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Abstract: Micropollutants (MPs) are widely occurring in surface water all over the world with
extremely low concentrations, and their treatment requires high energy consumption and efficiency.
In this study, a large-sized planar photocatalytic reactive ceramic membrane (PRCM) was prepared
using the facile dip-coating method with nitrogen-doped TiO2 (N-TiO2-CM) for the purification
of tetracycline hydrochloride (TC) as a model MP. The N-TiO2 nanoparticles and the as-prepared
N-TiO2-CM were characterized by SEM/EDS, TEM, XPS, UV–Vis DRS, and FT-IR. A fixed bed reactor
integrated N-TiO2-CM, and visible LED light was fabricated for the new PRCM water treatment
system for the removal of TC with a comprehensive consideration of the degradation rate and
permeate flux. The SEM/EDS results indicated that the N-TiO2 was uniformly and tightly loaded
onto the flat CM, and the pure water flux could reach over 2000 L/(m2 × h) under a trans-membrane
pressure (TMP) of −92 kPa. The fixed bed PRCM water treatment system is extremely suited for MP
purification, and the removal efficiency of TC was as high as 92% with 270 min even though its initial
concentration was as low as 20 mg/L. The degradation rate and permeate flux of N-TiO2-CM was
2.57 and 2.30 times as high as that of the CM, indicating its good self-cleaning characteristics. The
quenching experiments illustrated that the reactive radicals involved in the PRCM process, •OH and
•O2

−, were responsible for TC degradation. This research also provides a utilization proposal for a
scale-up N-TiO2-CM system for water and wastewater treatment.

Keywords: nitrogen-doped; sol-gel method; photocatalytic ceramic membrane; micropollutants
removal; prospect in industrial application

1. Introduction

With the development of the economy and society, a large number of organics from
antibiotics, dyes, personal care products, pesticides, flame retardants, organic solvents,
etc., enter into the ecosystem with the characteristics of stable structure, recalcitrance, and
low concentration [1,2]. These organic pollutants are known as emerging micropollutants
(MPs), which seriously threaten human health and affect ecological balance and stability.
Therefore, water treatment and reuse are key topics concerning the scarcity of drinking
water on Earth [3]. There is global concern associated with the elimination of MPs before
possible reuse or discharge into the environment [4]. However, MPs are difficult to remove
completely, requiring a large amount of chemical oxidant, high energy consumption, low
efficiency, and the production of a lot of disinfection by-products [5–7]. It is crucial to
find a method of removing MPs with high efficiency but low cost. As a result, researchers
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from both home and abroad have turned to membrane separation for help such as nanofil-
tration (NF) and reverse osmosis (RO) because of their advantages of high water quality
of treated effluent, smaller footprint, convenient operation, low operating cost, etc. [8,9].
Nevertheless, fouling is a big problem for the application of NF or RO due to the adsorption
physicochemical reaction of nano sizes of colloidal material, macromolecular compounds,
and microorganisms in long-run operation [10–12].

As mentioned above, it is vital to develop an anti-fouling membrane for the treatment
of MPs. Currently, research studies on the anti-fouling membrane mainly focus on the
coupling processes of advanced oxidation and membrane separation, because the former
generates strong oxidizing free radicals, which not only benefits the degradation of organic
pollutants but also eliminates the fouling of the membrane [13,14]. In existing articles,
ceramic membranes have been fully combined with advanced oxidation technology, and
nano-catalysts are supported on CM by spraying, which can not only reduce the adhesion
of pollutants on the membrane but also facilitate the reuse of nano-catalysts [15]. As a
result, the coupling technologies can not only avoid the shortcomings of a single process
but also exhibit a synergistic effect for the treatment of pollutants, such as the coupling
process of TiO2 photocatalysis, Fenton (like) oxidation, persulfate oxidation, ozonation,
and electrocatalytic oxidation, etc., with a ceramic membrane (CM), ultrafiltration, NF
and RO [16–22]. Among them, the coupling process of TiO2 photocatalysis and CM has
become an attractive technology for the treatment of MPs due to high degradation efficiency,
prominent anti-fouling performance, facile operation, and the usage of solar energy to
cut costs. However, the coupling technologies are also divided into two systems, one is
CM, which is placed in a slurry TiO2 photocatalysis system, and the other is developing a
reactive CM with TiO2 nanocatalyst. Compared with the former system, the latter shows
many advantages of much fewer losses and no agglomeration of TiO2 photocatalyst, is
simple to control and operate, and so on.

