
Citation: Jevtovic, V.; Ahmed, H.A.;

Khan, M.T.; Al-Zahrani, S.A.;

Masood, N.; Jeilani, Y.A. Preparation

of Laterally Chloro-Substituted Schiff

Base Ester Liquid Crystals:

Mesomorphic and Optical Properties.

Crystals 2023, 13, 835. https://

doi.org/10.3390/cryst13050835

Academic Editor: Vladimir

Chigrinov

Received: 9 April 2023

Revised: 8 May 2023

Accepted: 15 May 2023

Published: 18 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Preparation of Laterally Chloro-Substituted Schiff Base Ester
Liquid Crystals: Mesomorphic and Optical Properties
Violeta Jevtovic 1 , Hoda A. Ahmed 2,3,* , Mohd Taukeer Khan 4, Salma A. Al-Zahrani 1,*, Najat Masood 1

and Yassin Aweis Jeilani 1

1 Chemistry Department, Faculty of Science, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia;
v.jevtovic@uoh.edu.sa (V.J.); ne.ebrahim@uoh.edu.sa (N.M.); ya.jeilani@uoh.edu.sa (Y.A.J.)

2 Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
3 Chemistry Department, Faculty of Science, Taibah University, Yanbu 46423, Saudi Arabia
4 Department of Physics, Faculty of Science, Islamic University of Madinah,

Al-Madinah Al-Munawwarah 42351, Saudi Arabia; khanmtk@iu.edu.sa
* Correspondence: ahoda@sci.cu.edu.eg (H.A.A.); s.alzahrane@uoh.edu.sa (S.A.A.-Z.)

Abstract: A new class of Schiff base/ester compounds: ICln, 4-((2′-chlorophenylimino)methyl)phenyl-
4”-alkoxy benzoates, were synthesized and their mesophase characteristics and thermal behavior
were evaluated. Differential scanning calorimetry (DSC) was used to study mesophase transitions,
and polarized optical microscopy was carried out to identify the phases (POM). The results show
that all compounds are monomorphic, and enantiotropic nematic (N) phases were seen at all side
chains. It was found that lateral Cl atoms in the terminal benzene ring influence both conformation
and mesomorphic properties. Comparisons between the present investigated lateral Cl derivatives
and their laterally neat, as well as their isomeric, compounds have been briefly discussed. Results
revealed that the insertion of lateral Cl substituent in the molecular structure impacts the type and
stability of the formed mesophases. The exchanges of the ester-connecting moiety improve their
thermal nematic stability than their previously prepared structurally isomeric derivatives. These
compounds exhibit a broad absorption in the UV-Visible region, including a peak in UV region and a
tail around 550 nm, and there were observed to be absorption tail increases and energy band gap
decreases with the increase of the alkoxy side chain length. The photoluminescence (PL) intensity was
noted to be quenched for the bulky alkoxy group ascribed to non-radiative recombination through
the defect states. Moreover, time resolved fluorescence decay spectra reveal that both the radiative
and non-radiative recombination lifetime increases with the increase of alkoxy side chain length.

Keywords: lateral chlorine; liquid crystals; mesophase stability; optical properties; thin film;
energy bandgap

1. Introduction

Liquid crystalline materials with a Schiff base group in the mesogenic core of monomers,
dimers, oligomers, or compounds polymeric in nature are frequently studied [1–10] be-
cause of their fascinating optical properties, which allow for numerous electro-optical
applications such as switching, holography, and optical storage devices. For such materials,
the photochromic azomethine group phenomena are used to influence the phase behavior
and optical characteristics [11–15] of several LC materials. By creating molecular ordering
in the trans isomer as a result of the reversible trans-cis isomerization brought on by ultra-
violet radiation, the LC’s mesophase structure is stabilized, whereas the phase structure is
disrupted by disordering the cis isomer. The cis isomer will therefore have a lower clearing
point than the trans one [15–17].

