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Abstract: Total strain-control, low-cycle fatigue experiments of a fourth-generation Ni-based single-
crystal superalloy were performed at 980 ◦C. Scanning electron microscopy and transmission electron
microscopy are employed to determine fracture morphologies and dislocation characteristics of the
samples. As the strain amplitude increased from 0.6 to 1.0%, the cyclic stress and plastic strain per
cycle increased, the cyclic lifetime decreased, more interfacial dislocation networks were formed,
and the formation rate accelerated. Cyclic hardening is associated with the reaction of accumulated
dislocations and dislocation networks, which hinder the movement of dislocations. The presence of
interfacial dislocations reduces the lattice mismatch between the γ and γ′ phases, and the presence of
dislocation networks that absorb mobile dislocations results in cyclic softening. At a strain amplitude
of 1.0%, the reaction of a high density of dislocations results in initial cyclic hardening, and the
dislocation cutting into the γ′ phase is one of the reasons for cyclic softening. The crack initiation
site changed from a near-surface defect to a surface defect when the strain amplitude increased from
0.6 to 0.8 to 1.0%. The number of secondary cracks initiated from the micropores decreased during
the growth stage as the strain amplitude increased.

Keywords: deformation behaviors; low-cycle fatigue; single-crystal superalloys; strain amplitude

1. Introduction

Nickel (Ni)-based single-crystal (SC) superalloys are widely used as high-temperature
structural materials in aircraft and advanced gas engines because of their high operating
temperatures and excellent mechanical properties [1–3]. The microstructure of SCs comprise
two phases: (1) ordered intermetallic γ′ phase with an L12 structure coherently embedded in a
disordered solid-solution and (2) γ matrix phase with a face-centered cubic structure. Owing
to the reasonable ratio of elements and the heat-treatment process, the γ′ phase is composed
of cuboidal particles with a volume fraction of up to 70%, and its strength can increase with
an increase in temperature, such that the superalloys exhibit excellent mechanical properties
and high resistance to fatigue and creep at elevated temperatures [4–6].

Gas turbines operate at high alternating loads for long periods on account of startup
and shutdown, resulting in fatigue damage. In recent decades, there has been growing
interest in the low-cycle fatigue (LCF) behavior of Ni-based SC superalloys, which has led
to extensive research in this area. LCF damage mainly occurs in the lower region of the
blade body and blade root, where there is a large stress concentration, with the service
temperature ranging from 700 to 1000 ◦C [7–10]. Due to the complex structure of turbine
blades, there are evident strain deformation variances in different areas. Strain amplitude
is a crucial factor that dominates the LCF mechanism of a blade. Previous studies have
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confirmed that with increasing strain amplitude, the responses of cyclic stress, dislocation
type, and microscopic deformation behavior change significantly, and the lifetime and
design of alloys are affected by the deformation and damage behavior of alloys in different
regions [6,11–13]. Cyclic stress responses include cyclic hardening, cyclic softening, and
cyclic stabilization, which indicate that, under a constant strain amplitude, the stress am-
plitude increases, decreases, and basically remains unchanged with an increase in cycles,
respectively. Cyclic hardening is mainly related to an increase in dislocation density [14,15],
dislocation entanglement [16,17], and the existence of dislocation networks [18] and stack-
ing faults (SFs) [9] reduce the mobility of dislocations in the channels at high temperatures.
Cyclic softening is mainly related to the dislocation shearing of γ′ phases [18,19], interface
mismatch reduction [20], and γ′ phase rafting [21,22]. However, dislocation density re-
duction arises due to dislocation annihilation [18] and dislocation network formation [21]
at high temperatures. Cyclic stabilization occurs when the hardening and softening ef-
fects are in equilibrium [15,23]. At high-strain amplitudes, cracks mainly originate in the
micropores near the surface, whereas, at low-strain amplitudes, oxidation significantly
affects crack initiation [24]. Wang [9,12] reported that at a strain amplitude (∆εt/2) range
of 0.5–0.7% at 980 ◦C, the dislocations are more likely to form dislocation networks at
the interface, and, under 1.0% strain, the shearing of the γ′ phase by SFs becomes the
predominant deformation mechanism. Rafting of the γ′ phase occurs under a low-strain
amplitude at high temperatures, with dislocation networks tending to be generated at the
rafting interface [25]. Previous research [26] has indicated that dislocation climbing is the
basic condition for the formation of dislocation networks and is faster under a high-strain
amplitude [11], demonstrating that a high-strain amplitude is likely to be more conducive
to the formation of dislocation networks. Studies on LCF have primarily focused on first-
to third-generation single crystals, with fourth-generation single crystals barely studied,
especially the effects of strain amplitude on the cyclic stress response and microstructures
at high temperatures.

