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Abstract: The study of the optical properties of the Cd1-xZnxTe1-ySey (CZTS) crystal provides a clear
idea about its response to incident X-ray or gamma radiation. This is important for selecting a proper
composition of CZTS to achieve superior quality and high-resolution X-ray and gamma radiation
detectors at room temperature and reduce their production cost. This article’s novelty is in lowering
the cost of the optical and compositional characterisation of CZTS using the ellipsometry technique.
The most significant successes achieved are the composition ellipsometry model determination of
CZTS based on the Effective Medium Approximation (EMA) substrate of the binary compound CdTe
and ZnSe with an oxide layer of CdTe and the experimental verification that the bandgap moves to
lower energies with the addition of Se.

Keywords: crystal composition; surface composition; optical models; characterisation; alloys;
semiconducting II-VI materials; nuclear detectors

1. Introduction

Much progress has been made in searching for materials for spectroscopic detectors
operating at room temperature. Those detectors are helpful in widespread applications,
including medical radiography, astrophysical space imaging, nuclear medicine, safety
systems in the nuclear power industry, terrestrial photovoltaics, photodiodes, photocon-
ductors, infrared windows, electro-optical modulators, homeland security, safeguards,
and environmental motoring [1–3]. Cd1-xZnxTe (CZT) is the most widely recognised
semiconductor material for room-temperature X-ray and gamma radiation detector appli-
cations [4,5]. However, Cd1-xZnxTe1-ySey (CZTS) has outperformed the recognised CZT
in solving its longstanding technological growth problems, such as secondary tellurium
phases, subgrain boundaries and networks, zinc segregation, cadmium vacancies, and
crystal growth yield [3–6]. CZTS has also achieved a record in energy resolution perfor-
mance, which has been demonstrated to be below 1% at 662 KeV at room temperature with
no charge loss correction algorithm [5]. Thus, CZTS is a promising material for develop-
ing room-temperature detectors with the desired yield for industrial production and at a
reasonably low cost compared to its predecessor CZT.

However, since the discovery of the new nuclear detector material Cd1-xZnxTe1-ySey in
2019 [7], the optimum selenium concentration and surface preparation in CZTS in order to
guarantee the best high-quality spectroscopic performance are still the subjects of extensive
scientific debate [3,6,8]. In the following paragraphs, the advantages of the addition of
selenium to the CZT matrix are presented.

On the one hand, stable Zn and Se composition along the ingot resulting in a constant
bandgap is important to stabilise the charge collection in detectors [9]. Large bandgap val-
ues are required from the crystal’s tradeoff between the noise and static charge generation
at room temperature detectors. They should also have excellent charge transport to ensure
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total spatial charge collection efficiency and drift time to guarantee a better performance of
the pulse shape of the detector [5,10,11].

On the other hand, the analysis of the native surface oxide layer is crucial for devel-
oping a suitable surface treatment process to reduce the leakage currents and ensure the
long-term functional stability of the detectors [1,12]. Leakage currents should be as low as
possible for a better signal-to-noise ratio during the acquisition of X- and gamma-ray spec-
tra [13]. Moreover, the detector performance is highly related to the selenium composition
and surface preparation [1,6,14].

Much progress has been made in searching for materials. The characterisation of
the optical properties of CZTS crystals is an important issue when characterising the de-
tector performance by accurately predicting the spectral response. Ellipsometry allows
us to characterise the composition, roughness, and bandgap of the Cd1-xZnxTe1-ySey in
a fast, simple, economical, and nondestructive way compared to conventional compo-
sition techniques such as X-ray characterisation. In this report, primarily, the different
selenium contents referenced in the bibliography [3,6,8] have been studied using SE (Spec-
troscopic Ellipsometry). Finally, if ellipsometry was used to characterise the composition
of CZT detectors, it would reduce costs. Moreover, we are one step closer to having low-
cost high-resolution room-temperature CZTS gamma radiation and X-ray detectors on
the market.