When utilized as a linking group in liquid crystal molecules, Schiff base linker groups
have various benefits. They are simple to synthesize and can be used in a variety of meso-
genic architectures. The imine bond is also reasonably stable, supporting the stability of
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the liquid crystal phase over a broad temperature range. Furthermore, by adjusting the
linker group, it is possible to change the liquid crystal’s electro-optical sensibility and phase
transition temperature. Last but not least, the azomethine linker group’s capability to
undergo light-induced isomerization, which changes their form and orientation inside a
liquid crystal phase, is one of its major characteristics. Based on their formation [8] and
the observation of liquid crystal characteristics at ambient temperature, liquid crystalline
compounds containing a Schiff base linkage also exhibit considerable promise and sig-
nificant applications. The mesogenic core, terminal groups, and an adequate length of
the flexible chain are three parameters that have an impact on the molecular structure
of thermotropic liquid crystal compounds [18]. It will always be difficult to create new,
inexpensive liquid crystalline materials with great thermal stability and a wide mesophase
temperature range. However, chemically changing geometry has proven to be one of the
most efficient methods for developing innovative, low-cost liquid crystal materials with
specific features [12]. Even relatively minor modifications to the molecular shape of the
molecule, such as the presence of heteroatoms or a variety of lateral substituted atoms
or groups, can result in significant changes to the mesomorphic properties, molecular
geometry, transition temperature, conformational preferences, and other crucial physical
properties required for the design and development of new low-cost liquid crystal materials
with enhanced properties suitable for display technologies [15].

Recently, it was found that adding −CH=N connections to rigid structures, such
as phenyl rings, helps those compounds to keep their structural linearity and boosts
mesophase stability [19]. The molecule exhibits liquid crystalline properties because of its
linear molecular structure and high level of polarization in rod-like mesogenic compounds
with aromatic rings substituted at the para-position [20]. In most cases, molecular-molecular
interactions that are primarily influenced by the geometry and space-filling nature of
the molecules, polarizability anisotropy of the polar substituent, the stereo electronic
characteristics of the entire molecule, and the lateral adhesion that increases with the length
of the alkoxy chain determine how a calamitic mesogen behaves during mesophase. The
mesophase behavior is influenced by a number of factors [20]. The presence of bulky groups
makes it easier for space to be filled at the molecular terminal, which in turn promotes
an increase in the mesophase stability. Furthermore, the presence of polarizable atoms
increases the intermolecular interaction between molecules.

Some studies suggest that the liquid crystal characteristics of these compounds de-
pend on the nature of the terminal groups [20,21]. All of these compounds show liquid
crystalline properties when heated and cooled over different thermal ranges. In another
study, the synthesis of non-symmetric dimers with different terminal group substitutions
was covered. In all of these dimers, an enantiotropic nematic phase was detected. However,
the substituted dimers containing halogens and ethyl groups do display SmA behavior in
addition to the nematic phase [21]. For example, the impact of either a methyl or a methoxy
terminal group on Schiff base compounds was investigated by Naoum and his team as
well as Hagar et al. [22,23]. The thermal ranges of the compounds’ enantiotropic nematic
phases were 150 ◦C (OCH3) and 85 ◦C, respectively (CH3). The outcomes demonstrated
that the more electron-donating substituent increases the nematic range.

Several features of liquid crystal materials are significantly enhanced by the introduc-
tion of lateral groups (F, I, Br, CN, NO2, CH3, or OCH3). The molecular packing disruption
that lowers the melting temperature and decreases the stability of liquid crystal phases may
be responsible [24–32]. Both the features required for technical usage and the alterations to
the liquid crystals’ attributes may be advantageous for mesomorphism. The melting point
decreases as the length of the alkyl chains rises. In other words, as the length of the alkyl
chain increases, a compound’s tendency to be nematic decreases while its propensity to
display smectic characteristics increases. As a result, one may predict that the homologous
series will eventually reach a point when no nematic properties are displayed and the
system is only smectogenic. The smectic mesophase will transition into the isotropic liquid
at this point in the homologous series, most likely because the terminal intermolecular inter-
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actions are insufficient to preserve the parallel molecular orientation needed for the nematic
mesophase. It should be underlined that, at higher temperatures, a nematic mesophase
does not give rise to a smectic mesophase. Since the smectic mesophase is a more highly
organized state than the nematic mesophase, it represents a system with lower kinetic and
potential energy. Therefore, it is less likely that a nematic–smectic transition will occur
as temperature rises because doing so would require switching from a higher to a lower
energy system.

