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Abstract: Reactive oxygen species (ROS)-mediated chemodynamic therapy (CDT) and photothermal
therapy (PTT) have potential for various cancer treatments. However, they are still bound by the
demands of Fenton reaction conditions such as oxygen dependence, inherent defects in common
standard photosensitizers (PSs), and the continuous availability of laser sources. Herein, we designed
Ce3NbO7/g-C3N4 nanocomposites (NCs) and investigated their ability to evaluate the performance
of PTT/CDT synergistically to enhance cancer treatment. The activation of Ce3NbO7/g-C3N4 NCs in
the tumor microenvironment (TME) causes the generation of cytotoxic ROS via the Fenton reaction.
Additionally, the g-C3N4 in NCs absorbs NIR, generating hyperthermia in the TME. The photothermal
conversion efficiency (η) of the Ce3NbO7/g-C3N4 NCs was found to be 49.5%. A photocatalytic
reaction with PTT-enhanced Fenton reagents, without consuming additional photothermal agents
(PTA) or Fenton reagents, generates the hydroxyl radical (OH•) primarily by direct electron transfer
in the TME. Almost 68% of cells experienced programmed cell death due to the combinational effect
(PTT/CDT), making it an efficient and biocompatible therapy. Furthermore, this work provides
a basis for developing numerous innovative materials that can be used to treat cancer, overcome
general limitations, and enhance ROS production under single-wavelength (808 nm) laser irradiation.

Keywords: chemodynamic therapy; photothermal therapy; tumor microenvironment; Fenton reaction

1. Introduction

Cancer has the highest mortality rate, accounting for 9.6 million deaths globally in
2018 [1,2]. According to the World Health Organization (WHO), nearly 35% of cancer deaths
occur due to changes in lifestyles (including smoking and alcohol consumption), dietary
factors, and exposure to ultraviolet rays and ionizing radiation [3–6]. Hepatitis B and C
viruses, fatty liver disease, cirrhosis brought on by alcohol use, smoking, obesity, diabetes,
an excess of iron in the diet, and other dietary exposures are the risk factors for liver cancer
(LC) [7]. LC is one of the most common cancers [8,9] and ranks third in mortality rate among
all malignancies, with an estimated 830,130 deaths globally in 2020 [10–12]. Worldwide, LC
is the leading form of cancer [9,13]. The WHO estimates around 905,677 new cases annually
and reports that 1,276,679 people will die from LC in 2040 [10,14]. Several traditional cancer
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treatments, including surgery, radiation therapy, and chemotherapy, have been widely used;
however, all these therapies are “double-edged swords” due to their high rates of recurrence,
harsh side effects, and multidrug resistance [15]. Therefore, there is a need to develop a
novel methodology for attaining more efficacy with negligible side effects [16–20], such
as sonodynamic therapy (SDT) [18], photodynamic therapy (PDT) [19], chemodynamic
therapy (CDT) [20], and photothermal ablation therapy (PAT) [17,19]. A nanocatalytic
medicine is an emerging therapeutic concept, producing toxic ROS that actively targets
the tumor tissues without harming the normal tissues [21]. The tumor microenvironment
(TME) is mildly acidic and hypoxic, expressing H2O2, promoting tumor growth and spread.
Therefore, the creation of nanoplatforms for TME-responsive tumor therapy appears to be
promising. CDT is the most widely used approach in nanocatalytic medicine and is wholly
based on biological characteristics linking various metabolic pathways between tumor cells
and normal cells. These biological qualities can produce distinctive biochemical conditions,
such as moderate acidity and abundant H2O2, to stimulate specific chemical reactions,
particularly the Fenton/Fenton-like reaction within tumors. These interactions produce
the highly toxic hydroxyl radical (OH•), which causes tissue damage and tumor cell death.
The produced OH• induces primary tumor death in TME, causing these tumor cells to
produce tumor-associated antigens (TAAs). The TAAs are captured by dendritic cells (DCs)
and migrate to immune organs such as the spleen [22,23]. Some of the metals involved
in CDT are Fe [24,25], Mn [26,27], Co [28,29], Ag [30,31], and Cu [32,33]. Recently, a new
class of bio-antioxidants called cerium-oxide-based nanozymes has been developed [34,35].
In nature, cerium has two different oxidation states, Ce3+ and Ce4+, and the enzymatic
activity of CeO2-x scavenging ROS is assumed to be related to the self-regeneration cycle
of Ce3+/Ce4+ and the oxygen vacancies on the cerium oxide surface. Most researchers
believe Ce3+/Ce4+ redox cycling is directly associated with CeO2-xs antioxidant properties.
The potential significance of oxygen vacancies in the rapid redox cycling of CeO2-x is
still under discussion [2,35,36]. Herein, we constructed cerium niobate hollow spheres
(CeO2/Ce3NbO7/g-C3N4 NCs), where Ce3NbO7 is meant for CDT purposes.