Therefore, the fabrication methods of a TiO2 photocatalyst-loaded reactive ceramic
membrane is extremely important with outstanding visible light catalytic activity, high flux,
and better stability and reuse performance, which mainly include dip-coating, physical
deposition, spin coating, immersion precipitation, and electrospinning, etc. However, as we
know, not much research targets the preparation of a larger reactive flat ceramic membrane
module with superficial area over 200 cm2 and water treatment capacity over 1 L. Therefore,
we make a comparison, as shown in Table 1. In this paper, we use a peculiarly cheap
precursor of urea to synthetize the N-doped TiO2 (N-TiO2) photocatalyst to expand its
visible light response activity with the sol-gel method. Then, a larger N-TiO2 loaded flat
CM (N-TiO2-CM) with a superficial area of 240 cm2 (15 cm × 8 cm × 2 sides) was prepared
by a facile dip-coating method. The N/TiO2-CM was fabricated into a CM module and a
water treatment system using LED UVA light as a light source was designed and set up
correspondingly. Model MPs of tetracycline hydrochloride (TC) aqueous solutions were
treated in the new N-TiO2-CM water treatment system, respectively, and the degradation
performance and permeate flux were investigated comprehensively.

2. Experiment and Methods
2.1. Preparation of the N-TiO2-CM

The planar CM used in the experiments is produced by Shenzhen Huahuai circulation
material of China. with a main component of α-Al2O3 (L ×W × H = 510 × 150 × 4 mm),
a nominal pore size of 0.1 µm, water purification channels of 43 (L × W = 2 × 3 mm), a
porosity of 53%, and an effective membrane area of 0.024 m2. For the preparation of N-TiO2-
x-CM, firstly, the CM was cut into smaller pieces with a dimension of 90 mm × 150 mm
(L ×W). Then, the CM was immersed in a mixture of deionized water, absolute alcohol,
and acetone with a volume ratio of 1:1:1 for 6 h. After that, the CM was washed with
deionized water and dried at 105 ◦C in an oven for further use. The preparation procedures
of N-doped TiO2 sol and the batch photocatalytic experiment with N-TiO2 nanoparticles
were detailly described in the Supplementary Materials. As can be seen in Figure S1,
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N-TiO2-1 (n(Ti):n(N) = 1:1) and N-TiO2-2 (n(Ti):n(N) = 1:2) exhibited a better visible light
photocatalytic activity. As a result, N-TiO2-1 and N-TiO2-1 were chosen to prepare the
N-TiO2-CM [23,24].

The dip-coating experiments were conducted with a TL 0.01 dip-coater (MTI corpo-
ration), and the procedures were as follows: (1) the clean-washed CM was soaked in the
as-prepared N-TiO2 sol (n(Ti):n(N) = 1:1 or 1:2) for 10 min; (2) then, the CM was lifted
up with a speed of 10 mm/min, and air dried for 30 min after the movement; (3) the
dip-coating procedure was repeated another two times (3 layers) due to the adverse effect
of higher layers (6 and 9 layers) on the pure water flux of PRCM shown in Figure S2. After
drying in air, the N-TiO2 sol-coated CM was calcined in a muffle furnace at 105 ◦C for
30 min at a heating rate of 1 ◦C/min and then continued to heat up to 500 ◦C for 2 h at
the same heating rate of 1 ◦C/min. Finally, the membrane material was cooled to room
temperature at 1 ◦C/min to obtain the photocatalytic reactive CM of N-TiO2-x-CM (x-
refers to N/Ti molar ratio). The as-prepared N-TiO2-x-CM was then bonded with plastic
subassembly by epoxy resin to obtain a PRCM module, which is shown in Figure 1 [24].
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Figure 1. Preparation process of PRCM of N-TiO2-CM.