The chlorine atom that extends out from the side of the molecules will sterically
force the molecules apart and disturb the smectic molecular packing, which causes Cl
replacement at a lateral position within the core to have a minor steric effect [33,34]. Most of
the time, the melting temperature will be lowered, and occasionally the stability of the liquid
crystalline phase will remain. As a result, lateral substituents tend to increase a molecule’s
lateral dipole, which may encourage tilted smectic phases such as the SmC phase [35,36]
and hold promise for the synthesis of ferroelectric compounds. The steric character and
polarity of lateral substituent effects can be combined to produce some noticeable changes
in the physical properties without significantly disrupting the molecular packing.

The goal of the work we are performing now is to investigate the mesomorphic, optical,
and photophysical properties of produced lateral chloro liquid crystalline derivatives (ICln,
Figure 1) by recoding the absorption, steady-state PL and time-resolved fluorescence
spectra. Knowledge of the optical absorption and emission properties is vital to find their
applications in optoelectronic devices.
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2. Experimental
2.1. Materials

The following chemicals were bought from Sigma Aldrich (Schnelldorf, Germany): 4-
hydroxybenzaldehyde, 4-decyloxybenzoic acid, 4-octoyloxybenzoic acid, 4-dodecyloxybenzoic
acid, 4-hexadecyloxybenzoic acid, and 2-chloroaniline. Aldrich (Milwaukee, WI, USA) pro-
vided the dichloro-methane, N,N′-dicyclohexylcarbodiimide (DCC), ethanol, and
4-dimethylaminopyridine (DMAP).

2.2. Synthesis

The materials ICln were formed according to the following Scheme 1:
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2.2.1. Synthesis of 4-((2′-Chlorophenylimino)methyl)phenol (A)

Equimolar amounts of 4-hydroxybenzaldehyde (4.0 mmol) and 2-chloroaniline (4.0 mmol)
in ethanol (10 mL) were refluxed for two hours. The reaction mixture was allowed to cool,
and the separated product was filtered. The obtained solid was recrystallized from ethanol.

2.2.2. Synthesis of 4-((2′-Chlorophenylimino)methyl)phenyl-4”-alkoxy Benzoates, ICln

Compounds A and 4-alkoxybenzoic acid were dissolved in dry methylene chloride
(DCM) (25 mL) as their molar equivalents (0.01 mol). The reaction mixture was then given
a 0.02 molar addition of N,N′-dicyclohexylcarbodiimide (DCC) and a minute amount of
4-dimethylaminopyridine (DMAP). For 72 h, the reaction was stirred at room temperature.
Dicyclohexylurea (DCU), a separated byproduct, was filtered out. After the filtrate was
evaporated, ethanol was used to recrystallize the resulting product (SD, Figures S1–S4).

3. Results and Discussion
3.1. Liquid Crystalline Behavior

The synthesized materials’ transition temperatures and corresponding enthalpies were
determined from the DSC scan and are reported in Table 1 and schematically shown in
Figure 2. The transition temperatures and enthalpy values are estimated using the second
heating scans. The stability of the DSC curves for heating and cooling demonstrated the
thermal stability of all derivatives. The DSC heating and cooling lines of compound ICl8
are shown as an example in Figure 3. POM measurements revealed textures that helped in
the formation of mesophases (Figure 4). All of the compounds in the ICln group exhibit
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enantiotropic mesomorphic phases, as seen in Table 1. Moreover, depending on the length
of the terminal side chain, they all display thermal mesophases at various temperatures.
The transition temperatures of all the studied derivatives were graphically represented in
Figure 2 to show the impact of the terminal alkoxy chain length on the mesophase behavior
in prepared series.

Table 1. Transition temperatures (◦C), enthalpy in kJ/mol and normalized entropy of transitions as
well as mesophase range of series ICln.

