

Article C₂O Nanotubes with Negative Strain Energies and Improvements of Thermoelectric Properties via N-Doping Predicted from First-Principle Calculations

Jianbao Wu *[®], Liyuan Jiang, Xiaoyi Li and Zhixiang Yin

School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, 333 Longtong Road, Shanghai 201620, China

* Correspondence: wujianbao@sues.edu.cn

Abstract: In this study, the geometric structure, strain energy, and electronic properties of armchair C_2O nanotubes $(A_C_2ONTs(n, n))$ and zigzag C_2O nanotubes $(Z_2C_2ONTs(n, 0))$ are studied in detail. The results show that these nanotubes behave as special shapes; the section of $Z_C_2ONTs(n, 0)$ along the axial direction is an n-edge type, and the section tends to be round with an increase in n while the boundary of section along the axial direction for $A_C_2ONTs(n, n)$ fluctuates. With an increase in n, the fluctuation disappears gradually, and the section also tends to be round. Compared with C_2O nanosheets (g_ C_2O), C_2O nanotubes have similar or even smaller strain energy, when the tube diameter is greater than or equal to 15 Å, the strain energy begins to show a negative value, and the negative value tends to be stable as the pipe diameter increases. $Z_{2}ONTs$ start to show negative strain energies from n = 8 and A_C₂ONTs from n = 12, indicating their higher stabilities relative to the g_C_2O sheets. The calculation of the electronic band structure shows that Z_C_2ONTs are an indirect band gap semiconductor, and A_C₂ONT is a direct band gap semiconductor. The band gap value of Z_C₂ONTs first increases and then stabilizes with the diameters of the nanotubes, and the band gap value of A_C_2ONTs decreases with the increase in the nanotubes and tends to the band gap value of the $g_{2}O$ sheet. In addition, the electronic properties and thermoelectric properties of $C_2ONTs(n = 4, 6, 8)$ before and after N-doping were also studied. We found that N-doping changed the electronic and thermoelectric properties of C₂ONTs. It reduced the nanotube band gap value and significantly improved the thermoelectric figures of merit of $Z_{2}ONTs(n = 4, 6, 8)$ and $A_{C_2}ONT(4, 4)$, which comprised an effective strategy to improve the thermoelectric figure of merit of nanotubes. The results showed that the C₂ONTs had potential as thermoelectric materials after Ndoping, which provided important guidance for designing low-dimensional g_C₂O nanostructures.

Keywords: density functional theory; C2ONTs; negative strain energy; thermoelectric figure of merit

1. Introduction

Graphene is an ideal choice for next-generation devices due to its excellent physical and chemical properties [1–4]. However, one of the main obstacles is the zero-band gap of graphene, which has limited its applications in some fields. Therefore, there have been many studies on adjusting the band gap of graphene. Among them, atom doping is a typical method, such as in C₂N [5,6], C₃N [7,8], and C₃N₄ [9,10] nanosheets formed by nitrogen (N) doping, which not only opens the band gap but also provides a stable structure and good performance. Furthermore, these carbon–nitrogen nanomaterials have been synthesized experimentally [11,12]. Nonetheless, when synthesizing these N-rich carbon nitride materials, the easy releases and stabilities of N₂ molecules become its disadvantages [13]. In the past decades, a number of researchers have reported that oxygen doping can also adjust the band gap of graphene [14–16] and provides a more stable structure and performance [17,18]. As a case study, Liu et al. [19] theoretically proposed the insertion of 18-crown-6 ether embedded into graphene with $2\sqrt{3} \times 2\sqrt{3}$ units to obtain

Citation: Wu, J.; Jiang, L.; Li, X.; Yin, Z. C₂O Nanotubes with Negative Strain Energies and Improvements of Thermoelectric Properties via N-Doping Predicted from First-Principle Calculations. *Crystals* **2023**, *13*, 1097. https://doi.org/ 10.3390/cryst13071097

Academic Editors: Małgorzata Hołyńska and Ionut Tranca

Received: 13 June 2023 Revised: 9 July 2023 Accepted: 10 July 2023 Published: 13 July 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). a single layer of graphitized carbon with an O pore structure, named as graphitized carbon oxide (g_C₂O), which has a wide band gap and good superconductivity, thermal stability, and the function of screening gases [20,21]. In addition, its structure and performance are similar to Graphene [22], C_3N_4 [23], and C_2N [6,24]. The excellent properties of these materials make them the hope of the next generation of nano-electronic devices.

One-dimensional nanotubes can be obtained by curling two-dimensional nanosheets in a specific direction. Research on nanotubes in low-dimensional materials is also very extensive. For nanotubes, it can also be used in high-capacity batteries [25,26], gas sensors [27–29], thermoelectric materials [30], and so on. Among them, research on carbon nanotubes is the earliest and most comprehensive. Studies over the past decades have provided important information on new-type inorganic nanotubes. These have shown that only a small percentage of nanotubes have negative strain energies, which can provide bases for experimental synthesis. For example, the strain energy of Ti_2CO_2 nanotubes (16, 16) is -0.18 eV [31], the strain energy of InSb nanotubes (6, 6) is -0.17 eV [32], and the strain energy of stanene-based nanotubes (5, 0) is -0.05 eV [33,34], indicating that they are easily rolled from two-dimensional nanosheets. From the literature reports so far, there have been many studies on the nanotubes formed by nanosheets, which not only have lower energies and superior band gaps but also have more novel properties than nanosheets [18,35]. According to recently literature, research into g_C₂O nanotubes has been a largely under-explored domain, too little work has been devoted to them.