2.2. The Experimental Setup of PRCM

The water treatment system with PRCM consisted of a quartz fixed bed reactor (FBR,
L ×W × H = 180 × 25 × 130 mm), in which the N-TiO2-CM was vertically placed, along
with two LED lamps (405 nm, 45 W), two water tanks (L ×W × H = 100 × 100 × 240 mm),
a diaphragm pump, a peristaltic pump, and some accessories of valves and piezometers, as
shown in Figure 2. The LED lamps were placed face to face outside both sides of the FBR at
a distance of 10 mm. The MP wastewater was circulated between FBR and the 2# water tank
through the peristaltic pump and was degraded by the PC process. As for the MF process,
the permeate was sucked out to the 1# water tank by the diaphragm pump. It is worth
mentioning that the trans-membrane pressure (TMP) was recorded by two piezometers
before and after the diaphragm pump.
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2.3. Removal of MP by the Fixed Bed PRCM System

For each experiment, 2.0 L of 20 mg/L of TC solution was poured into the 2# water tank
of the new N-TiO2-CM water treatment system as shown in Figure 2. Then, the peristaltic
pump was turned on and the wastewater was circulated between the fixed bed reactor and
the water tank. After running for ten min, 20 mL of TC solution was sampled and labeled
as a zero-point sample. Then, the LED lamps and the diaphragm pump with different
vacuum pressures (−20, −40, −60, −80 kPa) were turned on to start the photocatalysis
and membrane filtration coupling process. At the same time, the valve of the two tanks
was also opened. Several samples were taken out at an interval of 30 min to detect the
absorbance of MP concentrations by a spectrophotometer. The removal efficiency (R) of
MP was calculated using the following equation,

R =
C0 − Ct

C0
× 100% (1)

where C0 (mg/L) and Ct (mg/L) are the MP concentration at the beginning and any time t,
respectively.

The first-order reaction kinetic equation was used for fitting the photocatalytic degradation
dynamics, and the reaction rate constant k (min−1) can be obtained using Equation (2) [25].

ln
C0

Ct
= k× t (2)

The permeate flux (J, L/(h·m2)) of the PRCM is expressed as Equation (3) according to
the literature [26].

J =
V

A× t
(3)

where V is the volume of permeate (L), A is the MF area (m2), and t is the time (h).

2.4. Analysis Methods

The crystal texture of the TiO2 and N-TiO2 nanoparticles was identified by X-ray
diffraction (XRD, XRD-7000). The morphology and microstructure of the nanoparticles
were observed via scanning electron microscopy (SEM, JEOL-7500) and transmission
electron microscope (TEM, JEM-2010). The binding energy position and coordination
environment of Ti and N in the catalyst were characterized by X-ray photoelectron spec-
troscopy (XPS, Thermo Fisher Scientific K-Alpha). The surface functional groups analysis
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was conducted by using a Fourier transform infrared spectroscopy (FT-IR, Thermo Fisher
Scientific, Waltham, MA, USA). The light absorption performance of powder materials was
determined through a UV-Vis-NIR spectrophotometer (Cary 5000, Agilent Technologies,
Santa Clara, CA, USA). The pore size of the PRCM was determined by a membrane pore
size analyzer (3H-2000 PB, Beijing Beishide Instrument Technology Co., Beijing, China).