Owing to its inherent noninvasiveness and negligible side effects, photothermal ther-
apy (PTT) is widely used in cancer therapy. It uses photothermal agents (PTAs) that convert
light energy into thermal energy to generate localized hyperthermia; this has been con-
sidered an alternative treatment for various cancers [19,37]. Graphitic polymeric carbon
nitride (g-C3N4) has gained attention as a novel material that resembles graphene due to its
distinct elemental makeup and photoelectric properties. The exceptional biocompatibility
of g-C3N4, a compound made exclusively of carbon and nitrogen, is advantageous for use
in biomedicine [38]. Due to its superior physical and chemical characteristics, such as ease
of preparation, stable fluorescence, appropriate energy level, a wide excitation wavelength
range, and high biocompatibility, g-C3N4 is an emerging polymeric material with excellent
performance in PTT and photocatalyst applications. However, evidence on its application
as a biomedicine is scarce [39].

In this work, we designed NCs composed of cerium niobate (CeO2/Ce3NbO7) hollow
spheres coated with g-C3N4 nanosheets (Ce3NbO7/g-C3N4 NCs) with excellent biocom-
patibility, enhancing both CDT and PTT for synergistically killing tumor cells. The overall
scheme of the work is given in Figure 1. The designed Ce3NbO7/g-C3N4 NCs possess the
Ce3+ ions that actively take part in the Fenton reaction via the cascade mechanism to yield
the OH• radical; the g-C3N4 nanosheets to the hollow spheres act as excellent PTA agents
and exhibit an outstanding photothermal conversion efficiency (η) of 49.5% due to higher
carbon content. Notably, the synthesized NCs feature an “all in one” therapeutic platform
for performing both PTT/CDT without adding any external photothermal or chemody-
namic (Fenton) agents. Hence, our synthesized NCs show a novel approach for accessible
design and hold great potential in therapeutic applications. Integrating PTT/CDT signifi-
cantly improves the progression of cell apoptosis by enhancing one mode of therapy with
the other through synergistic performance by heat generation in PTT and the production of
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OH• in CDT. The excellent synergistic performance of the in vitro results of both PTT and
CDT illustrates the potential of NCs as a cancer-curing treatment technique.
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Figure 1. Schematic representation of the synthesis and therapeutic application of the
CeO2/Ce3NbO7/g-C3N4 NCs. The modifications of g-C3N4 to the Ce3NbO7 hollow spheres syner-
gistically accomplish PTT/CDT to treat LC.