In recent years, due to global industrialization, the waste of energy has become more and more serious, which has affected the economic development and national life of some countries and regions. Researchers' interest in thermoelectric materials has increased dramatically [36–39], and finding or improving the thermoelectric properties of materials is a hot topic of current research. The efficiency of thermoelectric performance is judged based on the size of the thermoelectric figure of merit (ZT). The ZT is mainly calculated by the equation $ZT = S^2 \sigma T / K$, where T is the temperature, $S^2 \sigma$ is the power factor, S is the Seebeck coefficient, $K(K = K_e + K_{ph})$ is the thermal conductivity, K_e is the electronic thermal conductivity, and K_{vh} is the phonon thermal conductivity. It can be seen from the formula that the smaller thermal conductivity and the larger power factor are the reasons for a larger ZT value. However, traditional thermoelectric materials with large ZT values often include heavy metals such as Bi and Te [40,41]; these elements are generally expensive or toxic. In contrast, carbon-based materials are environmentally friendly and widely distributed in the universe. The use of low-dimensional carbon nanomaterials as thermoelectric materials can improve this shortcoming. However, both carbon nanotubes (K > $1000 \text{ W/m} \cdot \text{K}$) and graphene (K \sim 3500–5300 W/m·K) have higher thermal conductivities [36,42], which are also their frequently stated problems as thermoelectric materials. In order to reduce the high thermal conductivity of low-dimensional carbon nanomaterials, Avery et al. [42] combined theoretical and experimental studies show that doped networks in SWCNTs could greatly reduce thermal conductivities and improve thermoelectric performances. On the other hand, based on experiments, Liam and Joseph [43] found that n-type doping of SWCNT could effectively improve the thermoelectric efficiencies of carbon nanotubes. At the same time, theoretical studies have found that N-doped graphene could also significantly reduce the thermal conductivity of graphene. The lattice thermal conductivity of C₂N decreases by two orders of magnitude, which are around $40 \text{ W/m} \cdot \text{K}$ at 300 K along both the zigzag and armchair directions [44]. Moreover, by comparing the thermal conductivities of C_3N nanotubes with carbon nanotubes of the same tube diameter and length, it was found that the thermal conductivities of C_3N nanotubes were significantly lower than those of carbon nanotubes [45,46], such as at 600 nm. The conductivity of (5, 5) C₃NNT was 519.8 W/m·K which was considerably lower than the conductivity of the (10, 10) CNT, which was 1242.6 W/m·K.

Up to now, as far as we know, there is no research on the structures and performances of C_2O nanotubes (C_2ONTs). In order to understand the electronic structures, stabilities, and thermoelectric properties of C_2ONTs , in this work, nanotubes formed from g_C_2O

sheets were studied based on density functional theory. The considered nanotubes included two types of structure, armchair and zigzag, with diameters between 3.78–40.75 Å and 2.69–23.59 Å, respectively. The optimal geometries, strain energies, and electronic properties of the nanotubes were considered, and the calculation results showed that $Z_C_2ONTs(n, 0)$ started to show negative strain energies from n = 8 and $A_C_2ONTs(n, n)$ from n = 12 when being compared with C_2O nanosheets (g_C_2O). In view of that, many researchers have performed more research on the thermoelectric properties of carbon nanotubes [37,42], and N-doping could also improve the thermoelectric properties of graphene [46]. Here, we have calculated the three armchair types (4, 4), (6, 6), and (8, 8) and the three zigzag types (4, 0), (6, 0), and (8, 0). Through calculation and analysis of Seebeck's coefficient (S) and thermal conductivity (K), the results showed that A_C_2ONTs could greatly increase the ZT value in the temperature range of (200, 800) through N-doping, whereas the impact of N-doping on Z_C_2ONTs was not evident.

2. Computational Details

The calculated C_2ONT could be formed by curling g_2C_2O nanosheets; thus, the chiral vector of carbon nanotubes $C_h = ma_1 + na_2$ [47] was used to represent, and the a_1 and a_2 chiral vectors were unit carriers of g_C_2O nanosheets (Figure 1) and zigzag nanotubes (Z_C₂ONT) when z = 0 and armchair nanotubes (A_C₂ONT) when n = m. In this study, $Z_2ONT(n, 0)$ and $A_2ONT(n, n)$ were constructed using Material Studio (where n = 2, 4, 6, 8, 10, 12, 14, 16, 18). For the two different types of nanotubes considered in this paper, the supercell contained 36–324 atoms (listed in Table S1), and all calculations were performed in the VASP (Vienna Ab Simulation Package) software [48,49]. The Device Studio [50] program provided a number of functions of performing visualization, modeling, and simulation. The exchange correlation function used the generalized gradient approximation GGA method [51], parameterized by Pedrew–Burke–Ernzerh (PBE), with plane waves up to a cutoff energy of 500 eV. Brillouin zone integration was performed using a $1 \times 1 \times 12$ k-point grid. All geometric structures were fully relaxed and optimized until the force on the atoms was less than 0.02 eV $Å^{-1}$, and the convergence criterion for electron self-consistency was set to 10^{-5} eV. In order to avoid possible coupling between the atoms, the vacuum area between the nanotubes was set to 20 Å so that the interactions between the nanotubes were negligible. In order to obtain an optimized structure, we considered the C_2ONT unit to relax in the axial direction until the stress component was less than 0.1 GPa. The phonon spectra of force constants were calculated using PHONOPY code, based on the VASP-DFPT [52] (density functional perturbation theory) interface, using a $1 \times 1 \times 5$ supercell with the k-points set to $1 \times 1 \times 7$. Born–Oppenheimer ab initio molecular dynamics (AIMD) simulations were employed to evaluate the stability of C₂ONT. In total, $1 \times 1 \times 5$ supercells of Z₂ONT (8, 0) and A₂C₂ONT (12, 12) containing 144 and 216 atoms, respectively, were used to reduce the lattice translation constraints. In this case, the system was stable for 10 ps at 300 K with a time step of 1 fs, in addition to its temperature control with the Nosè algorithm [53]. Finally, we also calculated the thermoelectric performances of the C_2O nanotubes. To confirm the accuracy of the thermal property's calculation, we first calculated the ZT values of SWCNT (7,0) and (10,0), which are shown in Figure S1 (in Supplementary Materials). According to the calculated results, the ZT values of (7,0) and (10,0) at 300 k were 0.14 and 0.19, which were consistent with those calculated by Jiang et al. [54] All the thermal property calculations were performed by Quantum ESORESSO [55].