Compound TCr-N ∆HCr-N TN-I ∆HN-I ∆TN ∆S/R

ICl6 106.1 38.4 139.9 1.49 33.8 0.43

ICl8 111.5 41.6 139.4 1.73 27.9 0.50

ICl10 110.4 46.9 132.3 1.18 21.9 0.35

ICl12 109.2 47.1 128.8 1.32 19.6 0.39
Abbreviations: Cr-N = transition from solid to the N phase; N-I = transition from N to the isotropic phase.
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All of the formed compounds confirmed the nematic mesophase’s presence, as shown
in Table 1 and Figure 2. Increasing the polarizability and/or polarity of the entire molecule’s
mesogenic component, in general, improves mesophase stability. Table 1 and Figure 2 show
the irregular pattern of the melting points (Cr to N). The homologues ICl6 and ICl8 have
different melting points, with ICl6 having the lowest (Cr-N = 106.1 ◦C) and ICl8 having
the highest (Cr-N = 111.5 ◦C) values. The synthesized group displays only N mesophases
and according to previous descriptions [37,38], N phase stability decreases with length of
side carbon chain (n). Compound ICl6 has a broad N phase range of 33.8 ◦C. The impact of
the length of the terminal alkoxy group is another significant factor affecting the difference
in transition temperature from mesophase to isotropic phase. Yet, the reduced stiffness of
the rod-shaped molecule results in an increase in the molecule’s anisotropic characteristics,
which in turn improves mesophase stability [37]. Moreover, a decrease in stability is
predicted because an increase in the alkoxy terminal chain will dilute the mesogenic core.
According to the data, the diluting effect predominates the thermal stability decline with
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increasing alkoxy chain length. Moreover, the microphase separation between the aromatic
cores and the alkyl chains play important roles for the formation of the mesophase.
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For all compounds (ICln), the entropy change related to the nematic-isotropic tran-
sition, TN-I, expressed as a dimensionless quantity ∆S/R, was calculated. The data are
shown in Table 1. As shown in Table 1, all entropies of transitions demonstrated reduced
∆S/R values regardless of the length of the alkoxy chain (n) or the polarity/size of the
lateral Cl substituent. The low value of entropy was likely due in part to the mesogenic
group’s increased biaxiality and decreased positional order, which led to a reduction in
conformational entropy. This can be explained by the lateral unit’s improved biaxiality,
which results in lower ∆S/R values with higher mesogenic group biaxiality [38], compared
to more typical rod-like mesogenic units.
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3.2. Comparison with Related Materials

It is exciting to compare the examined compounds with homologues materials previ-
ously reported but without any lateral substitution in order to understand the impact of
the lateral chlorine substitution on the phase behavior of the researched compounds. The
temperatures and phase types of the neat compounds, which retain the same aromatic core
as compound In but absent chlorine substitution (In) [5], are shown in Table 2 and Figure 5.

Table 2. Chemical structure, transition temperatures (◦C) and enthalpy of transitions in kJ/mol of the
non-chlorinated compounds In [5].
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It has been demonstrated [39] that, within the same series of compounds, the dipole 
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Comp. Mesohase Transition Temperature and Enthalpy

I6 Cr 110.8(26.15) N 156.8 (0.88) I

I8 Cr 105.1(34.13) SmA 112.2 (0.81) N 150.4 (0.31) I

I10 Cr 104.7(30.15) SmA 123.7 (0.78) N 144.6 (0.62) I

I12 Cr 108.9(19.85) SmA 207.4 (3.27) I

For abbreviations see Table 1.
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According to the length of the side chains, all compounds are mesomorphic and have
either one or two LC phases, as shown in Table 1 or Table 2. The lateral Cl substitution
lowers the melting temperature and mesophase range for n = 6, but only the N phase is
seen for both homologues, so the mesophase type is unaffected (compare compounds ICl6
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and I6, Tables 1 and 2). With an increase in n from 6 to 12 carbons for compounds ICln, the
nematic phase is maintained. The melting point is significantly lower for the laterally neat
compounds I8, I10 and I12, leading to a larger range of SmA phases.

Overall, this study shows that lateral Cl causes less ordered mesophases because of its
steric influence; as a result, in most instances, the SmA phases are replaced by N phases in
addition to stabilizing the nematic phases.

