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Abstract: Carbon dots have drawn extensive attention in the detection of metal ions with good
stability, excellent biocompatibility and low toxicity. Meanwhile, the quantum yield, response rate
and the detection mechanism for Cu2+ ions are vital to their development and application. To
obtain more selective and sensitive materials to detect Cu2+ ions, N-doped carbon dots (DN-CDs)
were synthesized by a one-step hydrothermal method using citric acid as the carbon source and
diethylenetriamine (DETA) as the nitrogen source. The obtained DN-CDs exhibited stable and intense
blue light emission and special near-infrared up-conversion fluorescence at 820 nm, attributed to the
effect of introducing N atoms into the structure of carbon dots. Due to the dynamic quenching of
the DN-CDs by Cu2+ ions, the fluorescence intensity (λex = 820 nm) of DN-CDs was quantitatively
decreased in the presence of Cu2+ ions. The DN-CDs had a rapid response within 3 min. The DN-CD
system exhibited a linear relationship with a concentration range from 2.5 to 50 µM and low detection
limit (LOD) of 42 nM. After careful investigation, an interesting conclusion was proposed: N-doped
CDs with N/O = 1:1 or higher with relatively abundant N atoms prefer to detect Cu2+ ions while
those with N/O = 1:2 or lower prefer to detect Fe3+ ions.

Keywords: carbon dots; up-conversion fluorescence; Cu2+ ions detection

1. Introduction

Industrial pollutants pose serious threats to nature and human health, so their re-
moval and detection are extremely important. At present, some effective materials have
been developed for the removal of pollutants, such as chitosan-based polymer materials
with excellent adsorption abilities for heavy metal ions [1]. Additionally, some effective
analytical methods have been developed to detect chemical or biological drugs, metal ions
and organic pollutants [2–5]. Analytical methods used to detect metal ions include poten-
tial/electrochemical sensors [6,7], fluorescence analysis [8], atomic absorption spectrometry
(AAS) [9] and inductively coupled plasma mass spectrometry (ICP-MS) [10]. However,
most of these approaches are not suitable for real-time monitoring due to their high cost,
long assay times, special equipment, and laborious and complex experimental processes.
Therefore, fluorescent sensors with low cost, simple operation, high sensitivity and good se-
lectivity have gradually emerged [11]. Nowadays, various materials have been developed
as fluorescent probes for environmental monitoring of metal ions, such as metal–organic
frameworks (MOFs) [12,13], nanoclusters [14,15], organic fluorescent dyes [16] and semi-
conductor quantum dots. In particular, fluorescent carbon-based materials have attracted
extensive attention due to their good chemical stability, excellent biocompatibility and low
toxicity [17], distinguishing themselves from traditional fluorescent materials.
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With the progress in scientific and technological research, more heavy metals remain
in the human living environment. The excessive intake of metal ions will have extremely se-
rious effects on human health [18,19]. Copper is one of the most important transition metals
in the human body [20] and plays an extremely important role in biological processes, such
as embryonic development, mitochondrial respiration, regulation of hemoglobin levels as
well as hepatocyte and neuronal functions [21,22]. Copper ions are widely distributed in
the natural environment, especially in industrial wastewater. Long-time exposure to copper
ions will cause high toxicity to the human body, and is associated with neurodegenerative
diseases, such as Wilson’s syndrome, Alzheimer’s disease and Parkinson’s disease [23–25].
According to United States Environmental Protection Agency (USEPA) guidelines, drink-
able water must not contain a Cu2+ content of ≥20 µM [26]. Therefore, the detection of
copper ions in the environment requires a simple and practical detection method with high
sensitivity and selectivity.

Carbon dots (CDs) are zero-dimensional carbon-based materials, mostly spherical
nanoclusters with diameters of less than 10 nm, composed of amorphous or crystalline
cores with sp2 hybrid carbon atoms [27]. Owing to their small size, high photostability,
resistance to photobleaching, low toxicity, good water solubility, excellent biocompatibility
and ease of surface functionalization, carbon dots have become the focus of fluorescent
probe materials as well as in cell labeling, optical bioimaging, drug delivery, storage appli-
cations and photocatalysis [28]. Metal ions, such as Hg2+, Fe3+ and Cu2+, can effectively
quench the fluorescence of carbon dots [29–31]. Carbon dots can be obtained by thermal
decomposition [32], hydrothermal carbonization [33], microwave-assisted pyrolysis [34],
electrochemical methods [35], etc. Hydrothermal carbonization refers to heating water and
carbon-rich substances in a closed container to trigger the carbonization reaction. Citric
acid is the most used carbon-rich substance, which is easy to condense and induce to form
carbon rings, and is also has atoms that can be easily doped. Meanwhile, the surface of
the formed carbon dots has rich functional groups, such as hydroxyl and carboxyl groups.
The hydrothermal method is the most widely used method, which has the characteris-
tics of good feasibility; cheap, diverse carbon sources; no toxicity; and environmental
friendliness [36]. However, carbon dots without modification usually have a low quantum
yield (QY) and poor stability, which affect their practical application [37,38]. Additionally,
the origin of fluorescence in carbon dots has not yet been clarified. The fluorescence emis-
sion is primarily caused by the competition between the optical centers, surface states and
traps [39]. Up-conversion fluorescence means that the shorter wavelengths of light are
emitted through longer excitation wavelengths [40]. This fluorescence is usually caused by
the multiphoton absorption effect. The fluorescence of carbon dots can be altered by con-
trolling size and shape, modifying the edges of the surfaces and doping with heteroatoms,
due to the edge effect, surface effect and quantum confinement effect (QCE) [41]. Doping
different elements leads to better performance, such fluorescence improvement and shifting
of the fluorescence spectra. Doping with different heteroatoms can change the electronic
properties and excite special optical properties through the passivation of the surface states
or the introduction of defects [42,43]. Salehtabar et al. [44] prepared photo-luminescent,
water-soluble, nitrogen-doped, highly fluorescent carbon dots based on the gum tragacanth
polysaccharide and triethylenetetramine (TETA). Therefore, it is a better way to synthetize
fluorescent probe materials based on carbon dots with a higher sensitivity, higher selectivity,
high quantum yield and unique fluorescence performance.