Figure 1. (a) Schematic of rolling g_C_2O nanosheet to zigzag and armchair nanotube structures; (b) Electronic band structure of g_C_2O nanosheet.

3. Results and Discussion

3.1. Electronic Properties

The first issue discussed is the g_C_2O nanosheet. After being fully optimized, the single-layer g_C_2O nanosheet behaves with C-C and C-O bond lengths of 1.38 Å and 1.39 Å, C-O-C and O-C-C bond angles of 115.72° and 117.86°, and a pore size of 5.37 Å. The electronic band structure g_C_2O nanosheet also has been calculated and plotted in Figure 1b. As shown in Figure 1b, the g_C_2O is a semiconductor with an indirect band gap of 2.27 eV, which is in good agreement with the theoretical studies [17,19]. Therefore, it can be seen from Figure 1a that the single-layer g_C_2O nanosheets are rolled along specific two directions (as shown in Figure 1a); thus, the $Z_C_2ONT(n, 0)$ and $A_C_2ONT(n, n)$ can be formed from g_C_2O nanosheets theoretically.

The second issue discussed comprised the C₂ONTs, the bond length, and bond angle of the fully optimized $Z_{C_2}ONT(n, 0)$ and $A_{C_2}ONT(n, n)$, given in Table S1. With the increase in n of the C_2ONT_s , both the bond length and bond angle of the two types of C_2 ONTs decreased and closed to that of g_2C_2O nanosheet. The changes in bond length and bond angle reflected the structural stability of the C_2 ONTs, which could be confirmed by the calculation of the strain energies of C_2 ONTs. The optimized structural shapes of the C_2ONTs are shown in Figure 2. We can see from Figure 2 that the structural shapes of $Z_{C_2}ONTs$ are different from those of $A_{C_2}ONTs$. As for $Z_{C_2}ONTs$, when n = 2, the structure appeared as a hollow elliptical cylinder after full optimization; when n = 4, it appeared as a hollow quadrangular prism; as shown in Figure S2, when n = 6, it became a hollow hexagonal prism; when n = 8, it became a hollow octagonal prism; and, according to the above rules, hollow prisms began to tended to become hollow cylinders as the tube size increased. Optimized $A_{C_2}ONTs$ appeared as a square cylinder structure when n = 2 and started to become an empty cylindrical structure after n = 4, but the cylindrical surface undulated; as shown in Figures S3 and S4, it started to appear as an empty cylindrical structure with smooth surface fluctuations when n = 12, and A_C₂ONT was an empty cylindrical structure with almost no undulations on the surface when n = 18. This was mainly because the number of atoms in the system increased, the bending effects of the nanotubes became smaller and smaller, the structures gradually stabilized [32], the intermolecular forces became smaller, the bond lengths and bond angles were stable, and the structures tended to be gradually stable. The unique nanotube structure of C₂ONT was slightly similar to the structure of a $g_C_3N_4$ nanotube [18].

Figure 2. The band structure of Z_C₂ONT and A_C₂ONT on the left, the top view of the linear structure, and the side view of the club structure on the right: $(\mathbf{a})(2,0); (\mathbf{b})(4,0); (\mathbf{c})(12,0); (\mathbf{d})(2,2); (\mathbf{e})(4,4); (\mathbf{f})(12,12).$

Strain energy E_{str} is a measure of the stability and feasibility of nanotubes compared to single-layer structures [33]. In order to evaluate the stability of C₂ONT, we calculated its strain energy (E_{str}), which is defined as $E_{str} = (E_{Nantube} - E_{Nanosheet})/unitcell$, where $E_{Nanotube}$ and $E_{Nanosheet}$ refer to the energies of the C₂ONT and g_C₂O nanosheets with the same number of primary unit cells, respectively (each primary unit cell contains two C and one O atoms). The corresponding strain energy values of Z_C₂ONT and A_C₂ONT are shown in Table 1.

	g_C ₂ O	E _{str} (meV/Unit Cell)	Diameter (Å)	Egap
Nanosheet	(0, 0)	-	-	2.27 ⁱ
	(2, 0)	533.0	3.78	1.07 ⁱ
	(4, 0)	75.3	8.55	2.14 ⁱ
	(6, 0)	9.9	13.24	2.35 ⁱ
7:0720	(8, 0)	-8.9	17.80	2.46 ⁱ
(n, 0)	(10, 0)	-17.5	22.45	2.47 ⁱ
	(12, 0)	-22.2	27.08	2.45 ⁱ
	(14, 0)	-25.0	31.62	2.45 ⁱ
	(16, 0)	-26.2	36.21	2.44 ⁱ
	(18, 0)	-27.9	40.75	2.44^{i}
Armchair (n, n)	(2, 2)	1911.8	2.69	0.41 ^d
	(4, 4)	351.1	4.96	2.25 ^d
	(6, 6)	115.6	7.80	2.27 ^d
	(8, 8)	34.0	10.45	2.58 ^d
	(10, 10)	6.1	13.06	2.53 ^d
	(12, 12)	-5.6	15.71	2.48 ^d
	(14, 14)	-14.0	18.36	2.41 ^d
	(16, 16)	-18.9	21.04	2.35 ^d
	(18, 18)	-22.1	23.59	2.34 ^d

Table 1. Strain energy values, tube diameters, and band gap (E_{gap}) values of C_2 ONT.

ⁱ means indirect gap and ^d means direct gap.

