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Abstract: Analytical scanning and transmission electron microscopy were used to study the mi-
crostructure of Ce,Er-doped Na0.5La0.5MoO4 laser crystals. Crystals were grown by the Czochral-
ski method from the melts with a nominal composition of Na0.5La0.5−xCexEr0.005MoO4, where
x = 0.125 and 0.15, then annealed at 700 and 1000 ◦C in the oxidizing atmosphere. We found the
secondary phase precipitation of Ce2O3 oxide in as-grown crystals, while after high-temperature
annealing the CeO2 precipitated crystals are always observed. Impurity ions Ce3+ occupy the La sites,
and approximately 20% of the nominal Ce content is involved in the formation of Ce oxide secondary
phase precipitates. The length of CeO2 precipitated crystals ranged between 100 nm and 550 nm
(average length was 200 nm) and their width was 30–70 nm. The mechanism of CeO2 formation is
discussed. The orientation relationships of Na0.5La0.5−xCexEr0.005MoO4/CeO2, the degree of coher-
ence of the interface, and the preferential directions of their growth in the matrix were established.
CeO2 crystals precipitated in the matrix cause light scattering with a wavelength comparable to the
size of the precipitates and lead to deterioration of optical transparency of the material.

Keywords: Ce-Er-doped Na0.5La0.5MoO4 (NLM); Ce2O3 and CeO2 secondary phase precipitates;
annealing; transmission electron microscopy; electron diffraction; energy dispersive X-ray spectrome-
try; electron energy loss spectroscopy

1. Introduction

Materials having clear transparency without noticeable absorption or scattering are
often important for use in extreme mechanical and/or thermal conditions. Second phase
precipitation, inclusion trapping, pores, point defects, color centers, and other imperfections
in single crystals are still a serious problem today [1,2]. The use of such crystals in optics,
laser technology, scintillators, and other applications may be very limited or even prevented
due to the scattering of light caused by these defects. The solution to this problem is linked
to the study of the causes and mechanisms of the formation of these defects and lies in
optimizing the crystal production process. Na0.5La0.5MoO4 (NLM) is a representative of
big family of double molybdates and tungstates, with the general formula NaX3+(MoO4)2
(X = Ln3+ and Y3+), which are well-known host materials for laser and phosphor ions
which belong to a scheelite type disordered structure with tetragonal symmetry [3]. This
disordered structure has more advantages, like higher concentration rare-earth ion doping
than ordered structures, a strong charge transfer band near the UV region, and good thermal
and chemical stability [4–6]. It was believed that doped laser crystals could be grown at
practically any concentration of the active dopants due to the similarity of the ionic radius
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and, consequently, the complete substitution of Re ions in the crystal lattice [3,7,8]. In
our work, using the example of Ce3+,Er3+-doped Na0.5La0.5MoO4 (NLM), we show that
the concentrations of impurities of trivalent rare earth ions cannot be arbitrarily large,
and that some parts of the doping ions tend to agglomerate and form precipitates along
dislocations in the matrix structure. Post-growth annealing, performed for thermal stress
relaxation in grown matrix crystals, leads to secondary phase precipitation. We believe
that it is important to identify this, since heterogeneity induced by inclusions/precipitates
causes absorption and scattering, which degrades system performance. The choice of
a Na0.5La0.5MoO4 single crystal is due to its considerable interest as a gain medium for
diode-pumped solid-state lasers [8], while Ce3+ and Er3+ co-doping leads to a significant
increase in the 1.5-µm luminescence efficiency [9,10].

As a rule, the powder X-ray diffraction method was widely used to study the phase
composition of laser materials, and the use of scanning electron microscopy was supposed
to confirm their structural homogeneity. Obviously, such a characterization is incomplete,
so it seems quite surprising that transmission electron microscopy methods are not used
to study the microstructure of laser materials. The present study of the real structure of
the Ce3+,Er3+-doped NLM at the nanoscale and the observation of defects as a possible
reason of crystal opacity have confirmed the strong need to use methods of analytical
scanning and transmission electron microscopy (SEM, TEM), including electron diffraction,
energy-dispersive X-ray spectrometry (EDXS), and electron energy loss spectroscopy (EELS)
for the characterization of the morphology, sizes, and orientation of possible precipitates,
interphase interfaces, and their coherency with the matrix.