2. Materials and Methods
2.1. Required Chemicals

A total of 99.5% cerium nitrate hexahydrate (Ce(NO3)3·6H2O), 99.9% niobium pen-
tachloride (NbCl5), 99% urea (CH4N2O), 35% hydrogen peroxide (H2O2), 99% ethanol
(C6H5OH), graphitic carbon nitride (g-C3N4), double distilled water (DD H2O), dimethyl
sulfoxide (DMSO), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT),
and methylene blue (MB) were purchased from Sigma-Aldrich, Burlington, MA, USA, or
Merck, Darmstadt, Germany.
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2.2. Preparation for CeO2/Ce3NbO7 Hollow Spheres

The CeO2/Ce3NbO7 were prepared by the facile hydrothermal method. Initially,
about 0.303 g of cerium nitrate hexahydrate (Ce (NO3)3·6H2O) and 0.18 g of niobium
pentachloride (NbCl5) were dissolved in 70 mL of DD H2O. In the above solution, 1 g
of urea (CH4N2O) was added dropwise with constant stirring. Then, 4–5 drops of H2O2
were added; the mixture was kept on a magnetic stirrer for 1 h. The clear solution was
transferred to a Teflon-lined autoclave and sealed. The above solution was subjected to a
hydrothermal process at 180 ◦C for 20 h. The pale green precipitate obtained was washed
four times with ethanol and DD H2O and dried in an oven at 60 ◦C for 15 h. After drying,
the sample was calcined at 800 ◦C for 2 h. The resultant black powder was stored and
labeled as cerium niobate hollow spheres.

2.3. Preparation of g-C3N4

The g-C3N4 was prepared by using the pyrolysis method. Initially, 20 mg of CH4N2O
was placed in a crucible and subjected to pyrolysis at 550 ◦C for 3 h.

2.4. Modification of g-C3N4 on CeO2/Ce3NbO7 Hollow Spheres

The CeO2/Ce3NbO7/g-C3N4 NCs were prepared by coating the CeO2/Ce3NbO7
hollow spheres on the surface of g-C3N4 nanosheets by the ultrasonication method. The
calculated amounts of the CeO2/Ce3NbO7 hollow spheres and g-C3N4 were taken in the
molar ratio of 1:4 by weight (20% of CeO2/Ce3NbO7 hollow spheres and 80% of g-C3N4).
The desired amount of CeO2/Ce3NbO7 hollow spheres was dissolved in ethanol, followed
by the addition of g-C3N4 nanosheets during ultrasonication for 10 min, and the residue
was dried in an oven at 60 ◦C overnight. Later, the dried mixture of CeO2/Ce3NbO7/g-
C3N4 was placed in a boat-shaped crucible and set in a muffle furnace at 550 ◦C with a
heating ramp rate of 10 ◦C /min in an argon atmosphere for 4 h. Finally, the obtained
CeO2/Ce3NbO7/g-C3N4 NCs were dried and ground into powder.

2.5. Characterization of Synthesized g-C3N4-Coated NCs

The morphological examination of CeO2/Ce3NbO7 hollow spheres and CeO2/Ce3NbO7/g-
C3N4 NCs was determined by transmission electron microscopy (TEM). The crystallinity of the
g-C3N4-coated NCs was confirmed by X-ray diffraction spectroscopy (XRD), and their surface
conformation was predicted by energy-dispersive X-ray spectroscopy (EDS). The stretching
of various vibrational bands and the presence of different functional groups were indicated
using Fourier transform infrared spectroscopy (FT-IR). The elemental composition and orbital
range of the synthesized NCs were determined by X-ray photoelectron spectroscopy (XPS), and
their photothermal response was determined using an infrared (IR) camera. The respective cell
viability and biocompatibility of the NCs were monitored by MTT assay.

2.6. Photothermal Response of the Synthesized CeO2/Ce3NbO7/g-C3N4 NCs

The time-dependent temperature profiles of the CeO2/Ce3NbO7/g-C3N4 NCs were
assessed at an irradiation of 808 nm using a near-infrared (NIR) laser. The images were ob-
tained using the infrared (IR) camera. The synthesized CeO2/Ce3NbO7/g-C3N4 NCs were
dissolved in 1 mL of DD H2O at different concentrations (0.1, 0.2, 0.5, 1, and 2 mg/mL),
placed in a 2 mL cuvette, and subjected to laser exposure at 1 W/cm2 for 5 min. The thermal
images and temperature elevation of the synthesized NCs concerning different concen-
trations and their cooling curves were recorded using an IR camera. The photothermal
conversion efficiency (η) was calculated using the formula given below:

η =
hs (Tmax− Tsurr)− Qdis

I(1− 10−A808)
(1)
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where h = heat transfer coefficient, S = superficial area, Tmax = maximum equilibrium
temperature, Tsurr = ambient surrounding temperature, Qdis = heat dissipated by the
surrounding, I = laser power, and A808 = absorbance of the NCs at 808 nm.