The relationship between strain energy and tube diameter or size parameter (n) is shown in Figure 3. With the increase in diameter or parameter (n), the strain energy values of Z_C₂ONTs and A_C₂ONTs all decreased. As seen from Figure 3b, when the tube diameter was greater than or equal to 15 A, the strain energy began to show a negative value, and the negative value tended to be stable as the tube diameter increased. As seen from Figure 3a, when n = 8 for Z_C₂ONT and n = 12 for A_C₂ONT, the strain energy started to be negative. Negative strain energy meant that these C₂ONTs had strong mechanical stabilities. To further study their thermal stabilities, the phonon spectra of Z_2ONT (n, 0) and A_C₂ONT (n, n) were calculated and are shown in Figure 4. From the phonon spectrum in Figure 4, it can be seen that there was no virtual frequency observed when the diameter of the tube changed from 4 Å to 18 Å, indicating that the nanotube structure was stable from the perspective of vibration spectrum; as the pipe diameter increased, there was a significant separation between the high-frequency and low-frequency parts. On the other hand, AIMD simulation at 300 K was further investigated the stability of C₂ONT, which is shown in Figure S5. Within 1 ns, there was no significant deformation observed in the dynamic simulations of $A_{C_2}ONT$ (8, 0) and $Z_{C_2}ONT$ (12, 12), indicating good thermal stabilities. These stabilities were due to the orbital overlaps between adjacent atoms caused by the small diameter of C₂ONT, but the adjacent orbital atoms no longer overlapped when the diameter was larger [33]. In the case of the same parameter n, the strain energy of Z_C_2ONT was smaller than the corresponding A_C_2ONT . Therefore, Z_C_2ONT was more stable than the corresponding $A_{2}ONT$. The reason was that the diameter of $Z_{2}ONT$ was larger than the diameter of A_C₂ONT with the same value of n. From the definition formula of strain energy (E_{str}), the smaller and smaller strain energy indicated that the energy required for various nanotubes formed by g_2O nanosheets rolling up decreased with increasing tube diameter. This meant that the $g_{2}O$ nanosheets became easier to roll into nanotubes as the diameter increased. From another perspective, this was also expected because the g_C_2O nanosheets with larger diameters had less deformations from the g_C_2O nanosheets when rolled into nanotubes.

Figure 3. Strain energy as a function of (**a**) tube size n; (**b**) diameter; (**c**) band gap as a function of tube size n; and (**d**) diameter.

Figure 4. Phonon dispersion curves of C₂ONT, (**a**) Z_C₂ONTs, and (**b**) A_C₂ONTs, point Z line marked with green, and frequency of zero line marked with red.

We also calculated the electronic structures of Z_C_2 ONTs and A_C_2 ONTs. As can be seen from Table 1, Z_C_2 ONTs were all indirect band gap semiconductors, whereas A_C_2 ONTs were all direct band gap semiconductors. Figure 3c,d show the band gap as a function of the tube diameter and parameter (n), respectively. It can be clearly seen from Figure 3 that the band gaps of C₂ONTs increased first with the increase in the diameter and n, and they then gradually approached convergence. It is worth mentioning that the band gaps of the A_C_2 ONTs converged to the value of the g_C_2 O nanosheet especially. As stated in the paragraph above, the degree of hybridization between the atomic orbits changed with the bond length and band angle changes. As the tube diameter increased, the dependence of the bond gap on the chirality and diameter became negligible, which was very similar to a C₂N nanotube [56].

3.2. Thermoelectric Properties

In order to investigate the thermoelectric performances of the C₂ONTs, we considered three cases for comparison when n = 4, 6, 8 for $A_C_2ONTs(n, n)$ and $Z_C_2ONTs(n, 0)$. While N-doping could improve the thermoelectric properties of graphene, the N-doped C₂ONTs(N_C₂ONTs) were also studied here. The method of doping was that the six oxygen atoms around the carbon ring were replaced by nitrogen. This doping was performed with reference to the structure of C₂N nanosheets. On the one hand, C₂N nanosheets have been successfully synthesized in the laboratory. On the other hand, C₂N nanotubes also have small strain energies. We calculated both the structure and ZT values of C₂NNT (4, 4) in Figure S8. After full optimization, the electric structures of N_C₂ONTs were calculated. The structures and electronic band structures of N_C₂ONTs are shown in Figures S6 and S7. As seen from Figure S7, N-doping introduced impure energy bands between the band gaps but did not change the nature of the band gap; the zigzag type maintained the indirect band gap, whereas the armchair type kept the direct band gap unchanged. In terms of size, the band gap became smaller after N-doping.

First of all, the ZT values of the N_C₂ONTs and C₂ONTs in the temperature range of (200 \sim 1000 K) were calculated separately. The curves of the ZT value changing with temperature of Z_C₂ONTs before and after N-doping are shown in Figure 4a. In the temperature range of 200–400 K, the ZT value was almost zero. However, in the range of 400–800 K, the ZT value increased with the increase in temperature, and N-doping significantly increased the ZT value, especially for the (4, 0) tubes. Starting at 800 K, the ZT value of Z_C₂ONTs after N-doping began to decrease with increasing temperature, whereas the undoped Z_C₂ONTs still held the upward trend. For the A_C₂ONTs case, as shown in Figure 5b, the N-doping effect on the ZT value varied little, and the ZT value before and after N-doping was almost zero. The (4, 4) sample was an exception, as the ZT value after N-doping increased with temperature, reaching 0.17 at a temperature of 1000 K.

Figure 5. ZT value before and after N-doping as a function of temperature for (a) Z_2C_2ONT and (b) A_2C_2ONT . Seebeck coefficient before and after N-doping as a function of temperature for (c) Z_2C_2ONT and (d) A_2C_2ONT .