3. Results and Discussion
3.1. Characterization of the N-TiO2 Nanoparticles

Figure 3a shows the XRD spectra of N-TiO2 with different doping ratios. The diffrac-
tion peaks at 37.80◦, 48.06◦, 53.87◦, 55.08◦, 62.59◦, 70.20◦, and 75.01◦ correspond to {004},
{200}, {105}, {211}, {204}, {220}, and {215} crystal planes of anatase, respectively [27]. The
crystalline phase of the undoped TiO2 was the main anatase. However, adding nitrogen
to the TiO2, there exhibited a diffraction peak of the rutile phase [28]. The rutile phase of
TiO2 has stronger thermal stability, and the diffraction angle is at 27.5◦. With the increase
in nitrogen, the degree of rutile crystallization decreased. This indicated that appropriate
N addition (n(Ti):n(N) = 1:1) was beneficial to the crystallization of TiO2, which probably
improved the photocatalytic degradation performance of N-TiO2. However, excessive N ad-
dition (n(Ti):n(N) = 1:2, 1:3, 1:4) would reduce the crystallinity due to the nitrogen–oxygen
exchange and lattice distortion during the reaction process, and delayed the crystallization
process [29]. The average crystal size of N-TiO2 was calculated as 20.04 nm by the Scherrer
formula [30]. As can be seen in Figure 3b,c, N-TiO2 nanoparticles appeared spherical
morphology with nanosized. Moreover, the surface of the particles was rough and uneven,
which could expose a larger area of surface-active sites. In Figure 3d, the interplanar
distance of N-TiO2 was calculated as 0.35 nm according to the Bragg equation (2d sinθ = n
λ) [31], which corresponds to the {101} crystal plane of TiO2 [32]. As a result, the doping of
nitrogen did not affect the dominantly exposed facets of the TiO2.
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images of 100 nm (c); and 5 nm (d) measuring scales of N-TiO2-1 nanoparticles.

Tnanoparticles were tested by XPS spectrum, and the results were presented in
Figure 4a–c. As can be seen in Figure 4a, the sample contained four elements of C, N,
O, and Ti, and the bond energy of the C 1s orbital was 284.95 eV. The presence of element C
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indicated that the residue of urea might not be completely removed after the calcination
of the nanocatalysts. There existed a weak N 1s peak on the surface of the sample, which
indicated that N was successfully doped into the TiO2 [33]. In Figure 4b, the bond energy
of Ti 2p orbital was 458.48 eV, which is a little different than that of the 459.05 eV of pure
TiO2, and the peaks at 464.08 eV attributed to Ti 2p1/2 [34]. Figure 4c shows the N 1s
peaks located at 397.98 eV, 399.93 eV, and 403.58 eV [35]. The peak of 399.93 eV indicated
that most of the N element doped into the TiO2 lattice in the form of O–Ti-N bonds or
N–O-Ti bonds, formed a product similar to NOx [36–38]. While the emergence of the peak
was at 397.98 eV, the N atom in the crystal successfully replaced the O atom to form a
Ti–N-Ti bond [39,40]. The N 1s peak at 403.58 eV indicated that a handful of N elements
was adsorbed on the surface of TiO2 in the form of nitrogen-containing compounds, which
exhibited no chemical bond associated with TiO2 crystals [41].
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Figure 4d illustrates the FT-IR results of N-doped TiO2. The characteristic absorption peak
of 600~925 cm−1 refers to the O-Ti-O frame. The absorption peak around 3300~3500 cm−1

should be the O-H stretching vibration of the hydroxyl on the TiO2 surface and the adsorbed
water [42]. The narrow peak at 2000~2350 cm−1 was due to the mixing of the N 2p state and
the O 2p state in the valence band. The substitution of a N atom for an O atom was conducive
to narrowing the band gap of TiO2 and improving the photocatalytic activity under visible
light [43]. An absorption peak at about 1750 cm−1 owed TiO2 surface adsorbed water of O-H
bending vibration. The anti-symmetric weak peak at 1600 cm-1 belonged to the absorption peak
of N-O.