2. Materials and Methods

The crystals were grown by the Czochralski method from the melts of the nominal
compositions Na0.5La0.5−xCexEr0.005MoO4 (x = 0.125 and 0.150; the x values correspond to
2.1 and 2.5 at.% Ce) in an inductively heated iridium crucible in 98 vol% N2 + 2 vol% O2
atmosphere on the [001] NLM oriented seeds, with a pulling rate 3.0 ± 0.5 mm/h. Extra-
pure grade sodium carbonate and metal oxide precursors were used. The as-grown crystals
were annealed in air at 700 and 1000 ◦C for 72 h and then cooled to room temperature.
More information about the crystal growth is available elsewhere [11,12].

The powder X-ray diffraction (XRD) patterns were obtained using a DRON-3M and
DRON 6 diffractometers (IC Burevestnik, S-Petersburg, Russia) with CuKα radiation in the
range of 2θ = 15◦–100◦ and a scan step of 0.02◦. Phase analysis using the Rietveld method
was performed in the PDWin program (Technosoft Bilgisayar Yazilim, Istanbul, Turkey).

Overview images in the secondary and backscattered electron imaging modes were
recorded together with the EDXS (energy dispersive X-ray spectrometry) chemical mi-
croanalysis of the matrix crystal in an FEI XL30 SFEG electron high-resolution scanning
microscope (FEI, Hillsboro, OR, USA) fitted with an Oxford Instruments SDD INCA EDXS
using a 15–20 kV accelerating voltage.

Specimens for TEM were cut from non-annealed and annealed samples, and mechani-
cally polished and thinned by conventional Ar ion milling (Gatan PIPS, Pleasanton, CA,
USA) at room temperature. TEM and STEM (scanning TEM) images, EDXS microanalysis,
electron energy lost spectroscopy (EELS) data, and selected area electron diffraction (SAED)
patterns were obtained at 300 kV accelerating voltage on an analytical field emission trans-
mission electron microscope CM300 UT-FEG (FEI, Hillsboro, OR, USA). To estimate the
thickness of the TEM samples, we first estimated the Mo/O concentration ratio in the
matrix on the raw material by EDXS, then introduced an absorption correction into the
EDXS analysis of the TEM foil with a thickness such that it led to the same Mo/O ratio.
The standardless element microanalysis carried out on bulky samples in SEM showed a
stable stoichiometric ratio Mo:O ∼= 1:4 in MoO4

2−, when ZAF (Z = Atomic number effect,
A = Self-absorption effect, F = Fluorescence effect) correction [13] was applied to quantify
the elements. The Cliff-Lorimer ratio method [14] used for element quantification in TEM
was matching the MoO4

2− stoichiometry adjusting the thickness of the samples to this
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ratio. Finally, the estimated thickness was in a reasonable range from 50 to 100 nm and
satisfactorily corresponded to the stoichiometric composition within the statistical error bar.

TEM (HRTEM) images and SAED patterns were processed with the DigitalMicrograph
suite GMS 2.31 (Gatan Inc, Pleasanton, CA, USA). Crystal phase identification, HRTEM
image simulation, and diffraction analysis were performed with the JEMS software [15].
Simulation of powder X-ray diffraction patterns of Ce oxides and NLM mixtures with
different ratios (without introducing background) was conducted using the CaRIne Crys-
tallography v.3.1 of Cyrille Boudias and Daniel Monceau software [16].

3. Results

The SEM and TEM EDXS results showed that, on average, the Ce concentration in
the as-grown matrix is always lower than the nominal concentration in the melt by about
0.20 ± 0.05 at.%. It does not change after annealing within the statistical measurement error.
This means that the segregation coefficient (the ratio of the concentration of an impurity in
a liquid to the concentration of an impurity in a solid) is slightly less than 1. This may also
indicate the formation of secondary phases.