Figure 5c,d shows the Seebeck coefficients of the Z_2ONT and A_2ONT as a function of temperature. The N-doped Z_C₂ONT (n = 4, 6) and A_C₂ONT(n = 4, 6, 8) were both p-type semiconductors, and $Z_C_2ONT(8,0)$ was an n-type semiconductor. It was noted that the Seebeck coefficients of the Z_C₂ONT and A_C₂ONT both decreased with increasing temperature. This was mainly because the number of electrons and holes of a non-degenerate semiconductor increased so that the carrier concentration would increase as the temperature increased, and the Seebeck coefficient was inversely proportional to the carrier concentration; therefore, the Seebeck coefficient decreased slightly. It could also be clearly seen from the figure that the Seebeck coefficient increased slightly as the tube size increased, but the overall value did not change much. Additionally, N-doped Z_2ONTs became n-type semiconductors, whereas A_C₂ONTs were P-type semiconductors, as before. As for the N-doped Z_2ONT , its Seebeck coefficient decreased with increasing temperature, as before. In contrast, the Seebeck coefficient of the N_C₂ONT decreased with increasing tube size, and the Seebeck coefficient was slightly smaller than that of the Z_C_2ONT . For the doped A_C_2ONT, the Seebeck coefficients of (6, 6) and (8, 8) had only small changes, whereas (4, 4) had a significant decreasing trend, which was about twice, implying the independence of Seebeck coefficient with respect to the size of the armchair tube. As the Seebeck coefficient depended on the electronic structure near the Fermi level, it was related to the carrier concentration and the band shape. After the N-doped, the energy band gap was reduced, there was an evident impurity band near the Fermi level (as shown in Figure S7), and the intrinsic excitation of the N atom increased the carrier concentration

of the system and led to a decrease in the Seebeck coefficient. The Seebeck coefficient for the $N_C_2ONT(4, 4)$ nanotubes was significantly reduced, from a structural point of view, as the diameter of the (4, 4) nanotubes was 4.96 Å, which was much smaller than those of (6, 6) and (8, 8), which were 7.80 Å and 10.45 Å, respectively. Moreover, (4, 4) appeared as a hollow quadrangular prism, and the cylindrical surface undulated, as shown in Figure 2e. After N doping, the interaction between the N atoms and the C and O atoms was very strong, resulting in a rise in the concentrations of electrons or carriers in the system, which led to a significant drop in the Seebeck coefficient.

Thermal conductivity is another very important parameter that affects the thermoelectric performances of C₂ONTs. The thermal conductivities of (4, 0), (6, 0), (8, 0), (4, 4), (6, 6), and (8, 8) have been calculated and shown in Figure 6c,d, respectively. The changing trend in the curve before and after N-doping is monotonous, and both increase with the increase in temperature. In addition, from Figure 6c,d, the influence of tube size is also the same.

Figure 6. Phonon thermal conductance K_{ph} before and after N-doping as a function of temperature for (a) Z_C₂ONTs and (b) A_C₂ONTs. Electronic thermal conductivity K_e before and after N-doping as a function of temperature for (c) Z_C₂ONTs and (d) A_C₂ONTs.

Thermal conductivity includes electronic thermal conductivity K_e and phonon thermal conductivity K_{ph} . K_e and K_{ph} are also have been calculated and shown in Figure 6. As seen from Figure 6, with the temperature increasing, the K_{ph} values become bigger, and the N-doping makes the values of K_{ph} smaller, mainly because the introduction of impure atoms increases the scattering of phonons. However, the value of K_e is almost zero when less than 600 K, and the N-doping make the K_e values increase rapidly, especially for (4, 0), (6, 0), (8, 0), and (4, 4). Due to Wiedemann–Frenz's law [57], the electronic thermal conductivity after N-doping increases; thus, their electronic thermal conductivity values K_e also increase. The decrease in phonon thermal conductivity caused by this N-doping is mainly due to the decrease in the average free path caused by the random disordered phonon scattering caused by the defect sites of N-doping.

4. Conclusions

In this study, the geometric and electronic structures, parts of Z_C₂ONTs and A_C₂ONTs, were systematically studied using density functional theory. The results showed that $Z_{C_2}ONT_5$ and $A_{C_2}ONT$ showed more peculiar configurations and had regularities in terms of structure. A comparison of the energies of the considered C_2ONTs with the corresponding g_C_2O nanosheets showed that both the Z_C_2ONTs and A_C_2ONTs showed less strain energies. In particular, $Z_{2}ONTs(n, 0)$ showed negative strain energy from n = 8 and $A_{C_2}ONT(n, n)$ from n = 12, indicating that they were easier to synthesize. Electronic energy band calculations showed that both Z_C₂ONTs and A_C₂ONTs were semiconductors. Among them, Z_C₂ONT was an indirect band gap semiconductor, and A_C₂ONT was a direct band gap semiconductor. The band gap value of Z_C₂ONTs first increased and then stabilized with the diameter of the nanotubes. The band gap value of A_C₂ONTs decreased with the increase in the parameter n and tended to the band gap value of the g_2O nanosheet. Furthermore, the thermoelectric behaviors of the C_2ONTs before and after N-doping were analyzed in detail. The calculation results showed that the band gap of the N-doped system was significantly reduced, and N-doping could significantly improve the thermoelectric figure of merit of the $Z_{2}ONTs$. In the original case, the Seebeck coefficient decreased with increasing temperature, and the power factor and thermal conductivity increased with increasing temperature and tube size. After N-doping, the characteristics of the entire system were affected. It reduced the Seebeck coefficient of the system; Z_C_2 ONTs were all n-type semiconductors, and A_C_2 ONTs were all p-type semiconductors. As the temperature increased, the power factors of some C_2ONTs started to increase from lower temperatures. It also reduced the phonon thermal conductivities of all nanotubes. Although the electronic thermal conductivity of the system has improved, it only contributed to the thermal conductivity of a Z_2ONT at higher temperatures. The results showed that the C₂ONTs had potential as thermoelectric materials after N-doping, which provided important guidance for designing low-dimensional g_C₂O nanostructures.