Herein, we report a simple method for preparing nitrogen-doped carbon dots (DN-
CDs) with intense down-conversion and unique up-conversion fluorescence using di-
ethylenetriamine (DETA) and citric acid as the nitrogen and carbon sources, respectively
(Scheme 1). The DN-CDs had good fluorescence properties, and excellent photobleaching
and stability. We used it for rapid, efficient and selective detection of copper ions within
3 min with a detection limit (LOD) as low as 42 nM. Compared with other carbon dots,
DN-CDs showed better and stable up-conversion fluorescence, which could convert low
energy light into high energy radiation through a nonlinear optical process, avoiding in-
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terference with biological background luminescence and achieving good photon tissue
penetration [45–48]. This would compensate for the disadvantages of down-conversion
fluorescence carbon dots, and has great potential for detecting metals in organisms. The
experimental results proved that the mechanism of fluorescence quenching through dy-
namic quenching. Additionally, combined with reports in the literature, the ratio of N and
O atoms may be more critical on the premise that the N, O-based functional groups interact
with Cu2+. Two previously synthesized nitrogen-doped carbon dots were selected for
comparison and preliminarily verified the proposed conclusion. This would be conducive
to the selection and design of highly selective fluorescent probe materials for copper ions.
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Scheme 1. Schematic illustration for DN-CD preparation.

2. Experimental
2.1. Chemicals and Materials

All chemicals were of analytical grade and were used directly without any further
purification. Diethylenetriamine, quinine sulfate and all the metal nitrates, nicotinamide
sulfate and chloride salts were purchased from Kelong Chemical Co., Ltd. (Chengdu,
China). Citric acid and sulfuric acid were purchased from Xilong Chemical Co., Ltd.
(Chengdu, China). Anhydrous ethanol was purchased from Changlian Chemical Co.,
Ltd. (Chengdu, China). N, N-Dimethylformamide (DMF) and Tetrabutylammonium
Tetrafluoroborate were purchased from Dingsheng Chemical Co., Ltd. (Chengdu, China).
l-Glutamic acid (l-Glu) and m-phenylenediamine (MPD) were purchased from Aladdin
Industrial Co., Ltd. (Shanghai, China).

2.2. Preparation of N-CDs

N-doped carbon dots were synthesized by a simple one-step hydrothermal method.
First, 0.44 g citric acid (CA) and a certain amount of diethylenetriamine (DETA) were added
to 20 mL of ultra-pure water and sonicated for 20 min until the CA was dissolved. The
prepared mixture was placed in a 50 mL PPL-lined stainless-steel autoclave and heated in an
oven for a certain amount of time. The autoclave was cooled to room temperature after the
reaction, and a slightly yellow solution was obtained. The solution was collected, dialyzed
(MWCO = 500 Da) for 24 h to remove unreacted starting materials and then the dialysate
was removed and internal solution was freeze-dried to obtain the final brown product. The
optimal amount of DETA was determined by testing the varying molar ratios of CA:DETA
(1:1, 1:2, 1:4, 1:8 and 1:10) with the reaction condition of 5 h and 180 ◦C. Additionally, the
optimal reaction temperature was determined by testing different temperatures (150 ◦C,
180 ◦C, 200 ◦C, 220 ◦C and 240 ◦C) with a 1:4 molar ratio of CA:DETA and 5 h reaction time.
Then, the reaction time was determined by testing different reaction times (4 h, 6 h, 8 h,
10 h and 12 h) with a 1:4 molar ratio of CA:DETA at 200 ◦C.