2. Experimental Details

CZTS (Cd1-xZnxTe1-ySey) crystals with different nominal selenium compositions,
namely Cd0.9Zn0.1Te0.98Se0.02 (Se2) and Cd0.9Zn0.1Te0.93Se0.07 (Se7), with electrical resis-
tivity > 9 × 109 Ω·cm, were grown under the same conditions by the VGF method. De-
tails about the growth process, composition, and structure can be found elsewhere [6].
In both cases, the surface was polished by the standard mechanical polishing method
with a progressive reduction in the powder alumina grain size from 1 µm to 0.3 µm and
0.05 µm. As mentioned in the introduction, the optimal composition of selenium that
guarantees the best final performance of the detector is still being studied. Thus, two
samples with extreme values of selenium content (y = 0.02 (Se2) and 0.07 (Se7)), generally
used in Cd1-xZnxTe1-ySey detectors, verified that the ellipsometry method that we propose
in this work is valid for any selenium composition used in CZTS detectors.

The ellipsometric angles were obtained using a commercial Mueller matrix ellipsome-
ter J.A. Woollam RC2 for energies ranging from 0.75 eV to 6.24 eV at an incident angle of
75◦. The incident light spot diameter was 4 mm. Different optical analytical models were
used to analyse the results, and the Mean Square Error (MSE) was used to evaluate the
reliability of the fit. The data analysis was conducted by CompleteEASE software. The
crystal resistivity was obtained with the four-point probe technique using a Keithley 220
current source and a Keithley 617 Electrometer. Finally, the optical bandgap was calculated
from the reflectance and transmittance measurements performed in a HITACHI U-2000
spectrophotometer.

3. Theoretical Background

Ellipsometry is a nondestructive technique, which provides information about the
oxide layer thickness, the optical constants of bulk or layered materials, the multilayer
structure composition, and the surface or interface roughness of the analysed material. This
technique is sensitive to both the polarisation of light and the reflection from the sample.
The changes in polarisation are represented by ellipsometry angles Ψ, which are related to
the Fresnel Reflection Coefficient for polarised light by [15]:

ρ =
rp

rs
= tan(Ψ)·ei∆. (1)

Here, subscripts ‘p’ and ‘s’ refer to the polarised light parallel (p) and perpendicular (s)
to the light plane of incidence. The measured Ψ and angles are sensitive to the surface
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properties, the layer thickness, the surface roughness, and the surface oxidation of the
investigated materials. The measured ellipsometry parameters Ψ and ∆ are related to the
pseudo-dielectric function 〈ε〉 by [15]:

〈ε〉 = 〈ε1〉+ i〈ε2〉 = sin(∅)2

[
1 + tan(∅)2

(
1− ρ

1 + ρ

)2
]

, (2)

where ∅ is the angle of incidence light. For a simple sample with no overlayer, ρ could be
used to determine the dielectric response directly using Equation (2). From the well-known
Maxwell equations, we can define the relation between the pseudo-dielectric function 〈ε〉
and the pseudo-refractive index function <n> [16]:

ε1 = n2 − k2 (3)

ε2 = 2nk. (4)

Equations (3) and (4) can be reformulated as follows:

n =

{[
ε1 +

(
ε2

1 + ε2
2

)1/2
]

/2
}1/2

(5)

k =

{[
−ε1 +

(
ε2

1 + ε2
2

)1/2
]

/2
}1/2

. (6)

However, the substrate is usually covered by a native oxide layer or shows surface
roughness after cutting. Therefore, we must numerically fit the ellipsometric data to an
assumed model through a regression analysis to consider multiple reflections occurring
at the substrate–layer interfaces [15]. Therefore, a proper theoretical model can fit the
experimental data only in terms of the optical properties of the material investigated: the
oxide layer composition, thickness, and surface roughness.

The CompleteEASE software database was used for modelling the quaternary com-
pound CZTS from its binaries, the CdTe and ZnSe materials used as substrates, parame-
terised by using predefined Lorentz Oscillators. The CdTe oxide layer was parameterised
employing the Cauchy approximation [17] and the roughness of the surface. The most
advanced model included EMA (Effective Medium Approximation) approximation. Finally,
this article presents the theoretical calculations from different ellipsometry models and
assumptions compared with our previous work in X-ray composition data.