Supplementary Materials: The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/cryst13071097/s1, Table S1: Optimized average bond length, average bond angle, and N_atom (the number of atoms in unit cell) of g_C₂O nanosheets and C₂O nanotubes. Figure S1: ZT value at 300 K for (a) SWCNT (7, 0) and (b) SWCNT (10, 0). Figure S2: The band structure of Z_C₂ONT and A_C₂ONT on the left, the top view of the linear structure, and the side view of the club structure on the right: (a) (6, 0); (b) (8, 0); (c) (6, 6); (d) (8, 8). Figure S3: The band structure of Z_C₂ONT and A_C₂ONT on the left, the top view of the linear structure, and the side view of the club structure on the right: (a) (10, 0); (b) (14, 0); (c) (10, 10); (d) (14, 14). Figure S4: The band structure of Z_{C₂ONTs} and A_{C₂ONTs} on the left, the top view of the linear structure, and the side view of the club structure on the right: (a) (16, 0); (b) (18, 0); (c) (16, 16); (d) (18, 18). Figure S5: The atomic structure of C₂ONT in the AIMD simulation at 300 K after the time scale of 10 ps: (a) Z_C₂ONT (8, 0) and (b) A_C₂ONT (12, 12). Figure S6: The structure of C₂ONT after N-doping. Figure S7: The band structure of C₂ONT after N-doping. Figure S8. Trends in energy band structures, geometries, and ZT values of nanotubes with temperatures. (a) C₂NNT (4, 4), (b) C₂ONT (4, 4) doped with N, and (c) C₂ONT (4, 4).

Author Contributions: Conceptualization, J.W. and Z.Y.; methodology, Z.Y.; software, L.J.; validation, X.L.; formal analysis, X.L.; investigation, L.J.; resources, X.L.; data curation, X.L.; writing—original draft preparation, X.L.; writing—review and editing, J.W.; visualization, L.J.; supervision, Z.Y.; project administration, Z.Y.; funding acquisition, Z.Y. All authors have read and agreed to the published version of the manuscript.

Funding: JBW was supported by the National Natural Science Foundation of China (No. 11047164), the Shanghai College Foundation for Excellent Young Teachers of China (No. gjd10023), and the Academic Program of Shanghai Municipal Education Commission (No. 11XK11 and 2011X34). ZXY was supported by the National Natural Science Foundation of China (No. 62072296).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments: JBW was supported by the National Natural Science Foundation of China (No. 11047164), the Shanghai College Foundation for Excellent Young Teachers of China (No. gjd10023), and the Academic Program of Shanghai Municipal Education Commission (No. 11XK11 and 2011X34). ZXY was supported by the National Natural Science Foundation of China (No. 62072296). We gratefully acknowledge HZWTECH for Kai Lin's help and discussions regarding this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Zhou, X.; Zhao, C.H.; Wu, G.F.; Chen, J.H.; Li, Y.Q. DFT study on the electronic structure and optical properties of N, Al, and N-Al doped graphene. *Appl. Surf. Sci.* 2018, 459, 354–362. [CrossRef]
- Feng, J.G.; Dong, H.Z.; Pang, B.L.; Shao, F.F.; Zhang, C.K.; Yu, L.Y.; Dong, L.F. Theoretical study on the optical and electronic properties of graphene quantum dots doped with heteroatoms. *Phys. Chem. Chem. Phys.* 2018, 20, 15244–15252. [CrossRef] [PubMed]
- 3. Avouris, P. Graphene: Electronic and Photonic Properties and Devices. Nano Lett. 2010, 10, 4285–4294. [CrossRef]
- Alzebdeh, K.I. Asme, Evaluation of Effective Elastic Mechanical Properties of Graphene Sheets; Amer Soc Mechanical Engineers: New York, NY, USA, 2013; pp. 1205–1210.
- Bafekry, A.; Stampfl, C.; Ghergherehchi, M.; Shayesteh, S.F. A first-principles study of the effects of atom impurities, defects, strain, electric field and layer thickness on the electronic and magnetic properties of the C₂N nanosheet. *Carbon* 2020, 157, 371–384. [CrossRef]