The two other carbon dots were prepared according to previous reports [49,50]. The
specific preparation methods are detailed in the Supplementary Information.
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2.3. Measurement of Quantum Yield

DN-CDs have similar absorption peaks (350 nm) and emission peaks (380–580 nm) as
quinine acid; therefore, the QY could be measured using a relative method [51]. Quinine
sulfate was selected as the reference compound (QY = 54% in 0.05 M H2SO4). The QY of
our sample was calculated using Equation (1):

Y1 = Y2
S1

S2

A2

A1

n2
1

n2
2

(1)

where ‘Y1’ is the QY of DN-CDs, ‘Y2’ is the QY of quinine sulfate, ‘S’ is the peak area
obtained from emission peak integration, ‘A’ is the absorbance intensity at λ(ex) of 350 nm,
and ‘n’ is the refractive index (1.33 for both sample and reference). A series of solutions of
DN-CDs and quinine sulfate were prepared until the absorbance intensities were below 0.05
at λex = 350 nm, which were recorded as A1 and A2, respectively. Then, the fluorescence
spectra were measured and the emission peaks in the range of 400–700 nm were selected
for integration to obtain the peak areas (S1 and S2). Finally, the QY for our DN-CDs was
calculated using Equation (1).

2.4. Characterization

Transmission electron microscopy (TEM) was performed using an INSPECT F in-
strument (J&R Instrument Technology Co., Ltd., Shanghai, Chnia). X-ray photoelectron
spectroscopy (XPS) results were obtained using XSAM 800 equipment (Kratos Analytical
Ltd., Manchester, UK). The X-ray diffraction (XRD) patterns were identified using an X’Pert
PRO diffractometer (PANalytical, Almelo, The Netherlands) with Cu Kα1 radiation, a
step size of 0.01313◦ 2θ, and a counting time of 30 ms step-1 from 10◦ to 80◦. FT-IR spec-
tra were obtained using a Nicolet-6700 FT-IR spectrometer (Thermo Scientific, Madison,
WI, USA). Fluorescence spectra were recorded using an F97-Pro fluorospectrophotome-
ter (Lengguang Tech. Ltd., Shanghai, China). UV–Vis absorption spectra were recorded
using a UV–vis spectrophotometer (Mapada Instruments Ltd., Shanghai, China). Fluo-
rescence lifetime spectra were measured using F-7000 equipment. The redox properties
of DN-CDs were examined by cyclic voltammetry which was carried out on a CH1660A
electrochemical workstation.

2.5. Detection of Metal Ions

The PL spectra were measured to study the selectivity and sensitivity of the DN-
CDs. The different chemical compounds with different metal ions (Na+, K+, Ca2+, Fe2+,
Fe3+, Cr3+, Mg2+, Mn2+, Pb2+, Zn2+, Cd2+) and anions (SO4

2−, PO4
3−, Cl−, NO3

−) were
dissolved in DI-water to obtain a series of metal solutions with a concentration of 10 µM.
1 mL aqueous solution of metal ions and 1 mL aqueous solution of DN-CDs (20 µg/mL)
were mixed. After a certain amount of time, PL intensity was detected three times to obtain
the average value. To further study the sensitivity detection of Cu2+, a series of CuSO4
solutions with concentration of 0–500 µM were prepared and mixed with 1 mL DN-CDs
(20 µg/mL). A Cu2+ solution was added into the solutions containing other metal ions to
obtain a mixed solution with two metal ions to conduct interference tests.

2.6. Detection in Real Samples

We used the tap water from our laboratory, the water from Jinjiang River in Wuhou
District, Chengdu, and the water from a lotus pond in the Wangjiang Campus of Sichuan
University as the real water samples. These samples were filtered through a 0.22 µm
membrane and centrifuged at 10,000 rpm for 5 min to remove any suspended materials.
Then, 1 mL of the sample with a standard Cu2+ ion solution (10, 20 and 30 µM) was mixed
with 1 mL of DN-CD solution for 4 min and the fluorescence intensity was measured.
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3. Results and Discussion
3.1. Optical Properties of DN-CDs

In this study, by changing the ratio of CA and DETA, reaction temperature and
reaction time, we developed a simple one-step synthesis method for carbon dots with a
high quantum yield under down-conversion fluorescence. As shown in Figure S1, it could
be seen that with the increase in DETA and reaction temperature, the quantum yield first
increased and then decreased. Additionally, in Figure 1c, the quantum yield decreased
and then increased slightly. Finally, carbon dots with a high quantum yield under down-
conversion fluorescence were obtained. Additionally, the optimum conditions were found
to be CA/DETA = 1:4, reaction time of 4 h, and reaction temperature of 200 ◦C. And we
used these carbon dots, denoted as DN-CDs, to perform the further characterizations.

The optical properties of the DN-CDs were measured using UV-vis absorption and
PL spectroscopy, as shown in Figure 1a. Typically, the absorption of carbon dots could be
divided into two main regions: π—π* and n—π* transition [52]. The weak absorption peak
at 241 nm was the π—π* transition of C=C, attributed to the absorption peak of the carbon
atom in cyclic aromatic hydrocarbons [53]. The wide absorption peak at 350 nm indicated
the n—π* transition of the nitrogen- or oxygen-containing functional groups on the surface
of the DN-CDs, attributed to the doping with N atoms [54]. The bandgap energies were
determined according to the Tauc plot (Equation (2)) as follows:

(ahv)
1
n = A

(
hv − Eg

)
(2)

where ‘a’ is the absorption coefficient, ‘h’ is Planck’s constant, ‘v’ is the incident light
frequency, ‘Eg’ is the bandgap energy, ‘A’ is a constant and ‘v’ is a variable dependent on
the type of bandgap [55]. As shown in Figure 1b, the bandgap of DN-CDs was 3.21 eV.
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Figure 1. UV–Vis absorption and PL spectra of the DN-CDs. (* represents antibonding molecular
orbital) (a) The UV-Vis absorption of DN-CDs. Inset: photograph taken under daylight and 365 nm
UV light. (b) The Tauc plot according to the UV-Vis absorption. (The carbon dots are usually indirect
bandgaps, so we selected the value of ‘n’ as 2) (c) Emission spectra of DN-CDs at different excitation
wavelengths. (d) Up-conversion emission spectra of DN-CDs at different excitation wavelengths.
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Under daylight, the DN-CD solution was slightly yellow and clear; in contrast, it was
a bright blue color if exposed to UV irradiation at 365 nm (inset in Figure 1a). Figure 1c
displayed the photoluminescence spectra of DN-CDs, showing a maximum emission at
450 nm (λex = 410 nm). Moreover, when the excitation wavelength was increased, the peak
value of fluorescence had a small red shift, which indicated that the PL was dependent
on the excitation wavelength. This excitation-dependent fluorescence property reflected
the size of the DN-CDs and the distribution of different surface states [56]. In particular,
Figure 1d also demonstrates the stable up-conversion PL property. When the excitation
wavelength changed from 630 nm to 860 nm, the UCPL spectrum showed a basically
unchanged emission at 451 nm, indicating a single emission center in the carbon dots. The
peak intensities at 820 and 825 nm were significantly higher than that of other wavelengths.
The doping with N atoms might lead to an increase in lone pair electrons on oxygen atoms
and nitrogen atoms, increasing the electron density in the π—system. Additionally, it
would reduce the π*—energy level of the excitation, so the excitation required a lower
energy [35].

3.2. Photoluminescence Stability of DN-CDs

For the application of fluorescent probes in the detection of metal ions, it is important
to explore the up-conversion fluorescence (UCPL) stability of DN-CDs. The PL intensity
of DN-CDs under different pH conditions is shown in Figure 2a, indicating a strong
UCPL intensity in a wide range of pH levels (pH = 4–12). In particular, DN-CDs had a
negligible change in the PL emission range or intensity within pH levels of 4–9, indicating
excellent stability of the DN-CDs; the UCPL intensity markedly changed under strong
acid–base conditions, due to the protonation and deprotonation of the functional groups
(-OH/-COOH and -NH2) on the surface of the DN-CDs, which resulted in the destruction
of the aromatic conjugate system and complex system [24,57]. This was proven by the Zeta
potentials in different pH aqueous solutions in Figure S2. DN-CDs had a negative potential
at pH = 4–13, and the negative potential increased sharply under highly alkaline conditions.
DN-CDs had a high positive potential at pH = 2, which indicated that the same protonation
in a strong acidic environment. Meanwhile, the DN-CDs had a higher negative potential at
pH = 11–13, which indicated intense deprotonation. In order to study the optical stability
of carbon dots, we tested their up-conversion fluorescence intensity under daily storage
conditions and simulated sunlight conditions using a xenon lamp (300 W). As shown
in Figure 2b, we could see that the up-conversion fluorescence intensity of the DN-CD
solution remained high after 90 days, which indicated that the DN-CDs had long-time
UCPL stability; at the same time, the carbon dot solution was still clear and transparent.
As shown in Figure 2c, the up-conversion fluorescence intensity of the carbon dot solution
was basically unchanged within the first hour of xenon irradiation (300 W), where F0 is
the initial up-conversion fluorescence intensity, and F is the up-conversion fluorescence
intensity after xenon irradiation. In summary, the prepared carbon dots (DN-CDs) had
strong pH stability and optical stability.
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Figure 2. (a) The effect of pH on the UCPL intensity of DN-CDs in a range from 1 to 13. (b) The effect
of storage time on PL intensity of DN-CDs after 90 days. (c) The effect of 60 min of UV irradiation
on the UCPL intensity (F0 is the initial UCPL intensity and F is the UCPL intensity after under
UV irradiation). (d) The effect of salt concentration on the UCPL intensity for DN-CDs at different
concentrations of NaCl (‘F0’ is the PL intensity of a blank sample and ‘F’ is the intensity of the
experimental sample).