Therefore, the phase composition of the samples, both as-grown and annealed, was
first studied by X-ray diffraction (XRD). Analysis of the experimental X-ray diffraction
patterns using the Rietveld refinement did not show the presence of any secondary phases
(see for instance [11]). It could be assumed that the formed cerium oxide precipitates
were not detected on the XRD patterns due to the complete overlap of the peaks from the
precipitates and the matrix, as well as peak broadening due to the presence of the strains
and stresses in the samples. Therefore, XRD patterns were simulated using experimental
concentrations of Ce oxide (Figure 1) and the known lattice parameters of tetragonal I41a
NLM [8], cubic Fm-3m CeO2 [17], and trigonal P-3m1 Ce2O3 [18].
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Figure 1. Simulated XRD patterns from the mixture of NLM:Ce2O3 = 90 w.%:10 w.% before annealing
(a) from the mixture of NLM:CeO2 = 92 w.%:10 w.% after annealing (b). NLM and sum are barely
distinguished at 27◦.
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Simulation (Figure 1) of the XRD patterns of NLM + Ce2O3 and NLM + CeO2 mixtures
(Ce concentrations were taken close to the experimental ones) showed completely overlap-
ping diffraction maximums with a small change in peak shape. Therefore, the Ce oxide
secondary phases are below the XRD detection limit despite the observed deterioration of
optical transparency [11].

Figure 2 shows the 15 kV BSE SEM images of the surface of the fractured
Na0.5La0.370Ce0.125Er0.005MoO4 crystal before (Figure 2a) and after annealing (Figure 2b)
containing precipitates. Precipitates in the as-grown NLM are up to 200 × 20 nm with a
low contrast shown in Figure 2a. In the annealed matrix, in addition, new precipitates
appeared with larger sizes ranging from 100 nm to 550 nm and a higher contrast that tells
they extend deeper (Figure 2b).
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Figure 2. SEM BSE images of cleaved Na0.5La0.037Ce0.125Er0.005MoO4 crystals before (a) and after
(b) annealing.

The CeO2 precipitates are distributed over the matrix crystal very heterogeneously
and often formed chains. Their density distribution is about 1–5 crystals/µm3 as estimated
from several tens of SEM images recorded at an accelerating voltage of 10–15 kV which
corresponds to a ≈1 µm depth of investigation. Additionally, the density increases with an
increase in the nominal Ce concentration.

Transmission electron microscopy aims to bring answers to the valence status of Ce
in the matrix before and after annealing, the concentration of Ce in the matrix, the phase
composition of precipitates, and the amount of cerium impurity is involved in the formation
of precipitates.

Figure 3 shows a bright field TEM image of a dislocation in the non-annealed NLM
matrix. EDXS showed that the average concentrations in area 1 (matrix) and 2 (defect) are,
respectively, 1.8 at.% and 2.2 at.%.

Careful analysis of the reflection intensities on the SAED pattern (Figure 3b) shows
that they cannot be understood, regardless of sample thickness and tilt, if only the NLM
lattice is taken into account. Considering that Ce impurities may have segregated to this
dislocation position to form a Ce2O3 crystal, a lattice overlap may occur. Taking in account
the very close interplanar spacings for the pairs of planes d (004) NLM = 0.2934 nm and
d (-110-1) Ce2O3 = 0.2945 nm, as well for d (3-12) NLM = 0.1624 nm and d (20-21) Ce2O3 = 0.1623 nm
we conclude that the reflections [130](004)NLM match [1546](1101) Ce2O3, and the crystal
is tilted about 2.38◦ in the direction of (31 14) NLM plane with a Laue center circle CLC at
(−4.903, 1.634, 21.98). The lattice misfit is so small that there is no visible deformation in
the image. EELS spectra (Figure 3c) obtained from matrix and defect areas confirmed that
Ce has a valence 3+ and was not oxidized during crystal growth.
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Figure 3. (a) Non−annealed sample: TEM image with two marked rectangle areas (blue) where
chemical composition was obtained: area 1 is a matrix and area 2 contains dislocations, (b) SAED
pattern obtained from the full image, (c) EELS spectrum with all edges of present elements obtained
in the areas 1 and 2.