2.7. Cell Culture

Human liver cancer HepG-2 cells (ATCC-CCL107, Manassas, VA, USA) and mouse
fibroblasts L929 cells (ATCC-CCL1, Manassas, VA, USA) were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) with 10% fetal bovine serum (GIBCO, Ann Arbor, MI,
USA), 100 µg/mL of penicillin, and 100 µg/mL of streptomycin. The incubators were
maintained at 37 ◦C with a 5% CO2 atmosphere and 95% relative humidity.

2.8. OH• Generation of CeO2/Ce3NbO7/g-C3N4 NCs by MB

Initially, 0.2 mg of the CeO2/Ce3NbO7/g-C3N4 NCs were added to 10 µL of H2O2
and 1 mL of MB solution (10 µM). After incubation for approximately 20 min at room
temperature, this solution was subjected to UV spectrometry, and its absorbance was
measured at 660 nm.

2.9. In Vitro Cytotoxicity Assay

To evaluate the biocompatibility of the prepared CeO2/Ce3NbO7/g-C3N4 NCs, 5× 104/mL
of both L929 and HepG-2 cells were seeded in a 96-well plate, cultured and kept in an oven at
37 ◦C with 5% of CO2 for 12 h. Later, the DMEM medium was removed, and fresh DMEM
containing different concentrations of NCs (0, 12.5, 25, 50, and 100 µg/mL) was added to a
96-well plate and incubated for 24 h. The medium in the 96-well plate was removed the following
day, and MTT solution (100 µL) was added and incubated for 3 h. Then, the MTT solution was
discarded and DMSO solution was added to the 96-well plate; this was shaken well at 100 rpm
for 20 min, and absorbance at 570 nm was measured using a Varioscan® flash microplate reader
(Thermo Scientific, Waltham, MA, USA).

In the cytotoxicity analysis, 5 × 104 HepG-2 cells were seeded in a 96-well plate with
different groups such as control (DMEM medium), CeO2/Ce3NbO7/g-C3N4 NCs, and
CeO2/Ce3NbO7/g-C3N4 NCs + NIR (808 nm laser source) at two different pH (7.4 and 6.5)
to mimic TME. Finally, the cell viability was determined using the MTT assay.

2.10. Statistical Analysis

All the obtained data in the present work are represented as mean ± standard de-
viation. Significance between the groups was calculated using the using Student’s t-test
method. A p-value less than 0.5 was considered to be statistically significant.

3. Results and Discussion
3.1. Synthesis and Characterization of CeO2/Ce3NbO7/g-C3N4 NCs

Using the facile hydrothermal method, the CeO2/Ce3NbO7 hollow spheres were
prepared [40], and their g-C3N4 synthesis was performed using the pyrolysis method [41].
The surface modification of g-C3N4 towards the CeO2/Ce3NbO7 hollow spheres via the
ultrasonication method is given in Figure 1.