3.3. Morphological and Surface Properties of DN-CDs

The morphological and surface properties of the DN-CDs were investigated by TEM,
FT-IR, XRD and XPS; the results are shown in Figures 3 and 4. DN-CDs were nearly
spherical with a size distribution between 1.5 and 4.5 nm and the average particle size
was about 2.4 nm (Figure 3a,b). Furthermore, the dynamic light scattering (DLS) results
in Figure S3 showed that the dynamic diameter of the DN-CDs was about 2.7 nm, which
was basically consistent with the TEM. Additionally, we also tested the DLS of DN-CDs
in strong acidic and alkaline environments, and found that there was a slight aggregation
phenomenon with strong acids, with average size of 3.7 nm. This was also consistent with
the fluorescence and Zeta potential changes under strong acidic conditions in Section 3.2.
Meanwhile, we found that the crystalline lattice fringe had a space of 0.21 nm, which
corresponded to the (100) lattice of graphene in the inset in Figure 3a. Through the Zeta
potential of the DN-CDs, it was suggested that the DN-CDs had a negative charge (Figure
S3). This was attributed to the partial ionization of the hydroxyl or carboxyl groups in the
DN-CDs, which caused the formation of oxygen negative ions. Figure 3c shows the XRD
pattern of the DN-CDs with broad peaks at 2θ = 23.9◦, indicating that the carbon atom in
DN-CDs was amorphous. Additionally, this also could be verified in the Raman spectrum
of N-CDs in Figure S4. This demonstrated that the fluorescence properties of DN-CDs were
mainly determined by the surface groups of the carbon dots.
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Figure 3. TEM image (a), size distribution (b), XRD spectra (c) and FT-IR spectra (d) of DN-CDs (the
inset in (a) is the HRTEM of the DN-CDs).
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Figure 4. (a) The full-scan XPS spectra of the DN-CDs; (b) C1s spectra of the DN-CDs; (c) O1s spectra
of the DN-CDs; (d) N1s spectra of the DN-CDs.

FT-IR spectra were obtained to detect the functional groups of the DN-CDs. As
shown in Figure 3d, the DN-CDs exhibited absorption peaks at 3423 cm−1 and 2915 cm−1,
consistent with -OH and N-H stretch vibrations, showing that the DN-CDs had good
water-solubility and contained amino groups on their surfaces. Compared with the FT-IR
spectra of DETA, the absorption peak of N-H decreased, indicating that the amine group
of DETA and the carboxyl group of citric acid had undergone a dehydration reaction.
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In addition, the absorption peaks at 1244 cm−1 and 1344 cm−1 represented the stretch
vibrations of C-O and amide C-N, respectively. The absorption peaks at 1654 cm−1 and
1554 cm−1 were related to the typical stretch vibrations of C=N and N-H. The absorption
peak of 1435 cm−1 was the typical stretch vibration of C=C due to the establishment of an
unsaturated aromatic ring structure during the hydrothermal treatment. Moreover, it was
confirmed by FT-IR spectra that some of the carbonyl groups of citric acid were converted
into amide groups in the hydrothermal process. These functional groups improved the
hydrophilicity of the DN-CDs in an aqueous system, suggesting the potential of DN-CDs
as sensors for aqueous samples.

The elemental composition of the DN-CDs was examined through XPS (Figure 4). As
shown in Figure 4a, according to the XPS full-scan profile of the DN-CDs, C, N and O
exhibited distinct peaks in the spectra at 284.71 eV, 399.83 eV and 530.95 eV corresponding
to the binding energies of C1s, N1s and O1s, respectively. Moreover, the contents of C, N,
and O elements in the DN-CDs were 38.4%, 44.1%, and 17.5%, respectively, according to
the EDS results (Figure S5). Figure 4b shows three peaks at 284.7 eV, 285.9 eV and 287.5 eV
related to the binding energies of graphite-like Csp2, N-Csp2 and N-Csp3 bonds, respectively.
The O1s spectra showed two peaks at 530.38 eV and 532.02 eV, attributed to the binding
energy of C=O and C-O, respectively (Figure 4c). Additionally, the N1s spectra showed
that it could be deconvoluted into three peaks at 398.8 eV, 400.5 eV and 401.2 eV which
were consistent with the binding energies of pyridinic N, pyrrolic N and quarternary N,
respectively (Figure 4d). The large amount of pyrrolic N indicated that most of the N atoms
existed in a π conjugated system. In summary, we confirmed that the N elements were
successfully doped onto the structure of the carbon dots.

3.4. DN-CDs as a Photoluminescent Probe for Cu2+ Ions

To investigate the potential use of the DN-CDs as a PL probe, we examined the effects
of different metal ions on PL intensity (Figure 5). It could be seen from Figure 5a that at the
same concentration, Na+, K+, Ca2+, Fe2+, Fe3+, Cr3+, Mg2+, Mn2+, Pb2+, Zn2+ and Cd2+ ions
basically did not change the PL intensity of the carbon dots; with the same concentration
of Cu2+, the PL intensity was 60% of that of the control, showing an obvious fluorescence
quenching phenomenon. In addition, the interference of other metal ions on the detection
of Cu2+ was examined by adding the mixed solution of various metal ions and Cu2+ into
the DN-CDs solution. Meanwhile, the effect of the addition of other metal ions on the
detection of Cu2+ ions could be nearly ignored, which indicated that DN-CDs had excellent
selective quenching for Cu2+. Moreover, we also explored the quenching kinetics of the
DN-CDs by monitoring the PL intensity as a function of time. Figure 5b showed that the PL
intensity of the DN-CD solution gradually weakened and finally stabilized with increasing
Cu2+ ions concentration. This result indicated that the detection of Cu2+ ions in the DN-CD
system was a rapid and effective process and the equilibrium was reached within 3 min.
Thus, 3 min was chosen as the detection time in the following experiments.