Figure 4e shows the bandgap energy (Eg) of the photocatalyst calculated by the Tauc
method through the plot of photon energy (hv) with (Ahv)2 [44]. As confirmed, the band Eg
of N-TiO2 was reduced from 3.10 eV of undoped TiO2 to 2.70 eV of N-TiO2 which could be
predicted that N-TiO2-1 probably exhibits competitive visible-light-induced photocatalytic
activity [45].

3.2. Characterization of PRCM

Figure 5a–e are the results of CM (α-Al2O3) and N-TiO2-CM characterized by SEM/EDS.
It can be clearly seen from the SEM image of Figure 5a that α-Al2O3 of the ceramic membrane
exhibited a lumpy shape and distributed unevenly. Comparatively, blocky films occurred on
the surface of the CM because of the loading of N-TiO2 on the CM by the dip-coating method
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as shown in Figure 5b. The EDS mapping images of Figure 5c,d of the elements of Al in blue,
Ti in green, and N in red, indicated that the N-TiO2 was uniformly loaded onto the CM, which
successfully formed the N-TiO2-CM.
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Al (e).

To investigate the influence of supported N-TiO2 catalysts on the pore size distribution
of the CM, the pore distribution and pure water flux of CM and PRCM were determined,
and the results were summarized in Figure 6a. As displayed in the figure, the pore size
of CM is distributed regularly from 0.159 µm to 0.168 µm, which accounts for more than
95% with an average pore diameter of 0.163 µm. Loading photocatalyst on the CM could
adversely affect the pore size distribution, and the average pore diameter deceased to TiO2-
CM of 0.110 µm, N-TiO2-1-CM of 0.102 µm, and N-TiO2-2-CM of 0.092 µm, respectively.
Furthermore, compared with TiO2-CM, the sharper decrease in the pore diameter of N-TiO2-
CM is probably attributed to the blocking of the pores of the CM by the urea calcination
residues of carbon [46]. To further confirm the blocking effect of the photocatalyst on the
CM, the pure water flux of CM and PRCM was detected at room temperature under a
trans-membrane pressure (TMP) of −92 kPa. Figure 6b shows the pure water flux of CM
was 2644.0 L/(m2 × h), which deceased to TiO2-CM of 2485.2 L/(m2 × h), N-TiO2-1-CM
of 2016.2 L/(m2 × h), and N-TiO2-2-CM of 2114.2 L/(m2 × h), respectively. These results
are also consistent with pore size distribution results of CM and PRCM, the decrease in
pure water flux of PRCM also mainly owing to the covering effect of photocatalyst on the
CM [15].
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Figure 6. The pore size distribution (a) and pure water flux (b) of CM and N-TiO2-CM with different
loading layers under a TMP of −92 kPa.

3.3. Performance Evaluation of PRCM

The performance evaluation of PRCM was conducted in a fixed-bed water treatment
system shown in Figure 2 for the purification of model MP of TC. Figure 7 and Table S1
illustrate the degradation rate and the first-order kinetics and permeate flux of MP by CM
and PRCM. As can be seen in Figure 7, compared with CM without any photocatalyst, the
PRCM of TiO2-1-CM, N-TiO2-1-CM, and N-TiO2-2-CM exhibited a much higher degrada-
tion rate of TC, and their degradation kinetic constant k was 1.43, 2.33, and 2.57 times as
high as that of CM, respectively. Moreover, the removal efficiency of TC by the fixed-bed
treatment system of N-TiO2-1-CM and N-TiO2-2-CM could reach 88% and 92% within
270 min. Furthermore, the PRCM also showed a better self-cleaning effect than the CM,
and the permeate flux J of the TiO2-CM, N-TiO2-1-CM, and N-TiO2-2-CM was as high as
817.7 L/(m2 × h), 1243.1 L/(m2 × h), and 1286.0 L/(m2 × h), respectively, which is 1.47,
2.23, 2.30 times higher than that of CM of 557.84 L/(m2 × h). These results could be ex-
plained by the loading photocatalyst of TiO2, N-TiO2-1, N-TiO2-2 onto CM, the production
of active species of hydroxyl radical (•OH), superoxide radical (•O2