The addition of rhenium (Re) and ruthenium (Ru) to fourth-generation single-crystal
superalloys affects the generation of interface dislocation networks, rafting of the γ′ phase,
and dislocation shearing of the γ′ phase [27–30], which influences the cyclic stress response
and fatigue deformation. In this study, a set of LCF tests were performed at 980 ◦C on a
fourth-generation single-crystal superalloy under varying strain amplitudes to understand
the effects of strain amplitude on cyclic stress response and deformation mechanisms.

2. Materials and Methods

The material used in this study was a test bar made of a fourth-generation Ni-based
monocrystalline superalloy. Its chemical composition is summarized in Table 1.

Table 1. Nominal composition of experimental alloy (wt.%).

Al + Ta Co + Cr Mo + W Re + Ru Ni

12% 8% 9% 7.5% Bal.%

The crystal orientations of the cast rods were determined through X-ray diffraction.
The loading direction was designed to be parallel to the [001] crystal orientation of the alloy
with an angle orientation deviation within 10◦. Conventional three-step heat procedures
were performed to process the casting material, including a high-temperature solid solution
treatment (1340 ◦C), followed by a two-stage ageing treatment at relatively low temper-
atures in argon and vacuum (1100 and 870 ◦C, respectively). Air cooling was performed
after each heat treatment. LCF specimens (76 mm in length and 5.5 mm in gauge diameter)
were machined and polished from fully heat-treated SC bars.

All LCF tests were conducted using an MTS servo machine (MTS-100kN-10, MTS,
Eden Prairie, MN, USA) in the air at 980 ◦C under fully reversed (R =−1) total strain control.
The strain amplitudes were 0.6, 0.8, and 1.0%, and a triangular waveform with a constant
strain rate of 5× 10−3 s−1 was used. After the fatigue tests, the surface morphologies, crack
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initiation, and crack propagation of the specimens were observed using a scanning electron
microscope (SEM, FEI Quanta 650, FEI, Portland, OR, USA). The chemical compositions of
the oxides were determined through energy-dispersive X-ray spectroscopy (EDS, Oxford,
UK) under SEM. Microstructural observations of the specimens after fracturing were
performed using a transmission electron microscope (TEM; FEI Tecnai F20 S-TWIN, FEI,
Portland, OR, USA) operating at 200 kV. The TEM observations were performed on thin
{001} foils.

To better observe the morphology of the dislocation, the transmitted sample was cut at the
working section 5 mm away from the fracture (perpendicular to the axial), with the thickness
of the slice approximately 550 µm. Thereafter, manual grinding was performed below 50 µm
and pressed into thin foils of 3 mm in diameter. The thin foils were prepared through double-
jet thinning in Tenupol 5 (Struers, Denmark) at 15 V and −30 ◦C. The electrolyte comprised
70, 23, and 7% vol of methanol, n-butanol, and perchloric acid, respectively. Meanwhile, the
evolution of γ and γ′ morphologies in the longitudinal sections of 3 mm from the fracture
surface was observed via SEM. The sample was mechanically polished and chemically etched
in a solution composed of 10 mL HF + 20 mL HNO3 + 30 mL C3H8O3.