To investigate the sensitivity of the DN-CDs for detecting Cu2+, the PL spectra of the
DN-CDs were examined by adding Cu2+ solution at various concentrations (2.5–50 µM).
Obviously, in Figure 5c, the intensity of PL quenching increased when the concentration of
Cu2+ increased; therefore, the decrease in PL intensity was caused by the Cu2+ ions instead
of the associated anions and was quantitatively related to the Cu2+ concentration. This
indicated that the DN-CDs were capable of quantitatively detecting Cu2+ at low levels
with high sensitively. Additionally, the PL quenching spectra of Cu2+ was analyzed by the
Stern–Volmer (Equation (3)):

F0

F
= Ksv[Q] + 1 (3)

where ‘F0’ and ‘F’ are the PL intensities of the DN-CDs in the absence and presence of
Cu2+, respectively, ‘Q’ is the concentration of Cu2+ and ‘Ksv’ is the Stern–Volmer quenching
constant. This equation could represent the relationship between the relative PL intensity
(F0/F) and Cu2+ concentration (Q).
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Figure 5. (a) The selectivity of DN-CDs to various metal ions: relative PL intensity of the DN-CDs
(20 µg/mL) in the absence (black column) and presence (red column) of other metal ions (10 µM)
(λex = 820 nm and λem = 450 nm); (b) the effect of reaction time on the quenching equilibrium of
DN-CDs; (c) PL quenching efficiency of DN-CDs at different concentrations of Cu2+ ions (2.5–50 µM);
(d) the linear relationship between PL intensity and Cu2+ ion concentration (F0 is the PL intensity in
the absence of Cu2+ ions and F is in the presence of Cu2+ ions).

According to Equation (3), we observed strong linearity with a correlation coefficient
(R2) of 0.9974 when the concentration of Cu2+ changed from 2.5 to 50 µM. The linear
relationship curve is shown in Figure 5d. Based on Equation LOD = 3·σ/S (where ‘σ’
is the standard deviation of the blank PL intensity of DN-CDs and ‘S’ is the slope of
the linear relationship curve), the limit of detection (LOD) of Cu2+, was calculated to be
42 nM. Compared with the threshold of the United States Environmental Protection Agency
(USEPA) guidelines, the LOD of the DN-CDs for Cu2+ in an aqueous system was much
lower. We summarized the PL sensing performances of the other reported sensors for
detecting Cu2+ in Table 1; it was clear that the LOD of our product was also lower than
those of the other sensors.

Table 1. The range of detection and LOD of other PL sensors for Cu2+ ions.

Sensor Range of Detection LOD Ref.

BP/NS-CDs 0–50 µM 0.18 µM [24]
OPD-CDs 0.5–40 µM 0.28 µM [23]
NS-CDs 1–10 µM 0.29 µM [58]

FA-MoOx QDs 0.2–500 µM 29 nM [59]
HBT-H 0–5 µM 0.308 µM [60]

Fe3O4@SiO2-PAP 0.1–0.2 mg/L 0.125 µM [61]

3.5. Mechanism of DN-CD Interaction with Cu2+

3.5.1. Exploration of Quenching Mechanism

Carbon dots have already been used in the field of PL sensors and the PL quenching
mechanisms of carbon dots had been discussed in other articles. The quenching mecha-
nisms can be roughly divided into two types, which included static quenching and dynamic
quenching. There were also other mechanisms, such as Förster resonance energy transfer
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(FRET), photo-induced electron transfer (PET) and inner filter effect (IFE). Static quenching
would occur through the interaction between the carbon dots and metal ions, forming
a non-fluorescent ground-state complex. The existence of the non-fluorescent complex
could be verified by UV-Vis spectra. If there was complexation between the functional
groups in the carbon dots and metal ions, the absorption peaks on the spectra would have
a corresponding blue shift or red shift or even produce an obvious new absorption peak
due to a new chemical bond. Dynamic quenching would be caused by the collision of
carbon dots through the mechanisms of charge transfer or energy transfer, so that the
excited state of the carbon dots would return to its ground state. In contrast to static
quenching, dynamic quenching would only affect the excited state of the carbon dots, so
there would be no change in the UV-Vis spectra. However, a significant change in the
lifetime of fluorescence would be detected. FRET would occur when the emission spectra
of the carbon dots overlapped with the absorption spectra of the metal ions due to long
range dipole–dipole interactions between the excited state of carbon dots and the ground
state of metal ions. Additionally, if a FRET mechanism existed, it could change the lifetime
of fluorescence. PET could be defined that the electron transfer would occur between
carbon dots (as electron donor or electron receptor) and metal ions (as electron donor or
electron receptor), if there is an energy gap between the lowest unoccupied molecular
orbitals (LUMO) and the highest occupied molecular orbitals (HOMO) between the carbon
dots and metal ions. Additionally, IFE would result from an overlap of the absorption
spectra of the metal ions with the excitation or emission spectra of the carbon dots. This
could cause energy transfer between the carbon dots and metal ions. Therefore, in this
part, we explored the quenching mechanisms of our DN-CDs in detecting Cu2+ as static
quenching, FRET, PET or IFE by UV-vis spectra.