−), etc., in the photo-
catalysis process that could degrade the TC into small molecule organics, and even into CO2
and H2O, which improved not only the degradation rate of TC but also the permeate flux.
Furthermore, the doping of N into the TiO2 could reduce bandgap energy (Eg), improve
adsorption of visible light, and lower the recombination of the photogenerated charges,
resulting in the higher degradation rate of TC and permeate flux of N-TiO2-x-CM than that
of TiO2-CM [47]. Last but not least, the removal efficiency of TC by CM and PRCM in the
dark was negligible at no more than 5%; however, under the LED light, the CM exhibited
relatively good degradation performance of TC, maybe due to the photocatalytic reaction
of its essential component of α-Al2O3 [48].

A comprehensive performance comparison of N-TiO2-x-CM in this work with other
PRCM prepared by different methods with different photocatalysts was made, and the
results were listed in Table 1. As summarized in the table, the prevailing preparation
methods of PRCM include the extrusion method, atomic layer deposition, and dip-coating
method by a comparison of PRCM shape and size, pollutants and their initial concentration,
water treatment capacity, reaction time, pure water flux, and MP removal efficiency. As
compared, the N-TiO2-x-CM prepared in this study exhibited a larger superficial area of
120 cm2 (L ×W = 15 × 8 cm), a higher wastewater treatment capacity of 475.8 L/(m2 × h),
and pure water flux of 2114.2 L/(m2 × h), and good purification performance of TC
with a removal efficiency as high as 92%. Consequently, the N-TiO2-CM in our research
reveals obvious advantages of green and facile fabrication, high flux, excellent visible
LED light response activity, and easy scale-up for industrial application. The degradation
of antibiotics by different treatment processes was compared and listed in Table 2. As
noted in Table 2, the PRCM process exhibits higher pollutant removal efficiency, higher
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treatment capacity, no addition of chemical agents, and a prospect to use solar light, which
is more suitable for MP removal at a relatively lower cost than that of other advanced
oxidation processes, such as photo-Fenton, ozone oxidation, etc. In addition, PRCM is
being developed for the long-term use of solar energy. As a result, the PRCM process is
more efficient for the removal of low concentrations of antibiotics.
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loading layers = 3).
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Table 1. Comprehensive comparison of pollutants treatment performance of the different PRCM.

Membrane Type Loading Method Pollutants Other Conditions Shape and Size
of PRCM Flux of Pure Water Treatment Capacity Reaction Time Removal Efficiency Reference

CuO/TiO2-CM Extrusion
method

Ciprofloxacin
(C0 = 0.5 mg/L)

One LED UVA lamp
TMP = 0.2 MPa

4.7 × 10−3 m2

Tubular PRCM
(D × L = 1 cm × 15 cm)

218
L/(m2 × h)

25.5
L/(m2 × h) 60 min 99.5% [49]

TiO2-CM Atomic layer
deposition

Methylene blue
(C0 = 1 mg/L)

One UV lights of
365 nm with
10 mW/cm2

TMP = 0.1 MPa

1.8 × 10−4 m2

Disc PRCM
(D = 1.5 cm)

150
L/(m2 × h)

1666.7
L/(m2 × h) 100 min 50% [50]

Ag-TiO2-
CM Dip-coating method Bisphenol A

(C0 = 10 mg/L)
One 100 W Xe lamp

TMP = 0.2 MPa

1.4 × 10−3 m2

Tubular PRCM
(D × L = 1.5 cm × 8 cm)

325
L/(m2 × h)

157.1
L/(m2 × h) 270 min 88% [51]

Graphene-TiO2-CM Dip-coating method Estradiol
(C0 = 0.5 mg/L)