Figure 2a,b shows the structure of the prepared CeO2/Ce3NbO7 hollow spheres. TEM
images of g-C3N4 show a nanosheet-like structure (Figure 2c,d), and Figure 2e,f shows
the hollow-sphere-shape of the CeO2/Ce3NbO7/g-C3N4 NCs that were modified on the
surface of the g-C3N4 nanosheets. Herein, the sphere-shaped structures of CeO2/Ce3NbO7
were produced during the calcination process (800 ◦C for 2 h). The EDX spectrum revealed
the elemental constitution and weight percentage of the NCs. Figure 2g represents the EDX
mapping of the CeO2/Ce3NbO7/g-C3N4 NCs and confirms the presence of all elements
such as cerium (Ce), niobium (Nb), oxygen (O), carbon (C), and nitrogen (N). Various
colors in the signal indicated the presence of these components. Figure 2h presents the
EDX images of Ce, while those of Nb (2i), C (2j), N (2k), and O (2l), respectively, are also
provided. Numerous bright electron diffraction spots confirm the crystalline structure of
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CeO2/Ce3NbO7/g-C3N4 NCs. The EDX analysis was performed to elucidate the existence
of elements such as Ce, Nb, C, N, and O in the prepared CeO2/Ce3NbO7/g-C3N4 NCs.
Figure 2m represents the EDX mapping of the respective NCs. Figure 2n shows the weight
percentage and the elemental composition of the NCs, where the elements Ce, Nb, C, N,
and O were present at 34.33, 47.05, 5.23, 12.91, and 0.47 wt%, respectively.
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Figure 2. Characterization of CeO2/Ce3NbO7/g-C3N4 NCs, (a,b) show TEM images of
CeO2/Ce3NbO7 hollow spheres; (c,d) g-C3N4; (e,f) CeO2/Ce3NbO7/g-C3N4 NCs; (g) elemental
mapping images of CeO2/Ce3NbO7/g-C3N4 NCs; (h) cerium (Ce); (i) niobium (Nb); (j) carbon (C);
(k) nitrogen (N); (l) oxygen (O); (m) EDX mapping of CeO2/Ce3NbO7/g-C3N4 NCs; (n) elemental
composition and weight percentage.

The XRD patterns of Ce3NbO7, g-C3N4, and CeO2/Ce3NbO7/g-C3N4 NCs are given
in Figure 3a. The XRD pattern of CeO2/Ce3NbO7 hollow spheres shows the characteristic
peaks at 28.6, 33.1, 47.5, 56.4, 59.2, and 69.5◦, which correspond to the (111), (200), (220),
(311), (222), and (400) planes of the cubic lattice of Ce3NbO7 [PDF No.: 00-023-0144],
while the presence of tiny, intense peaks at 28, 76.7, and 79.1◦ correspond to the (111),
(331), and (420) planes of CeO2, with a cubic structure [PDF No.: 00-001-0800] [42]. The
XRD stick pattern of the composition of Ce3NbO7 [PDF No.: 00-023-0144] [43] confirms
the composition of Ce and Nb in the CeO2/Ce3NbO7 hollow spheres. The modification
of g-C3N4 nanosheets towards CeO2/Ce3NbO7 hollow spheres shows the presence of a
characteristic peak at 27.5◦, corresponding to the (001) coordinates confirming the presence
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of g-C3N4 in the synthesized CeO2/Ce3NbO7/g-C3N4 NCs [41]. Thus, XRD analysis
confirmed that the g-C3N4 was successfully modified on CeO2/Ce3NbO7 hollow spheres.
The functional groups and structural moieties of the NCs were determined by FT-IR
spectroscopy. Figure 3b represents the FT-IR spectrum of the NCs, with peaks at 605, 926,
1633, 2848, and 2919 cm−1