4. Results and Discussion

The study of the optical properties of a crystal provides a clear idea about its response
to incident electromagnetic radiation at a particular frequency. This is important for
selecting the proper material to be used for the fabrication of optoelectronic devices based
on such optical features. In order to obtain the optical constants (n, K, and ε) of the CZTS
substrates covered by the surface oxide layer, a simple model assumption proposed by
Yao et al. [15] was used as a first approximation. As the Zn and Se contents (x, y < 0.1)
are much lower than those of Cd and Te, and we can approximate the CZTS oxide layer
to that of the CdTe, covered with its corresponding surface oxide (the model sketched in
Figure 1a), the optical parameters were predefined from the database of the CompleteEASE
software. In this case, independent variables such as the oxide layer thickness and surface
roughness were used during the fitting process. From the high MSE value that is shown
in Figure 2a,b, the CZT model of Yao et al. was insufficient and incorrect for a complete
ellipsometry investigation of our particular CZTS material, because our material was grown
by VGF [6] not by epitaxial growth. Therefore, we also employed a more complete model
development than the one proposed by Zázvorkata et al. [12]. This model involved a
nonuniform surface substrate layer (CdTe), and an average value of material peaks and
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voids was included. As the Zn and Se contents (x, y < 0.1) are much lower than those of Cd
and Te, we can approximate the CZTS oxide layer to that of CdTe. In addition, the peaks
and voids result from the oxide layer growing on a rough nonuniform bulk CdTe surface.
In turn, this oxide layer shows its surface roughness. This model is called the Effective
Medium Approximation (EMA). An illustrative scheme is shown in Figure 1b. The EMA
calculation is based on mixing the optical constants of two or three constituent materials to
create a new composite material. The second model (Figure 1b) has two components: a
CdTe substrate and a Bruggeman EMA layer consisting of an intermixing CdTe and CdTe
oxide layer. In this case, there was a better correspondence between the theoretical model
with a reduction in the oxide thickness layer (see Tables 1 and 2). These oxide thicknesses
were in the range of the ones reported by other authors [12,18]. Therefore, the mismatch
may be due to an incorrect calculation in composition; so, an improved model is needed.
In the third model (Figure 1c), we introduced Se and Zn as constituent elements of the
substrate. The novelty of this model was to assume that the amount of Zn and Se was
similar (x∼y) in the material Cd1-xZnxTe1-ySey. Therefore, for all the binary compounds
that constitute the quaternary compound CZTS, we maintained those that are in the
same proportion.

Cd1−xZnxTe1−ySey → a·CdTe + b·ZnSe (7)

where a and b represent the proportions in which the CdTe and ZnSe compounds are mixed
to form Cd1-xZnxTe1-ySey. Considering the substrate material, an EMA model can mix the
optical properties of the CdTe and ZnSe composites and an oxide layer formed with CdTe
oxide and EMA CdTe-ZnSe. Consequently, the EMA inhomogeneity CdTe-ZnSe ratio (a, b)
model allows the determination of the compound composition and the comparison with
our previous work with X-ray diffraction results [6]. Finally, the model and experimentally
measured values shown in Figure 3 overlap, thus demonstrating a great fit compared to the
most rudimentary models Figures 2 and 4. The higher the selenium content, the better the
match (see the exact values in Tables 1 and 2). The thickness and roughness of the oxide
layer in both cases showed similar values as expected because the samples underwent the
same polishing treatments. The different oxide coefficients of the Cauchy equations [17]
are tabulated in Table 3. The percentages in Table 4 show that the ellipsometry gave us the
composition of the samples resulting in 12.9% of ZnSe (ratio b) for the sample Se2. If we
add both nominal percentages of Zn and Se, the result would be 12%, which is very close to
the value obtained by the X-ray diffraction in [6]. In turn, it is similar for the composition
Se7, where the value calculated by the EMA was 18.2% (ratio b), while the composition
would be 17%.

Table 1. Ellipsometry fit parameters obtained for the sample Se2 with the different models proposed
in Figure 1.

Se2 Teox (Å) Roughness (Å) MSE

Model 1 28 ± 3 A 93 ± 4 5.174

Model 2 18 ± 1 A 76 ± 3 5.548

Model 3 21 ± 1 A 84 ± 4 3.422

Table 2. Ellipsometry fit parameters obtained for the sample Se7 with the different models proposed
in Figure 1.