One 6 W LED UVA
lamp

TMP = 10 MPa

8.8 × 10−3 m2

Tubular PRCM
(D × L = 1.4 cm × 20 cm)

90
L/(m2 × h)

90.9
L/(m2 × h) 210 min 42.1% [52]

N-TiO2-
CM Dip-coating method Tetracycline

(C0 = 20 mg/L)

Two 45 W LED UV
lamps with

24 µmol/(m2 s)
TMP = −0.092 MPa

1.2 × 10−2 m2

Planar PRCM
(L ×W = 15 × 8 cm)

2114.2
L/(m2 × h)

475.8
L/(m2 × h) 270 min 92% This work

Notes: CM refers to ceramic membrane; TMP refers to trans-membrane pressure.

Table 2. Different advanced oxidation technologies degrade antibiotics.

Treatment Methods Pollutants Removal Efficiency Treatment Time Other Conditions Treatment Capacity Reference

Photo-Fenton
(α-Fe2O3-CM)

20 mg/L
Tetracycline 82% 200 min H2O2 concentration 19.4 mmol/L, TMP 8 kPa,

LED light 405 nm, light intensity 24 µmol/(m2·s). 0.600 L/h [15]

Ozonation 10.94 mg/L
ciprofloxacin 84% 600 min O3 concentration 1.92 g/L, dissolved O3

concentration in solution 34.56 g/h 1.000 L/h [53]

Sonochemistry oxidation 0.5 mg/L
Trimethoprim 90% 90 min power density = 36 W/L, pH = 6 0.133 L/h [54]

Electrochemical oxidation
(Carbon-felt)

164.6 mg/L
Rifampicin 100% 360 min Current density = 50 mA/cm2, Potentials = 1.36 V,

pH = 6.8, 50 mmol/L Na2SO4
0.025 L/h [55]

UV/H2O2
5.92 × 10−4 mg/L

Diclofenac 90% 90 min H2O2 concentration 0.1 mmol/L, one Xe lamp
with 100 mW/cm2, 0.100 L/h [56]

PRCM
(N-TiO2-CM)

20 mg/L
Tetracycline 92% 270 min Two 45 W LED UV lamps with 24 µmol/(m2 s)

TMP = −0.092 MPa 0.571 L/h This work
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3.4. Photocatalytic Mechanism of PRCM

The types of reactive species promoting TC degradation in the PRCM fixed bed water
treatment systems were determined by quenching experiments, in which isopropanol
(IPA), ascorbic acid, and disodium ethylenediaminetetraacetic acid disodium salt (EDTA-
2Na) were selected as quenching agents for hydroxyl radical (•OH) [57], superoxide
radical (•O2

−), and hole (h+) [58], respectively. As shown in Figure 8, the addition of IPA,
ascorbic acid, and EDTA-2Na greatly inhibited the degradation rate of TC, and the k values
deceased to 5.4 × 10−4 min−1, 1.5 × 10−3 min−1 and 7.8 × 10−4 min−1, respectively, and
which was 9.8 × 10−3 min−1 of that without any quencher. Furthermore, the degradation
efficiency of TC of photocatalysis with IPA, and ascorbic acid was only 9.95% and 27.22%,
respectively. These results indicated that •OH and •O2

- took the main responsibility for
the TC degradation in the PRCM system [57,58].
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Figure 8. Radical trapping experiments: degradation efficiency of TC in the presence of different radical
scavengers (a); the corresponding kinetic curves (b); and reaction rate constant k (c). (Reaction conditions:
C(TC) = 20 mg/L, C(IPA) = 0.5 mg/L, C(Ascorbic acid) = 0.025 mg/L, C(EDTA-2Na) = 0.025 mg/L, no light in
the first hour, reaction time 240 min, the catalyst content is 5 g/L, LED UV lamp (425 nm) irradiated for
180 min).