. The peaks in the 605 and 926 cm−1 region strongly convey Ce-O
and Nb-O stretching vibrational modes. The C=O groups, -C-H- stretching, and hydroxy
-OH groups were attributed to the presence of peaks at 1633, 2848, and 2919 cm−1 [40]. The
appearance of a peak in the 1600–1900 cm−1 range confirms the presence of aromatic C-N
stretching mode, and the sharp characteristic peak at 806 cm−1 was due to the presence
of the s-triazine ring system [41]. The UV-visible spectrum of the CeO2/Ce3NbO7, g-
C3N4, and CeO2/Ce3NbO7/g-C3N4 NCs upon 808 nm of NIR laser irradiation is given in
Figure 3c. It is clearly observed that g-C3N4 exhibits a significant absorption spectrum in
the range of 300–500 nm. Moreover, it is confirmed that the up-converted UV and visible
emissions from the CeO2/Ce3NbO7 NPs activate the g-C3N4 nanosheets. Therefore, our
NCs possess a broad band spectrum from the visible to Near IR region [44].
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The XPS spectra of the constructed CeO2/Ce3NbO7/g-C3N4 NCs are depicted in
Figure 4, validating the presence of elements along with the structural behavior of NCs.
Figure 4a shows the overall survey spectrum of CeO2/Ce3NbO7/g-C3N4 NCs, confirming
the existence of elements such as Ce, Nb, O, C, and N. This leads to the conformation
of CeO2/Ce3NbO7 modification towards the g-C3N4 in the NCs. Here, small, intense
peaks at 283.8 eV (C1s) and 378.2 eV (N 1s) (g-C3N4) were obtained. Figure 4b depicts the
deconvoluted spectra of Ce 3d 5/2 and Ce 3d 3/2, which show the appearance of six peaks
attributed to the presence of Ce4+ and Ce3+ at 883.6 eV (v), 890.1 eV (v′), 899.4 eV (v′′),
902 eV (u), 908.7 eV (u′), and 917.8 eV (u′′) [45]. The presence of the Nb+5 oxidation state
was confirmed by the appearance of the noticeable peaks at 208 eV (Nb 3d 5/2) and 211.1 eV
(Nb 3d 3/2) in Figure 4c [46]. The special sp2 (C-C) bond in the CN from g-C3N4 was
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responsible for three peaks in the region of 284 eV in Figure 4d. The existence of the C
atom in the aromatic ring linked to NHx is shown by the peak at 286.5 eV [47]. The N-C=N
triazine ring sp2 hybrid carbon was responsible for the appearance of a strong peak at
282 eV. In Figure 4e, the presence of metal oxide (M-O) bindings such as Ce-O, Nb-O, and
O with a hydrocarbon or hydroxyl group (O-C or O-H) are depicted by the two convoluted
peaks of O 1s at 531.7 eV and 533.4 eV [40]. The above results confirmed the successful
modification of Ce3NbO7 over g-C3N4 in NCs.
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3.2. Photothermal Performance of CeO2/Ce3NbO7/g-C3N4 NCs

g-C3N4 is a superior photothermal agent due to its rich carbon supply, and it can be
easily dispersed in H2O, is photostable, and is environmentally friendly in nature [48]. The
CeO2/Ce3NbO7/g-C3N4 NCs were expected to perform effectively in PTT therapy utilizing
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808 nm laser irradiation. Figure 5a shows the time-dependent temperature elevation curve
of CeO2/Ce3NbO7/g-C3N4 NCs for various concentrations (0, 0.1, 0.2, 0.5, 1, and 2 mg/mL),
which confirms that the temperature is a concentration-dependent one. The heating–cooling
curve of the NCs proved that they possess good thermal stability, as presented in Figure 5b.
Figure 5c shows the IR images of NCs, demonstrating that the temperature elevation of the
NCs has increased over time (0 to 5 min). Furthermore, the NCs PCE (η) was calculated
as 49.5%. These results confirm that the prepared NCs have good photothermal stability
under NIR irradiation.

 

Figure 5. In vitro photothermal responses of the CeO2/Ce3NbO7/g-C3N4 NCs (those Chinese
characters in the figure represents the respective temperature range): (a) temperature changes of the
CeO2/Ce3NbO7/g-C3N4 NCs aqueous solutions at different concentrations in 1 W/cm2. (b) Thermal
stability of the synthesized NCs under irradiation with a 1 W/cm2 NIR laser source. (c) Infrared
thermal images of the NCs at a power density of 1 W/cm2.
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3.3. Fenton Catalytic Property of the Synthesized CeO2/Ce3NbO7/g-C3N4 NCs