As shown in Figure 6a, the absorption peak of the DN-CD solution did not change after
adding the Cu2+ solution compared with the absorption peak without the Cu2+ solution,
proving that there was no static quenching behavior in our DN-CD PL sensor system.

To explore other possible quenching mechanisms, we compared the PL spectra of
DN-CDs with the absorption spectra of the Cu2+ aqueous solution (Figure 6b). This
indicated that the significant fluorescence emission peak of DN-CDs at 450 nm basically
did not overlap with the absorption peak of Cu2+. This concluded that there was no FRET
quenching mechanism between the DN-CDs and Cu2+. At the same time, as shown in
Figure 6c, there was no obvious overlap between the absorption spectra and fluorescence
emission spectra of DN-CDs. Additionally, we used the up-conversion PL as the excitation
wavelength, which was far from the absorption wavelength of Cu2+ (Figure S6). This could
eliminate the IFE effect of the PL quenching progress, which might reduce the number of
photons available for the DN-CDs [62].

The fluorescence lifetime decay of DN-CDs in the absence and presence of Cu2+ were
measured at λex = 820 nm and λem = 450 nm (Figure 6d). After adding a certain amount of
Cu2+ solution, the fluorescence lifetime of the DN-CD solution decreased from 10.69 ns to
5.14 ns. This suggested that dynamic quenching occurred in the sensor system. Additionally,
we proposed a non-radiative electron-transfer mechanism (PET). We calculated the highest
occupied molecular orbital (HOMO) and lowest unoccupied molecular (LUMO) energy
levels of the DN-CDs according to the following Equation (4) [63]:

ELUMO = −e(ERed + 4.4)EHOMO = −e(EOx + 4.4)EHOMO = ELUMO − Eg (4)

where ‘EOx’ and ‘ERed’ are the onset of oxidation and reduction potential of DN-CDs,
respectively, and ‘Eg’ is the optical energy gap resulting from the UV-Vis adsorption.
Additionally, the ‘ERed’ was −0.69 eV according to the CV plot (Figure S7). The ‘ELUMO’
was calculated to be −3.71 eV and ‘EHOMO’ was calculated to be −6.92 eV. Obviously,
the band gap could overlap the crystal field stabilization energy of Cu2+ (1.98 eV) [64].
As illustrated in Figure 7, the excited electrons of the DN-CDs were prone to transfer to
the d orbital of Cu2+ [65]. Thus, the fluorescence was suppressed and became a partially
non-radiative progress.
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3.5.2. Discussion on the Selectivity of Cu2+ and Fe3+ Ions

We synthesized two other N-doped carbon dots in our laboratory named N-CDs-1 and
N-CDs-2 and we found that they were capable of detecting Fe3+ ions. The PL spectra and
FT-IR spectra demonstrated that we had successfully synthesized the previously reported
carbon dots (Figure S8). The specific and detailed steps of detection of metal ions by these
two carbon dots are displayed in the supporting information.

The results of testing the selectivity of N-CDs-1 and N-CDs-2 to metal ions are shown in
Figure 8. As seen in Figure 8a, under the same conditions, obvious fluorescence quenching
occurred after adding the Fe3+ solution to the carbon dot solutions. In contrast, other metal
ions had little influence on the PL intensity of N-CDs-1. N-CDs-1 also had an up-conversion
PL, so its UCPL sensing system was investigated. The result was consistent with the above
one showing that N-CDs-1 with up-conversion PL was also selective for Fe3+ ions. Similarly,
N-CDs-2 showed selectivity for the detection of Fe3+ as shown in Figure 8c. The addition of
Fe3+ ions caused a strong quenching of the PL intensity, with a quenching degree of more
than 80%. Instead, the highest quenching effect of the other ions was only 40% (CrCl3),
which might be due to the larger band gap of the carbon dots, which could overlap with
the crystal field energy of Cr3+ and produce PET behaviors. In summary, N-CDs-1 and
N-CDs-2 could detect Fe3+ ions with a good linear relationship in the 1–1000 µM and
20–100 µM ranges and the LODs were 100 nM and 3.93 µM, respectively (Figure S9).
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We were interested in the similarities and differences between the three N-doped
carbon dots which could detect Cu2+ and Fe3+ ions. Through the comparison of the
differences between DN-CDs, N-CDs-1 and N-CDs-2, the ratio of N and O atoms were
found to be a potential reason for the ability to detecting Cu2+ and Fe3+ ions. Table S1
summarized the detection parameters for the selective detection of metal ions (Cu2+ and
Fe3+) with the different N-doped carbon dots [66–79]. It could be found that although
N-doped carbon dots contained different electron-rich functional groups, we suggest that
the proportion of the N, O atoms might affect the selectivity towards Cu2+ and Fe3+ ions.
The carbon dots with relatively rich N-based groups and more N atoms were more likely
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to selectively detect Cu2+ ions. More simply, the selective detection of Cu2+ and Fe3+ ions
by carbon dots could be adjusted or converted by altering the ratio of N and O atoms.
Moreover, the ratio of N/O of DN-CDs, N-CDs-1 and N-CDs-2 were 14.8:15.6, 21.7:12.8
and 27.1:5.2, which are consistent with our conclusion.