With the help of the above-mentioned quenching experiments, the main reactions of
the MP degradation by N-TiO2-x-CM under visible LED light irradiation were summarized
as Equations (4)–(8) [46]. In addition, a mechanism diagram for the treatment process was
also achieved as shown in Figure 9. The doping of N intoTiO2 lowered its bandgap energy
Eg from 3.10 eV to 2.70 eV, which benefits the adsorption of visible LED light to generate
more reactive species of •O2

− and •OH, etc. [59]. As for the PRCM, the free radicals of
•O2

− and •OH generated from N-TiO2 photocatalysis could degrade the organic pollutants
into small molecule substance, and even mineralize into CO2 and H2O, which improves
the permeate flux and reduces the membrane fouling of the CM. Electrostatic attraction or
repulsion between the photocatalysts and the organic molecules depends on their surface
charge and consequently enhances or inhibits the photodegradation efficiency. It becomes
an inhibition of h+ to produce •OH under acidic conditions [60]. Several inorganic ions can
improve the photocatalytic activity of N-TiO2 due to its high charge state and small ionic
radius [61].

TiO2 + LED→ h+TiO2
+ e−TiO2

(4)

O2 + e−TiO2
→ ·O−2 (5)

H2O + h+TiO2
→ ·OH + H+ (6)

2·OH→ H2O2 (7)

·O−2 /·OH + Organic + O2 → H2O + CO2 (8)
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3.5. Utilization Proposal of Scale-up N-TiO2-CM

The N-TiO2-CM showed a good visible light response, high catalytic activity, and an-
tipollution performance. According to the laboratory-scale research results of the PRCM in
this study, a scale-up design of N-TiO2-CM equipment for organic pollutants treatment was
proposed in Figure 10. The pilot application of N-TiO2-CM could be realized by connecting a
large number of N-TiO2-CM modules in series and using solar light, which could be used not
only in the treatment of MP for drinking water but also in the post-treatment of urban sewage.
The prospective research studies in this area are preparation of PRCM with higher utilization
efficiency of visible light and better reusable performance. Furthermore, the industrial reactor
design and process simulation of the flow field, etc., are urgent.
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4. Conclusions

In this work, a large-sized (L × W = 15 cm × 8 cm) planar photocatalytic reactive
ceramic membrane (PRCM) with high flux was prepared using a convenient dip-coating
method with N-doped TiO2 (N-TiO2-CM). The doping of N into TiO2 reduced its bandgap
energy Eg from 3.10 eV to 2.70 eV and benefited the adsorption of visible LED light that
improved its photocatalytic activity. The SEM/EDS results indicated that the N-TiO2 was
tightly and regularly loaded onto the flat CM, but was averse to its pore size distribution
and pure water flux (PWF), and the N-TiO2-CM owned a PWF of 2114.2 L/(m2 × h) under
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a TMP of −92 kPa. The newly established fixed bed N-TiO2-CM water treatment system
with visible LED light (2 × 405 nm) was used for TC removal, and the removal efficiency of
TC reached 92% within 270 min with an initial concentration of 20 mg/L. The degradation
rate and permeate flux of N-TiO2-CM was 2.57 and 2.30 times as high as that of the CM,
indicating its good self-cleaning performance. The quenching experiments suggested
that •OH and •O2

- were the dominant reactive radicals for TC degradation in the PRCM
treatment system. A comprehensive pilot equipment of the PRCM is proposed in this study
as a reasonable suggestion for the industrial treatment of water or wastewater and the
utilization of solar light.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst13040651/s1. Figure S1. The removal efficiency (a) and
degradation kinetic curve (b) of photocatalysis with TiO2 and N-TiO2 with different doped ratios
nanoparticles of Rhodamine B; Figure S2. The effect of coating layers of N-TiO2 on the pure water
flux of the PRCM; Table S1. The removal (%), degradation rate constant k and correlation coefficient
R2 of degradation performance of TC by the fixed bed treatment system with CM and PRCM loaded
with TiO2, N-TiO2-1 and N-TiO2-2.
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