It has been demonstrated [39] that, within the same series of compounds, the dipole
moments of its individuals are determined by the nature of the substituent since the
mesophase stability of a liquid crystalline compound depends primarily upon intermolecu-
lar attractions in which molecular polarity plays a significant role. The amount of conjuga-
tion changes the polarisability of the molecule and the resulting dipole moment. Moreover,
it has been proven [40] that, regardless of the length of the alkoxy chain, all members
of a homologous series have similar dipole moments. This conclusion is confirmed by
the fact that, regardless of their length, alkoxy groups have similar polarity and do not
change the degree of conjugative interactions between the alkoxy oxygen and the ester
carbonyl moiety.

A series compounds of the type 4(4′-alkoxybenzoyloxy)benzylidene-2-chloroanilin
(IIn) were prepared, in which the ester groups (OOC) in the previously investigated
isomeric derivatives are inverted to COO in the present investigation (ICln). In a molecule
of type IIn, inversion of the ester group produces an isomer that reacts mesomerically in a
different way and subsequently affects their mesophase behavior in a different way.

In a molecule of type IIn, inversion of the ester group produces an isomer that reacts
mesomerically in a different way and subsequently affects their mesophase behavior in a
different way. The temperature stability and hydrolysis resistance of aromatic esters are well
known [41]; in addition, conjugation interactions between the terminal substituent and the
ester group via the intermediate benzene rings do result in double bond character. Table 3
and Figure 6 show that all compounds in the isomeric series IIn [32] are mesomorphic and
have monomorphic (only one phase) nematic phases, except the longest chain derivative
II16, which has dimorphic smectic and nematic phases. Comparing the present compounds
ICln and IIn (Tables 1 and 3), shows that the previous derivatives IIn are less stable than the
prepared investigated materials ICln. Moreover, this comparison shows that the exchange
of ester linkage connection in present lateral Cl materials ICln influences the mesophase
thermal stability of formed nematic phases.

Table 3. Chemical structure, transition temperatures (◦C) of compounds IIn [32].
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3.3. UV-Visible Absorption Spectra

On glass slides, samples’ absorption spectra were captured using an Agilent Cary
5000 UV-Vis-NIR spectrophotometer. The normalized UV-Visible absorption spectra were
performed for all liquid crystalline homologue series, ICln, and shown in Figure 7. It can
be noticed that the onset of absorption observed around 550 nm and absorbance increases
for the lower wavelength. The absorption in the UV region is associated to the benzene
ring, whereas the low energy tail in the visible region corresponds to the transition in the
alkoxy side chain. The absorption was found to increase with the increase of alkyl side
chain length until ICI10 and thereafter slightly decreases for the ICI12. Moreover, the low
energy absorption tail becomes more prominent with increase of alkoxy side chain length as
revealed from Figure that ICI6 has no tail while the sample ICI12 has more prominent tail.
The direct energy bandgap (Eg) of synthesized liquid crystalline materials was evaluated
through Tauc’s Equation [42–45]: (αhυ)2 = A

(
E− Eg

)
, where α is the absorption coefficient

evaluated by α = Absorption
thickness . The Tauc plot of four materials is shown in Figure 8. The

energy bandgap evaluated by the intercept of tangent to the energy axis as illustrated
in Figure 6. The energy bandgap of ICI6 was evaluated to be 2.168 eV and noted to be
decreased with increase of alkoxy side chain length with a value of 2.022 eV, 2.012 eV, and
1.868 eV for ICl8, ICl10, and ICl12, respectively. Generally, the bulky side group increases
the energy bandgap, however here it decreases. The decrease in the band gap in the present
case might be due to the increase of defect states with the increase of side chain length
which lowers the Urbach tail and, consequently, causes a decrease of the energy bandgap.