Hence, we preliminarily concluded that the selective detection of Cu2+ or Fe3+ ions by
N-doped carbon dots could be estimated according to the ratio of N/O: when the ratio of
N/O is about 1:1 or higher, the N-doped carbon dots tend to selectively detect Cu2+ ions;
when the N/O ratio is about 1:2 or smaller, the N-doped carbon dots prefer to selectively
detect Fe3+ ions. The Hard-Soft-Acid-Base theory could explain the difference: ‘acids’ and
‘bases’ can be classified as ‘hard’ or ‘soft’. ‘Hard’ refers to particles with a higher charge
density and smaller radius, while ‘soft’ refers to particles with a lower charge density and
larger radius. The interactions between a soft acid and soft base are more stable, while
the interactions between a hard acid and hard base are more stable. Thus, Cu2+ ions are a
borderline acid and can more easily interact with N atoms with a lower electronegativity
and bigger radius; Fe3+ ions are similar to hard acids, so they are more likely to interact
with O atoms with a higher electronegativity and smaller radius. Of course, the quenching
mechanisms of carbon dots are complex and other situations would also exist, which
require more detailed analysis methods.

3.6. Detection of Cu2+ Ions in Real Samples

To prove the practical application of the synthesized DN-CDs, we investigated the
ability of the DN-CDs to detect Cu2+ ions in water samples as shown in Table S2. The
relative standard deviations (RSDs) of Cu2+ ion detection in the three samples were less
than 8% and the recovery rates were in the range of 95.4–105.9%. This verified that the
DN-CDs have great potential in Cu2+ ion detection.

4. Conclusions

In conclusion, N-doped carbon dots with down-conversion and up-conversion fluores-
cence were synthesized by a simple one-step hydrothermal method. The prepared carbon
dots, DN-CDs, had excellent fluorescence properties, good stability and a high quantum
yield QY of 63.87%. They showed a significant fluorescence intensity at 410 nm, and also
had up-conversion fluorescence at 820 nm. Additionally, the abundant N, O-based func-
tional groups endowed the DN-CDs with excellent water solubility and excellent sensitivity
and selectivity for Cu2+ ion detection with a rapid reaction time of 3 min. Therefore, it had
better practicality. We also synthesized other N-doped carbon dots with different carbon
sources and nitrogen sources to study their ability to detect metal ions. They had the ability
to detect Fe3+ ions with a detection limit (LOD) of 100 nM and 3.39 µm. Additionally,
although the principle of selective metal ion detection is very complex, by comparing the
results in this paper and published reports, a method of synthesizing N-doped carbon dots
to detect Cu2+ or Fe3+ ions exclusively through adjusting the ratio of N and O atoms was
proposed: (1) when the ratio of N/O was about 1:1 or higher, the N-doped carbon dots
tended to selectively detect Cu2+ ions; (2) when the N/O ratio was about 1:2 or smaller, the
N-doped carbon dots preferred to selectively detect Fe3+ ions. This provided a possible
direction for the design and synthesis of N-doped carbon dots with the ability to detect
Cu2+ or Fe3+ ions in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst13050812/s1, Figure S1: The trends of the quantum yield
fluorescence of N-doped carbon dots at different ratio of carbon source and nitrogen source (a),
reaction temperature (b), reaction time (c); Figure S2: The Zeta potential of DN-CDs under different
pH; Figure S3: The DLS of DN-CDs in aqueous solution at (a) pH = 1, (b) pH = 7 and (c) pH = 13;
Figure S4: The Raman spectrum of DN-CDs; Figure S5: The EDS of DN-CDs; Figure S6: The up-
conversion PL spectra of DN-CDs. (The emission spectrum at maximum excitation wavelength at
820 nm and the excitation spectrum at the maximum emission wavelength of 450 nm); Figure S7:
The CV plot of DN-CDs; Figure S8: (a-c) The fluorescence emission spectra at λex = 450 nm and
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λex = 600 nm and FT-IR spectra of N-CDs-1; (d-e) The fluorescence emission spectra at λex = 380 nm
and FT-IR spectra of N-CDs-2; Figure S9: The PL quenching efficiency of (a) N-CDs-2 at λex = 380 nm
and (c) N-CDs-1 at λex = 410 nm and (e) at λex = 808 nm at different concentration of Fe3+ ions
and the linear relationship between PL intensity and Fe3+ ions (‘F0’ is PL intensity in the absence
of Fe3+ ions and ‘F’ is in the presence of Fe3+ ions) of (b) N-CDs-2 at λex = 380 nm, (d) N-CDs-1 at
λex = 410 nm and (f) at λex = 808 nm; Table S1: The detection parameters for selective detection of
metal ions (Cu2+ and Fe3+) with different N-doped carbon dots; Table S2: The detection of Cu2+ in
real samples.
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