Methylene blue (MB) was employed for the detection and quantification of hydroxyl
radical (OH•) to investigate the capacity of CeO2/Ce3NbO7/g-C3N4 NCs to generate OH•
under the circumstances of TME for CDT. Ce mediates the reaction of H2O2 to generate OH•
via Fenton-type reactions. Figure 6a depicts the UV-visible curve for MB in water (pH = 7.4)
and H2O2 (pH = 6.5) solutions, where the absorbance peak was observed at the maximum
wavelength of 664.6 nm in room temperature with little changes, indicating MB could not
be degraded under various pH conditions. In Figure 6b, the degradation curve of MB with
H2O2 is given for varying time intervals from 0 to 20 min at 37 ◦C. Figure 6c presents the
MB degradation curve and the calculated amount of synthesized NCs in the absence of laser
source for different time durations of 0, 10, 15, and 20 min. Here, the Ce in the NCs actively
participates in the Fenton reaction via a cascade mechanism to yield the highly toxic OH•
that rapidly kills cancer cells inside the TME. The degradation efficiency slightly decreased,
mainly caused by more Ce4+ occupying the H2O2 active sites. These results demonstrate
that CeO2/Ce3NbO7/g-C3N4 NCs have the best catalytic performance, and they can
efficiently catalyze the production of sufficient hydroxyl radicals from H2O2. Figure 6d
reveals the photothermally enhanced Fenton reaction. The degradation of MB following
exposure to an 808 nm NIR laser was studied to evaluate the impact of the photothermal
effect on the Fenton reaction of NCs. It is evident that when the NCs were exposed to an
808 nm NIR laser, MB degradation efficiency increased in the presence of the laser compared
to the normal Fenton reaction, supporting the theory that the synthesized NCs firmly control
the photothermal enhancement of the Fenton reaction. NCs could generate heat by the
photothermal reaction to accelerate the Fenton reaction and the subsequent production
of OH•. Additionally, combining photothermal and chemodynamic performance, the
prepared NCs act as an optimized therapeutic platform in cancer applications.
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Figure 6. UV-Visible spectra of MB + H2O and MB + H2O2 (a). Degradation plot of MB+
CeO2/Ce3NbO7/g-C3N4 NCs at different time intervals (0 and 20 min) (b). The MB degrada-
tion of the NCs without laser for different time durations (c). The PTT/CDT of MB degradation
efficiency of NCs in the presence of laser (d).
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3.4. In Vitro PTT/CDT Performance of CeO2/Ce3NbO7/g-C3N4 NCs towards Liver Cancer