3. Results
3.1. Cyclic Stress Response

Figure 1 illustrates the cyclic stress response curves of the alloys tested at 980 ◦C under
different strain amplitudes. As the strain amplitude increased, the cyclic stress of the alloy
also increased; hence, the fatigue lifetime gradually decreased. The cyclic stress response
also indicates the cyclic hardening/softening of the alloy associated with the structural
changes occurring during fatigue. Cyclic hardening/softening curves were constructed by
plotting the stress amplitude (∆σt/2) vs. the logarithm of the number of cycles to failure (N).
For ∆εt/2 values of 0.6 and 0.8%, the alloys exhibited fairly constant stress amplitudes from
the beginning of the tests. Thereafter, they exhibited cyclic stability for approximately a few
hundred cycles, followed by gradual softening. Finally, near the end of the test, the stress
decreased rapidly, resulting in the onset and rapid propagation of fatigue cracks. With an
increase of ∆εt/2 to 1.0%, the alloy initially exhibited fast cyclic hardening, followed by
cyclic stability. Subsequently, gradual softening and stress reduction occurred, similar to
the ∆εt/2 values of 0.6 and 0.8%, respectively.
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Figure 1. Cyclic stress response curves of experimental alloys at varying strain amplitudes during
low-cycle fatigue deformation.

The hysteresis loops at ∆εt/2 values ranging from 0.6 to 1.0% in the first and second
half-life cycles are shown in Figure 2a,b, respectively. The central area of the hysteresis
loop is wrapped by a yellow curve, as shown in the lower right part of Figure 2. The area
of the hysteresis loops indicates the plastic strain energy, and the plastic strain range is
characterized by the width of the hysteresis loop [31] when the stress is 0 MPa. The size
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of the width demonstrates the ability of the alloy to resist plastic deformation during the
cyclic fatigue test; the larger the width, the smaller the ability of the alloy to resist plastic
deformation [32]. In the first cycle, the obtained plastic strain ranges were 0.016, 0.019, and
0.277% when ∆εt/2 values were 0.6, 0.8, and 1.0%, respectively; in the half-life cycle, the
obtained results were 0.006, 0.012, and 0.073%, respectively. Cyclic deformations at half-life
are generally considered stable. With the stability of the cyclic deformation, the value
decreased, particularly under a strain amplitude of 1.0%. At ∆εt/2 = 0.6%, the plastic strain
was negligible. When the strain amplitude increased to 0.8%, the plastic strain increased
slightly. Thus, it was demonstrated that, as the strain amplitude increased to 1.0%, the
plastic strain increased significantly.
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(b) stabilized cycle.

3.2. Fatigue Fractography and Fracture Mechanism

As shown in Figure 3, the cracks initiated from or near the surfaces of the specimens,
thereafter propagating along the {001} planes; that is, they are perpendicular to the applied
stress. The direction of the crack propagation is indicated by the blue arrow. The mechanism
of crack initiation and growth results from local stress concentrations in the midplane of
the micropore–alloy interfaces, resulting in a circular crack with a relatively featureless
surface [24]. When cracking reaches a certain depth, crack propagation translates to the
shear mode; that is, it occurs on different {111} planes [20]. Under a strain amplitude
of 0.6%, the crack initiated on the surface in a circular morphology with a halo (white
arrow) and bright color, as shown in Figure 3a,d. The existence of the halo is linked to
the homogenization of slip at high temperatures in the presence of oxidation [33,34]; the
oxidation is more pronounced in the bright-colored areas. After crack initiation, the crack
propagated along the plane perpendicular to the stress axis, with the propagation speed
being low because of the less effective crack growth driver at a lower cyclic amplitude [19].
The stress concentration generated at the defect also formed several secondary cracks
(yellow arrows), with a bright halo formed around the pores. As the strain amplitude
increased to 0.8%, cracks started to form at the surface defect and exhibited distinct bright
regions associated with oxidation, as shown in Figure 3b,e. When the crack propagated in a
plane perpendicular to the stress axis, it also produced secondary microcracks with circular
halos; however, the number of microcracks were significantly reduced than at the 0.6%
strain amplitude. When the strain amplitude was increased to 1.0%, cracks started to form
at the surface defect with no evident oxidation trace, and no secondary microcracks with a
halo were observed during the crack growth stage, as shown in Figure 3c,f. The oxidation
layers formed on the sample surface at strain amplitudes of 0.6, 0.8, and 1.0% are shown in
Figure 3g–i, respectively. The oxide layer represented by the dashed box became thinner
with increasing strain amplitude, illustrating a decrease in alloy oxidation. The cracks
initiated from the oxide layer of the specimen were observed to propagate predominantly
perpendicular to the loading axis, similar to the cracks initiated from the subsurface.
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Figure 3. Surface morphologies and oxide layer near the surface of specimens after failure:
(a,d,g); ∆εt/2 = 0.6%, (b,e,h); ∆εt/2 = 0.8%, and (c,f,i); ∆εt/2 = 1.0%.