Se7 Teox (Å) Roughness (Å) MSE

Model 1 54 ± 6 A 139 ± 2 5.937

Model 2 27 ± 1 A 114 ± 4 5.148

Model 3 31 ± 3 A 126 ± 6 2.880
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Figure 1. Model structures for fitting the ellipsometry experimental data. (a) Simple model with a
flat interface between the substrate and oxide layer and with surface roughness, (b) EMA structure
model with the CdTe substrate and CdTe oxide with surface roughness, (c) double EMA model with
EMA as a substrate of CdTe and ZnTe and the substrate EMA and oxide CdTe with surface roughness.
In all the models, the substrate is a semi-infinite layer, and the thickness of the oxide layer is denoted
by tox.
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Table 4. The EMA analysis composition of model 3.

Sample CdTe % (a Ratio) ZnSe % (b Ratio)

Se2 87.1 12.9

Se7 81.8 18.2

The dispersion curves in Figure 5 indicate a sharp increase at shorter wavelengths
corresponding to the fundamental absorption of energy across the bandgap [19]. The
bandgap energy shifted to lower energies with the addition of Se to the CZTS compound, as
shown in Figure 5. This result agreed with the complete structural and optoelectronic CZTS
theoretical model by Chanda et al. [20]. Recently, several authors had similar bandgap
values using other characterisation techniques, around 1.468–1.56 eV for composition
(x = 0.1 and y = 0.002) and 1.54–1.56 eV for composition (x = 0.1 and y = 0.007) [7,21–25].
Moreover, that decrease in bandgap followed the well-known Vergard’s Law proposed by
Brill et al. [23]. These results agreed with our previous research, showing that the VGF
method generates reproducible CZTS crystals with a zinc blend crystal structure, in which
the selenium addition causes a reduction in the lattice parameter and compositional/lattice
disorder [6,26]. Much effort has been recently made to analyse CZTS’s compositional
and spectroscopic properties. However, to the best of our knowledge, this is the first
time that experimental measurements of both the composition and bandgap have been
performed on this material. This kind of analysis is essential to characterise the ideal
composition to ensure the correct charge collection and to obtain gamma sensitivity in
radiation detectors [27].
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bandgap for samples at different concentrations of selenium, Se2 and Se7.

Finally, a typical transmittance and reflectance spectrum for the studied sample is
shown in Figure 6. The optical bandgap was estimated using the absorption coefficient
α [28] and applying the Tauc equation [24,29]:

αhν = A(hν− EG)
β, (8)
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where αhν is the photon energy, A is a constant, EG is the optical bandgap, and β is a
parameter that depends on the type of transition (e.g., whether it is a direct or indirect
transition). For CZTS, n is 0.5 because it is a direct bandgap semiconductor. Therefore,
a plot of (αhν)1/2 against energy provided a straight line, as shown in Figure 7, whose
intercept with the energy axis gave the energy of the allowed direct Valence Band (VB) to
Conduction Band (CB) transition. This bandgap value was in excellent agreement with the
EG values obtained by ellipsometry (see Figure 5).
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5. Conclusions

The optical properties of the Cd1-xZnxTe1-ySey quaternary compound for different
selenium contents (y = 0.02 (Se2) and 0.07 (Se7)) were determined for the first time by
using the nondestructive ellipsometry technique. Three different models to analyse the
experimental data were proposed, with the most accurate including the binary compound
ZnSe mixing the optical properties with the Effective Medium Approximation (EMA) with
the compound CdTe and its associated oxide.

The absorption energy of the real part of the absorption coefficient gives the material
bandgap, which has been shown to decrease with an increasing selenium concentration,
as theoretically predicted by Vegard’s Law. The bandgap value calculated based on the
absorption coefficient agreed significantly with the gap values obtained by the ellipsometry.

The EMA mixing percentages of the ZnSe compound in the CdTe were 12.9% for the
sample Se2 (Cd0.9Zn0.1Te0.98Se0.02) and 18.9% for the sample Se7 (Cd0.9Zn0.1Te0.93Se0.07).
These values are very close to the nominal 12% and 17% values obtained by X-ray diffraction
in our previous work [6]. Therefore, the present work proposes the ellipsometry technique
as a fundamental tool for the acquisition of the compositional data, optical properties,
surface roughness, and surface oxide thickness of CdTe.

Finally, the relevance of this work is proposing ellipsometry as another method to
determine the composition of the CZTS material, allowing it to be a reality in the market to
generate competitive, high-resolution, and low-cost X-ray and gamma radiation detectors.
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