The synergistic therapeutic applications of the NCs were examined using a cell via-
bility assay. Human cancer cells (HepG2) and L929 cells were chosen here to investigate
the in vitro cytotoxicity of CeO2/Ce3NbO7/g-C3N4 NCs by utilizing an MTT assay. De-
signing nanomaterials for various biomedical applications requires careful consideration
of biocompatibility. Here, the primary intrinsic cytotoxicity of the CeO2/Ce3NbO7/g-
C3N4 NCs of L929 was assessed in Figure 7a, where the cell viability of L929 is high
around 93% compared to HepG2 cells. From this, we conclude that NCs are biocompat-
ible. The relative cell viability of HepG2 cells without laser at pH 7.4 was estimated at
84% for the highest concentration of 100 µg/mL of NCs, as shown in Figure 7a. These
findings proved that CeO2/Ce3NbO7/g-C3N4 NCs show negligible cytotoxicity compared
to other targeting-agent-based biomedical systems, ensuring their eligibility for further
therapeutic application in research [49]. The in vitro tumor-cell-killing effectiveness of
CeO2/Ce3NbO7/g-C3N4 NCs was assessed after 808 nm laser radiation (1 W/cm2) for
5 min (Figure 7b). After laser radiation, as seen in Figure 7b, CeO2/Ce3NbO7/g-C3N4
NCs significantly increased the concentration-dependent cell death of HepG2 cells. This
demonstrated that NCs possess the capacity for benign photothermal cell death. Figure 7c
represents the respective cell viability under pH = 6.5 (CDT). The NCs powerfully en-
hance the production of OH•. Endogenous CDT is made possible without external stimuli
owing to the CeO2/Ce3NbO7/g-C3N4 NCs’ potent catalysis of H2O2 and dissociation
to create OH•. Because of their metabolism, cancer cells inside the TME typically create
H2O2 naturally. Additionally, the effectiveness of CeO2/Ce3NbO7/g-C3N4 NCs against
the HepG2 cells in the tumor environment (pH = 6.5) was further evaluated. The HepG2
cell viability marginally decreased without laser irradiation when the CeO2/Ce3NbO7/g-
C3N4 NCs concentration increased. In order to kill cancer cells, CeO2/Ce3NbO7/g-C3N4
NCs can catalyze H2O2 dissociation to produce toxic OH• (Figure 7c). The reduction in
cell viability was more significant when CDT and PTT (an 808 nm laser) were coupled.
Approximately 68% of HepG2 cells were destroyed at a concentration of 100 µg/mL of
CeO2/Ce3NbO7/g-C3N4 NCs (Figure 7c). Overall, MTT cell viability results suggested
that the PTT could enhance CDT efficacy, leading to a synergistic effect in the ablation of
cancer cells by combination therapy.
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4. Discussion

We propose a distinctive perspective on conjugated g-C3N4 with CeO2/Ce3NbO7 hollow
spheres to form CeO2/Ce3NbO7/g-C3N4 NCs. g-C3N4 exhibits excellent NIR absorption
rates, which suggests they have a strong potential for PTT applications. CeO2/Ce3NbO7/g-
C3N4 NCs (2.0 mg/mL) increased in temperature after 300 s. Under 808nm of laser irradiation
exposure, CeO2/Ce3NbO7/g-C3N4 NCs displayed an excellent photothermal conversion
efficiency (η) of around 49.5% and better thermal stability after three consecutive cycles.

Ce3+ in the NCs actively participates in the Fenton mechanism to yield the reactive
oxygen species (OH•) that drastically kills the tumor cells inside the TME. Here, the MB
degradation plot provides clear evidence for the production of OH• radicals with and
without a laser source. From those results, we confirm that the NCs show the best catalytic
performance along with laser (808 nm) in cancer theranostics.

Furthermore, concentration-dependent cell death occurs due to the PTT/CDT effect
in CeO2/Ce3NbO7/g-C3N4 NCs. Compared to PTT and CDT, the in vitro studies convey
that the synergistic PTT/CDT exhibits decreased cell survival of 30% HepG2 cells for
(100 mg/mL) NCs. The excellent cell-killing ability is mainly due to the dual therapeutic
performance of NCs toward cancer cells. Based on these results, the synthesized NCs hold
great potency in both PTT and CDT for ablating cancer cells, and are biocompatible.

5. Conclusions

Herein, we developed a CeO2/Ce3NbO7 hollow sphere modified with graphitic car-
bon nitride (g-C3N4) to create a synergistic therapeutic application using CDT and PTT
for cancer treatment. Moreover, the cerium niobate hollow spheres were prepared by a
facile hydrothermal method for cancer theranostics, and the NCs showed outstanding
photothermal conversion efficiency (η) of 49.5% due to the presence of g-C3N4. Under laser
irradiation, it not only ablates the tumor cells but also enhances the Fenton reaction, boost-
ing the conversion of Ce3+ to Ce2+ to generate ROS and showing excellent photothermal
behavior. In vitro, studies demonstrated the excellent ability for cell apoptosis of tumor
cells using synergistic therapeutic modes. The current research can assist in developing
novel materials and various photothermal agents for multifunctional therapeutic applica-
tions in cancer treatment. As a result of our study, novel nanoplatforms can be created for
the precise and highly efficient treatment of liver tumors.
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