joint weld indicated that the right side undergoes more deformation
than the left side.

• The formation of texture gradients is observed through the distance from the keyhole
center, from shear-type texture at the SZ to plane strain compression deformation type
texture at the TMAZ and then recrystallization texture at the HAZ and BM.

• The high temperature produced during FSSW seemed the origin of the development
of recrystallization texture components such as Cube, Rotated-Cube, Goss and Rotated
Goss in the SZ.

• Grain fragmentation and DDRX were evidenced in the TMAZ regions.
• The KAM approach demonstrated that the HAZ regions exhibit higher dislocation

density than BM.
• The microhardness gradually decreases with increasing distance from the keyhole

along the SZ, TMAZ and HAZ regions. However, the microhardness difference
between the different zones is rather small, which may assure good deformation
compatibility between the joint and the BM.

• The Hall–Petch constant was found valid through the weld zones with the fitting
parameters Hv0 = 63.8 HV and kH = 68.1 HV µm1/2.
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