- 6. Xu, B.; Xiang, H.; Wei, Q.; Liu, J.Q.; Xia, Y.D.; Yin, J.; Liu, Z.G. Two-dimensional graphene-like C₂N: An experimentally available porous membrane for hydrogen purification. *Phys. Chem. Chem. Phys.* **2015**, *17*, 15115–15118. [CrossRef]
- Bafekry, A.; Stampfl, C.; Shayesteh, S.F. A First-Principles Study of C₃N Nanostructures: Control and Engineering of the Electronic and Magnetic Properties of Nanosheets, Tubes and Ribbons. *ChemPhysChem* 2020, 12, 164–174. [CrossRef]
- Bafekry, A.; Shayesteh, S.F.; Peeters, F.M. C₃N Monolayer: Exploring the Emerging of Novel Electronic and Magnetic Properties with Adatom Adsorption, Functionalizations, Electric Field, Charging, and Strain. *J. Phys. Chem. C* 2019, *123*, 12485–12499. [CrossRef]
- Yu, T.; Hu, Z.M.; Wang, H.M.; Tan, X. Enhanced visible-light-driven hydrogen evolution of ultrathin narrow-band-gap g-C₃N₄ nanosheets. J. Mater. Sci. 2020, 55, 2118–2128. [CrossRef]
- Liu, X.Q.; Kang, W.; Zeng, W.; Zhang, Y.X.; Qi, L.; Ling, F.L.; Fang, L.; Chen, Q.; Zhou, M. Structural, electronic and photocatalytic properties of g-C₃N₄ with intrinsic defects: A first-principles hybrid functional investigation. *Appl. Surf. Sci.* 2020, 499, 6. [CrossRef]
- 11. Yang, S.W.; Li, W.; Ye, C.C.; Wang, G.; Tian, H.; Zhu, C.; He, P.; Ding, G.Q.; Xie, X.M.; Liu, Y.; et al. C₃N-A 2D Crystalline, Hole-Free, Tunable-Narrow-Bandgap Semiconductor with Ferromagnetic Properties. *Adv. Mater.* **2017**, *29*, 7.
- 12. Luo, Z.Q.; Lim, S.H.; Tian, Z.Q.; Shang, J.Z.; Lai, L.F.; MacDonald, B.; Fu, C.; Shen, Z.X.; Yu, T.; Lin, J.Y. Pyridinic N doped graphene: Synthesis, electronic structure, and electrocatalytic property. *J. Mater. Chem.* **2011**, *21*, 8038–8044. [CrossRef]
- Matar, S.F.; Weihrich, R. Strong p-magnetism in carbon suboxide C₂O devised from first principles. *Chem. Phys. Lett.* 2017, 674, 115–119. [CrossRef]
- Prias-Barragan, J.J.; Gross, K.; Ariza-Calderon, H.; Prieto, P. Graphene oxide multilayers: Synthesis, properties and possible applications in electronics. In Proceedings of the 2019 Latin American Electron Devices Conference (LAEDC), Armenia, Colombia, 24–27 February 2019; IEEE: New York, NY, USA, 2019; pp. 61–64.
- 15. Zhu, Y.W.; Murali, S.; Cai, W.W.; Li, X.S.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. *Adv. Mater.* **2010**, *22*, 3906–3924. [CrossRef] [PubMed]
- 16. Park, S.; Ruoff, R.S. Chemical methods for the production of graphenes. *Nat. Nanotechnol.* **2009**, *4*, 217–224, Erratum in *Nat. Nanotechnol.* **2010**, *5*, 309–309. [CrossRef]
- 17. Chen, Y.; Liu, G.H.; Li, Y.P.; Kong, L.J.; Liu, P.F. Structural Stability, Electronic and Magnetic Properties of O-doped Monolayer C₂N. *Chin. J. Struct. Chem.* **2019**, *38*, 76–82.
- 18. Liu, J.J.; Cheng, B. New understanding of photocatalytic properties of zigzag and armchair g-C₃N₄ nanotubes from electronic structures and carrier effective mass. *Appl. Surf. Sci.* **2018**, 430, 348–354. [CrossRef]
- 19. Liu, W.; Liu, J.Y.; Miao, M.S. Macrocycles inserted in graphene: From coordination chemistry on graphene to graphitic carbon oxide. *Nanoscale* **2016**, *8*, 17976–17983. [CrossRef]
- Qin, G.; Cui, Q.; Yun, B.; Sun, L.; Du, A.; Sun, Q. High capacity and reversible hydrogen storage on two dimensional C₂N monolayer membrane. *Int. J. Hydrog. Energy* 2018, 43, 9895–9901. [CrossRef]
- 21. Liu, X.F.; Chang, X.; Zhu, L.; Li, X.F. High-efficiency helium separation through g-C₂O membrane: A theoretical study. *Comput. Mater. Sci.* **2019**, *157*, 1–5. [CrossRef]
- 22. Nikkho, S.; Mirzaei, M.; Sabet, J.K.; Moosavian, M.A.; Hedayat, S.M. Enhanced quality of transfer-free graphene membrane for He/CH₄ separation. *Sep. Purif. Technol.* **2020**, 232, 9. [CrossRef]