The effect of the strain amplitude on crack initiation and propagation is related to
oxidation. At high-strain amplitudes, it is easy to rapidly generate stress concentrations at
the surface notches owing to the large cyclic loads, which can initiate cracks. However, at
low-strain amplitudes, the cyclic load is small, and it is difficult to rapidly generate stress
concentrations that reach the threshold. As time increased, high-temperature oxidation
occurred. During the load cycle, the strain mismatch between the plastically deformed
metal substrate, and the stiff oxide scale caused repeated cracking and reoxidation, resulting
in an oxide plug. The oxide plugs fill the micropores, and the surface micropores (caused by
insufficient liquid flow during casting) are passivated after oxidation [34]. This reduced the
effective stress concentration of the surface shrinkage cavity by generating a compressive
stress in/around the hole. Therefore, the stress concentration at the internal defects reached
the threshold faster than that at the surface, and cracks were less likely to be initiated at the
surface at low-strain amplitudes.

However, crack propagation along the micropores is an efficient approach for lower-
ing the crack propagation threshold. Micropores can also change the crack direction by
modifying the stress intensity factor at the crack tip to form secondary cracks [35]. The
crack propagation path is indicated by blue arrows in Figure 4. When the primary crack
reaches the micropores, a secondary crack forms, and the direction of the crack propa-
gation changes. Crack propagation occurs at a slow rate under a low-strain amplitude,
and the embrittlement effect of oxidation promotes crack propagation due to the sufficient
transmission of oxygen (O) along the crack [19]. Consequently, at low-strain amplitudes,
more secondary cracks with distinct oxidation signatures appeared during the slow crack
propagation stage. The chemical composition of the halo surrounding the micropores was
analyzed using EDS, as shown in Figure 4. The analysis demonstrated that the oxide was
enriched with Ni, aluminum (Al), tantalum (Ta), Re, molybdenum (Mo), chromium (Cr),
and Ru, whereas a decrease in the cobalt (Co) content was observed. One explanation for
this phenomenon is that O is transferred during crack propagation, and the partial pressure
of O at the crack tip is low, at which point Co is difficult to oxidize [36]. Therefore, the
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initiation and propagation of secondary cracks are influenced by the oxide composition,
particularly at low-strain amplitudes where the oxidation time is longer.
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A previous study [37] reported that, at 980 ◦C and low-strain amplitude, the crack ini-
tiation occurred from the stripping of the oxide layer on the surface, which is in agreement
with the results obtained in another study [38] but different from the results obtained in
this study. At similar loading times, the oxide layer thickness and crack length were higher
than those obtained in this study, indicating that the alloy was less resistant to oxidation,
and cracks were initiated earlier. This may be the main reason for the crack initiation from
the oxide layer on the surface at high temperatures and low-strain amplitudes.

3.3. Dislocation Movement and Deformation Mechanisms

Figure 5 illustrates the γ′ morphology away from the fracture surface under different
strain amplitudes at 980 ◦C. As shown in Figure 5a, when the strain amplitude is 0.6%,
a slight decrease in the degree of γ′ cubic was observed. When the strain amplitude is
0.8%, more γ′ cubic degree decreased, as shown in Figure 5b. When the strain amplitude
was 1.0%, the γ′ cubic degree exhibited no evident changes, as shown in Figure 5c. The
widths of the transverse channels broadened after fatigue, as shown in Figure 5d. Width
broadening was most pronounced at a strain amplitude of 0.8%, followed by 0.6%; however,
it was not significant at a strain amplitude of 1.0%.

Microstructural configurations of a fatigued alloy after an LCF test at 980 ◦C under
the strain amplitude of 0.6% were performed, as shown in Figure 6. Figure 6a shows
that almost all the dislocations distribute in the γ matrix channels, and a small amount of
dislocation networks are generated at the γ/γ′ interface. The rafting of the γ′ phase is not
evident. As shown in Figure 6b, the dislocations bow out through the γ matrix channel,
promoting the dislocation slips to the γ/γ′ interface. Dislocations piled-up at the γ/γ′

interface form a large number of dislocation entanglements. Figure 6c shows that, under
cyclic deformation, the dislocation networks are considered to be produced by the reaction
of two sets of parallel cross-slip dislocations arising from the misfit interface between the γ