3.4. Photophysical Properties

To illustrate the impact of side chain length on the photophysical properties of liquid
crystalline materials, the steady-state photoluminescence (PL) spectrum was recorded by
illuminating the liquid crystalline samples through a laser light of peak emission~319 nm.
The steady-state emission spectrum shown in Figure 9a exhibits peak emission at 459 nm
for ICl6. The PL intensity was noted to first increase for ICI8 and then decrease with
the further increase of side chain length (ICl10) and was almost diminished for ICl12.
Moreover, the peak emission was noted to be slightly red shifted with an increase of side
chain length. The red shift in PL emission is associated to the decrease in the energy band
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gap as illustrated in Figure 8. The decrease in PL intensity for ICl10 and ICl12 indicates
the suppression of radiative recombination with the increase of alkoxy side chain length.
The reduction in radiative recombination might be associated with the increase of trap
density, which provides alternative paths for the excited charge carriers to relax through
the non-radiative recombination process, consequently causing a decrease in PL intensity.
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Figure 7. The Absorption spectra of liquid crystalline samples, ICln.
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To further investigate the reason for the reduction of PL intensity with the increase
of alkoxy side chain length, the fluorescence decay was recorded at the peak emission
wavelength. The decay spectra of liquid crystalline samples are shown in Figure 9b. The
decay spectra exhibit two regions: a fast decay at short time and a second, slower, decay at
higher time. The decay at shorter lifetime corresponds to radiative decay and the decay
at longer time corresponds to non-radiative recombination [46]. The decay spectrum was
fitted with a biexponential decay function [9,47]: I(t) = A0 + A1e−t/τ1 + A2e−t/τ2 , where
A0 is constant, A1 and A2 are relative amplitude corresponding to the radiative and non-
radiative decay, respectively, and τ1 and τ2 are lifetimes corresponding to the radiative
and non-radiative recombination process, respectively. The lifetime τ2 corresponds to
non-radiative recombination through the defect states. The shorter lifetime (of the order
of ps) corresponds to the radiative recombination, whereas the longer (of the order of
ns) one is ascribed to the non-radiative decay of the excited charge carriers. The fitting
parameters and lifetime are listed in Table 4. The radiative decay lifetime of samples
ICI6 was evaluated to be τ1 = 557 ps and was noted to be delayed for sample ICl8 with
τ1 = 635 ps. The τ1 for sample ICl10 and ICl12 slightly decreases as compared to the ICl8.
The faster non-radiative decay is ascribed to the increase of defect state in ICl10 and ICl12.
The radiative recombination time of sample ICl6 was found to be 91 ns which dropped
to 66 ns for ICl8 as an increase of PL intensity. The radiative decay become delayed for
sample ICl10 and ICl12 with τ2 = 99 ns and 100 ns, respectively.

Table 4. The optical bandgap and the parameters used to fit the PL decay curve using the bi-
exponential function.

Sample Eg (eV) A0 A1 (%) τ1 (ps) A2 (%) τ2 (ns) τavg (ns) χ2

ICl6 2.168 149 17.1% 557 82.9% 91 4.48 2.17

ICl8 2.022 117 21.09% 635 78.91% 66 2.84 2.26

ICl10 2.012 98 14.17% 618 85.83% 99 3.59 2.25

ICl12 1.868 47 10.88% 571 89.12% 100 5.02 1.81

4. Conclusions

The thermal and optical properties of two series of laterally chlororinated Schiff base
liquid crystals were studied. To explore their molecular self-assemblies, DSC and POM
were used. The length of the terminal alkoxy chain at one end and the lateral chloro
substituent at the other end determine the thermal stability of the only type of LC phase
that was seen, which includes the nematic phase. Furthermore, all of the derivatives
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that have been produced have extremely high thermal stability and broad enantiotropic
nematic temperature mesomorphic ranges. Moreover, uneven trends and small magni-
tudes of the entropy changes related to the N-isotropic are found, independent of the
length of the terminal alkoxy chain (n). It might be caused by the comparatively high
clearing temperature values and the high molecular biaxiality promotion of the lateral Cl
substituent, which together reduce N-isotropic entropy changes. The lateral Cl substitution
induces the formation of nematic phases, as was demonstrated by comparisons between
the examined materials and their associated neat compounds as well as their structurally
isomeric derivatives reported in the literature. The synthesized LC samples exhibit broad
absorption in the UV-visible region and energy bandgap was found to be decreased with
the increase of alkoxy side chain length corresponds to the decrease of Urbach tail. The PL
intensity noted to be decreased for the samples with for longer alkoxy side chain owing
to an increase of non-radiative recombination and, consequently, delayed lifetime of the
excited charge carrier.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst13050835/s1, Figures S1–S4: NMR-spectra for compounds.
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