- 23. Guo, Y.; Tang, C.M.; Wang, X.B.; Wang, C.; Fu, L. Density functional calculations of efficient H-2 separation from impurity gases (H₂, N₂, H₂O, CO, Cl₂, and CH₄) via bilayer g-C₃N₄ membrane. *Chin. Phys. B* **2019**, *28*, 8. [CrossRef]
- 24. Zhu, L.; Xue, Q.Z.; Li, X.F.; Wu, T.T.; Jin, Y.K.; Xing, W. C₂N: An excellent two-dimensional monolayer membrane for He separation. *J. Mater. Chem. A* 2015, *3*, 21351–21356. [CrossRef]
- 25. Wu, J.F.; Ding, S.Y.; Ye, S.H.; Lai, C. Grafting polymeric sulfur onto carbon nanotubes as highly-active cathode for lithium-sulfur batteries. *J. Energy Chem.* 2020, *42*, 27–33. [CrossRef]
- Park, J.H.; Lee, H.J.; Cho, J.Y.; Jeong, S.; Kim, H.Y.; Kim, J.H.; Seo, S.H.; Jeong, H.J.; Jeong, S.Y.; Lee, G.W.; et al. Highly Exfoliated and Functionalized Single-Walled Carbon Nanotubes as Fast-Charging, High-Capacity Cathodes for Rechargeable Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 1322–1329. [CrossRef] [PubMed]
- Demir, S.; Fellah, M.F. A DFT study on Pt doped (4,0) SWCNT: CO adsorption and sensing. *Appl. Surf. Sci.* 2020, 504, 9. [CrossRef]
 Zeb, S.; Peng, X.J.; Yuan, G.Z.; Zhao, X.X.; Qin, C.Y.; Sun, G.X.; Nie, Y.; Cui, Y.; Jiang, X.C. Controllable synthesis of ultrathin WO₃
- nanotubes and nanowires with excellent gas sensing performance. *Sens. Actuator B-Chem.* 2020, 305, 12. [CrossRef]
 29. Park, K.R.; Cho, H.B.; Lee, J.; Song, Y.; Kim, W.B.; Choa, Y.H. Design of highly porous SnO₂-CuO nanotubes for enhancing H₂S gas sensor performance. *Sens. Actuator B-Chem.* 2020, 302, 7. [CrossRef]
- 30. Hsu, J.H.; Yu, C. Sorting-free utilization of semiconducting carbon nanotubes for large thermoelectric responses. *Nano Energy* **2020**, *67*, 9. [CrossRef]
- 31. Guo, X.; Zhang, P.; Xue, J.M. Ti₂CO₂ Nanotubes with Negative Strain Energies and Tunable Band Gaps Predicted from First-Principles Calculations. J. Phys. Chem. Lett. **2016**, 7, 5280–5284. [CrossRef]
- 32. Jalil, A.; Agathopoulos, S.; Khan, N.Z.; Khan, S.A.; Kiani, M.; Khan, K.; Zhu, L. New physical insight in structural and electronic properties of InSb nano-sheet being rolled up into single-wall nanotubes. *Appl. Surf. Sci.* **2019**, *487*, 550–557. [CrossRef]
- 33. Abbasi, A.; Sardroodi, J.J.; Ebrahimzadeh, A.R.; Yaghoobi, M. Theoretical study of the structural and electronic properties of novel stanene-based buckled nanotubes and their adsorption behaviors. *Appl. Surf. Sci.* **2018**, 435, 733–742. [CrossRef]
- Abbasi, A.; Sardroodi, J.J. Interaction of sulfur trioxide molecules with armchair and zigzag stanene-based nanotubes: Electronic properties exploration by DFT calculations. *Adsorpt. J. Int. Adsorpt. Soc.* 2018, 24, 443–458. [CrossRef]
- 35. Eslami, M.; Moradi, M.; Moradi, R. DFT investigation of hydrogen adsorption on the C₃N nanotube. *Vacuum* **2016**, *133*, 7–12. [CrossRef]
- 36. Tan, G.J.; Ohta, M.; Kanatzidis, M.G. Thermoelectric power generation: From new materials to devices. *Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci.* **2019**, *377*, 20180450. [CrossRef]
- 37. Balandin, A.A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581. [CrossRef]
- Zhu, T.J.; Liu, Y.T.; Fu, C.G.; Heremans, J.P.; Snyder, J.G.; Zhao, X.B. Compromise and Synergy in High-Efficiency Thermoelectric Materials. *Adv. Mater.* 2017, 29, 1605884. [CrossRef]
- Sun, Y.; Di, C.A.; Xu, W.; Zhu, D.B. Advances in n-Type Organic Thermoelectric Materials and Devices. *Adv. Electron. Mater.* 2019, 5, 1800825. [CrossRef]
- 40. Perumal, S.; Roychowdhury, S.; Biswas, K. Reduction of thermal conductivity through nanostructuring enhances the thermoelectric figure of merit in Ge1-xBixTe. *Inorg. Chem. Front.* **2016**, *3*, 125–132. [CrossRef]
- Jood, P.; Ohta, M.; Kunii, M.; Hu, X.K.; Nishiate, H.; Yamamoto, A.; Kanatzidis, M.G. Enhanced average thermoelectric figure of merit of n-type PbTe1-xIx-MgTe. J. Mater. Chem. C 2015, 3, 10401–10408. [CrossRef]
- 42. Xu, Y.; Li, Z.Y.; Duan, W.H. Thermal and Thermoelectric Properties of Graphene. Small 2014, 10, 2182–2199. [CrossRef] [PubMed]
- 43. Avery, A.D.; Zhou, B.H.; Lee, J.; Lee, E.S.; Miller, E.M.; Ihly, R.; Wesenberg, D.; Mistry, K.S.; Guillot, S.L.; Zink, B.L.; et al. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. *Nat. Energy* **2016**, *1*, 16033. [CrossRef]
- Brownlie, L.; Shapter, J. Advances in carbon nanotube n-type doping: Methods, analysis and applications. *Carbon* 2018, 126, 257–270. [CrossRef]
- Elapolu, M.S.R.; Tabarraei, A.; Reihani, A.; Ramazani, A. Phononic thermal transport properties of C₃N nanotubes. *Nanotechnology* 2020, *31*, 035705. [CrossRef]
- Zhang, T.; Zhu, L. Giant reduction of thermal conductivity in a two-dimensional nitrogenated holey C₂N nanosheet. *Phys. Chem. Chem. Phys.* 2017, 19, 1757–1761. [CrossRef] [PubMed]
- 47. De Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon Nanotubes: Present and Future Commercial Applications. *Science* 2013, 339, 535–539. [CrossRef]
- Gopejenko, V.; Gopejenko, A. Using Applications and Tools to Visualize ab initio Calculations Performed in VASP. In *Augmented Reality, Virtual Reality, and Computer Graphics, Avr 2018, Pt I*; DePaolis, L.T., Bourdot, P., Eds.; Springer: Cham, Switzerland, 2018; Volume 10850, pp. 489–496.
- 49. Hacene, M.; Anciaux-Sedrakian, A.; Rozanska, X.; Klahr, D.; Guignon, T.; Fleurat-Lessard, P. Accelerating VASP electronic structure calculations using graphic processing units. *J. Comput. Chem.* **2012**, *33*, 2581–2589. [CrossRef] [PubMed]
- 50. Hongzhiwei, Technology, Device Studio, Version 2021A, China. 2021. Available online: http://iresearch.net.cn/cloudSoftware (accessed on 1 March 2023.).
- Korth, M.; Thiel, W. Benchmarking Semiempirical Methods for Thermochemistry, Kinetics, and Noncovalent Interactions: OMx Methods Are Almost As Accurate and Robust As DFT-GGA Methods for Organic Molecules. J. Chem. Theory Comput. 2011, 7, 2929–2936. [CrossRef]

- 52. Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl₂-type SiO₂ at high pressures. *Phys. Rev. B* **2008**, *78*, 134106. [CrossRef]
- 53. Shuichi, N. Constant Temperature Molecular Dynamics Methods. Prog. Theor. Phys. 1991, 103, 1–46.
- Jiang, J.W.; Wang, J.S.; Li, B.W. A nonequilibrium Green's function study of thermoelectric properties in single-walled carbon nanotubes. J. Appl. Phys. 2011, 109, 014326. [CrossRef]
- 55. Giannozzi, P.; Baseggio, O.; Bonfa, P.; Brunato, D.; Car, R.; Carnimeo, I.; Cavazzoni, C.; de Gironcoli, S.; Delugas, P.; Ruffino, F.F.; et al. Quantum ESPRESSO toward the exascale. *J. Chem. Phys.* **2020**, *152*, 154105. [CrossRef] [PubMed]
- 56. Majidi, R.; Odelius, M.; AlTaha, S. Structural and electronic properties of nitrogenated holey nanotubes: A density functional theory study. *Diam. Relat. Mat.* 2018, *82*, 96–101. [CrossRef]
- 57. Alam, H.; Ramakrishna, S. A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. *Nano Energy* **2013**, *2*, 190–212. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.