matrix and γ′ phase [14].
When the strain amplitude increases to 0.8% at 980 ◦C, typical dislocation config-

urations and different deformation microstructures are observed, as shown in Figure 7.
At this condition, the corners of the cubic γ′ phase are appreciably degenerated, and the
corresponding width of matrix channels is increased at some deformed regions. Most
dislocations distribute along the γ/γ′ interfaces and form several dense and regular dislo-
cation networks at the interfaces of the deformed regions (Figure 7a). In comparison with
microstructures observed under the strain amplitude of 0.6% (Figure 6), more dislocation
networks are observed at the γ/γ′ interfaces. Although the cyclic stress increased, almost
no dislocations cut into the γ′ phases, indicating that dislocation networks have a signifi-
cant influence on hindering matrix dislocations from cutting into the γ′ phases [39,40]. As
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shown in Figure 7b, bowing and cross-slipping of dislocations in the γ matrix channels
piled up at the γ/γ′ interfaces, resulting in the generation of dislocation networks rather
than dislocation entanglements in the reaction. More small-scale dislocation networks were
formed at the interfaces, which were related to greater cyclic stress (Figure 7c).
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Figure 8 shows the typical dislocation configurations of an alloy after a test at
980 ◦C under a strain amplitude of 1.0%. A large number of regular dislocation networks
are observed at the γ/γ′ interfaces, which are formed by depositing matrix dislocations,
as shown in Figure 8a,b. In addition, a small amount of dislocation shearing into the γ′

phases was observed, owing to the accumulation of plastic deformation under high stress,
as shown in Figure 8c, which is attributed to the cyclic softening [18,20]. These dislocations
are of two main types under the conditions of high-temperature and high-strain amplitude:
(1) the γ′ phases are sheared by the matrix dislocations, resulting in SF formation within
them [9,13,41,42]; (2) the γ′ phases are sheared by the superdislocation, which decomposes
to form two partial dislocations and superlattice intrinsic SFs [9,12,27,42,43]. The disloca-
tions in the γ′ phases exhibit no characteristics of SFs in the samples; thus, it is likely to be
a superdislocation.
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(c) dislocation in the γ′ phase.

Therefore, for the LCF test at 980 ◦C under a strain of 1.0%, cross-slip and climb-
ing of dislocations are the main forms of deformation, and the shearing of γ′ phases by
superdislocation also begin to increase.

As shown in Figure 9, there are two main types of dislocation networks at 980 ◦C:
(1) arrangement of transitional dislocation network dominated by slip dislocations (blue
segments); and (2) equilibrium dislocation network including hexagonal and rhombic
arrangements (red line segment). Transition dislocation networks, which tend to be slightly
bowed, consist mostly of slip dislocations and exhibit a relatively irregular arrangement.
This transitional arrangement can develop into equilibrium arrangements with hexagonal,
rhombic, or octagonal structures [44]. As the strain amplitude increases, the morphology of
the interface dislocation network changes.
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As shown in Figure 9a, under a strain amplitude of 0.6%, two sets of slip dislocations in
the upper right corner (yellow and purple lines) and few equilibrium dislocation networks
are observed. When the strain amplitude increases to 0.8% (Figure 9b), two sets of slip
dislocations intersect. Combined with the analysis illustrated in Figures 6 and 7, we
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established that the formation of dislocation networks at a strain amplitude of 0.8% may
be faster than that at 0.6%, for which the fraction of equilibrium dislocation networks
increases significantly. As shown in Figure 9c, when the strain amplitude increased to 1.0%,
the fraction of equilibrium dislocation networks further increased, and the slip traces that
formed the dislocation networks disappeared. The influence of the strain amplitude on
the formation process of the dislocation network may be due to the following two reasons:
(1) under a high-strain amplitude, more dislocations accumulate at the interface, which is
conducive to the rapid formation of the dislocation network; (2) and under a high-strain
amplitude, the dislocation climbs faster, promoting the rapid movement of the dislocation
toward the interface.

3.4. Cyclic Hardening/Softening

Owing to the high temperatures, the strength of the γ′ phase is relatively high, cyclic
deformation is mainly concentrated in the γ matrix channels, and dislocations can move
along the {111} planes by bowing out through the γ matrix channels. It is difficult for
dislocations to enter the γ′ phases and pile up at the γ/γ′ interface, which will cause cyclic
hardening owing to the interaction of dislocations and the γ′ phases [45]. Meanwhile, the
appearance of interfacial dislocations reduces the lattice mismatch between the γ′ and γ

phases, and annihilation occurs when dislocations of opposite signs meet, resulting in a
softening effect [46,47]. The formation of dislocation networks through dislocation reactions
is an important deformation mechanism at high temperatures. In contrast, the existence of
a dislocation network hinders the movement of dislocations and prevent dislocations from
cutting into the γ′ phase, resulting in the hardening effect [18,41]. However, the dislocation
network can absorb the moving dislocations in the γ matrix channels, resulting in a decrease
in the dislocation density and cyclic softening [48]. When the dislocation cuts into the
γ′ phase, resistance to the dislocation movement is reduced, similar to the density of the
dislocation that accumulates at the interface, resulting in a softening effect [18]. Remarkably,
cyclic stability occurred when cyclic hardening was balanced with cyclic softening.

The cyclic stress response changed from cyclic stability to cyclic hardening when the
strain amplitude increased from 0.6 to 0.8 to 1.0% during the initial fatigue stage, as shown
in Figure 1. In addition, the area of the hysteresis loop is large under a strain amplitude of
1.0% at the initial stage of fatigue, resulting in significant plastic strain, indicating that the
high density of dislocations accumulated and multiplied more than annihilation to adapt to
the generation of plastic strain under high-strain amplitude, as illustrated in Figure 2a. As
a result, initial cyclic hardening occurred under a strain amplitude of 1.0%. The formation
of interfacial dislocation networks is a result of the interaction of the piled-up dislocations,
as shown in Figures 8 and 9c. For the samples with strain amplitudes of 0.6 and 0.8%,
the area of the hysteresis loop (as shown in Figure 2a,b) is small, illustrating that the
dislocation density is low [49]. Therefore, equilibrium between dislocation multiplication
and annihilation is easy to achieve, and cyclic stability occurs.

With the increase in the number of cycles, more dislocations are absorbed in the
dislocation network, resulting in a decrease in the dislocation density [21]. Thereafter,
the formation of interface dislocation networks results in cyclic softening. Under the
strain amplitudes of 0.6 and 0.8%, the matrix channel becomes wider, and γ′ cubic degree
decreases with increasing cycles, as shown in Figure 5, which can reduce the resistance of
dislocation movement in the γ channels and result in cyclic softening. At a strain amplitude
of 1.0%, dislocations cutting into the γ′ phases also contributed to cyclic softening, as shown
in Figure 8c.

4. Conclusions

The LCF behaviors of SC superalloys with an [001] orientation at 980 ◦C under varying
strain amplitudes are systematically investigated using SEM and TEM, and variations in
their fracture and deformation mechanisms are proposed. In addition, the effects of strain
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amplitude on the LCF behavior at 980 ◦C are analyzed in detail. The main conclusions are
as follows:

(1) As the strain amplitude increased from 0.6 to 1.0%, the cyclic stress and plastic
strain per cycle increased, whereas the cyclic lifetime decreased. Cyclic harden-
ing is associated with the reaction of accumulated dislocations and dislocation net-
works, which hinder the movement of dislocations. At a strain amplitude of 1.0%,
the high densities of dislocations and dislocation reactions resulted in an initial
cyclic hardening.

(2) As the strain amplitude increased from 0.6 to 1.0%, more dislocation networks were
formed, and the formation rate accelerated. The appearance of interfacial dislocations
reduced the lattice mismatch between the γ and γ′ phases, and the presence of
dislocation networks that absorb mobile dislocations resulted in cyclic softening. The
dislocation cutting into the γ′ phases is one of the reasons for cyclic softening at a
strain amplitude of 1.0%.

(3) The decrease of the γ′ cubic degree and the width variation of the matrix channel was
pronounced for a strain amplitude of 0.8%. The crack initiation site changed from a
near-surface defect to a surface defect when the strain amplitude increased from 0.6 to
0.8 to 1.0%. The number of secondary cracks that were initiated from the micropores
during the growth stage decreased as the strain amplitude increased.
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