The EELS spectra of Ce4+ and Ce3+ are different [19]. Figure 4a shows a TEM image
with precipitates. Only Ce3+ was found in our NLM lattice, while only Ce4+ is seen in the
precipitates after annealing (the blue arrows indicate on Figure 4b,c the places where EELS
spectra were obtained). The onset of Ce3+-M5,4 edges are at 882.0 and 899.7 eV (Figure 4b)
while Ce4+-M5,4 edges (Figure 4c) are shifted to higher energy and characterized by two
strong maxima at 884.0 and 901.6 eV. Additionally, two broad, weak maxima are present at
889.2 and 906.7 eV in Ce4+ EELS spectrum. In addition, the intensity of M5 Ce3+ edge is
higher than that of M5 edge of Ce4+.
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Figure 4. (a)TEM image with precipitated crystals after annealing, (b) EELS spectra obtained from
the matrix with Ce3+, and from the precipitate with Ce4+, (c) CeO2 crystal, (d) and the corresponding
SAED pattern with reflections from NLM and CeO2 obtained along [241]NLM//[112]CeO2 directions,
(e) EELS spectrum obtained from the matrix, and (f) used to quantify the amount of Ce.

The SAED pattern obtained from the precipitated crystal (Figure 4d,e) confirmed the
CeO2 phase. The Ce concentration relative to La (Ce/La) in the doped NLM matrix was
determined from EELS spectra (Figure 4f) using polynomial or power low background
model. The average experimental ratio Ce/La (from 20 EELS spectra) was found to be
0.28 ± 0.05 for the Na0.5La0.370Ce0.125Er0.005MoO4 matrix. Assuming that the nominal ratio
between cerium a nd lanthanum remained at the level of 0.125/0.37 ≈ 0.34, then the rough
estimate of the amount of cerium used for the formation of precipitates is about 20% of the
total amount of the introduced Ce impurity.

Precipitation may easily occur both heterogeneously at the dislocations and, appar-
ently, homogeneously within the matrix [20]. Figure 5 shows the bright and dark field TEM
images of precipitated crystals which occurred along dislocations and in the NLM matrix.

It was described in [21] that the morphology of the growing particle/crystal is deter-
mined by the lattice misfit between precipitates and matrix.
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Figure 5. TEM bright field (a) and dark field (b) images showing the precipitation along dislocations
and precipitation in the matrix (the CeO2 crystal the right bottom corner), the corresponding SAED
pattern (c) from NLM and CeO2, the 040 CeO2 reflection (in the circle) was used to obtain the DF TEM.

The typical shape of the CeO2 crystals is shown in Figure 6a, the length of the crystal
is 186 nm and the width is 50 nm. The following orientation relationships can be derived
from the SAED pattern (Figure 6b):
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Figure 6. TEM image of CeO2 crystal (a) and the corresponding SAED pattern (b), HRTEM image of
the CeO2/NLM demi−coherent interface (c), HRTEM FFT (d) and inverse FFT (IFFT) image with
misfit dislocations (e) obtained selecting the 002 CeO2 reflections.
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[100](001)NLM//<100>{001}CeO2
[010](001)NLM//<100>{001}CeO2.
The CeO2/NLM interface is demi-coherent with misfit dislocations (Figure 6e). At the

interface, seven (002) CeO2 extra planes are inserted over 100 (004) NLM planes. The lattice
misfit between 002 CeO2 and 004 NLM planes is about 7.0%, while the misfit between
020 CeO2 and 020 NLM is about 0.9%. (Figure 6e).

The precipitated CeO2 crystals grow to a size at which coherency is no longer maintained,
and the critical length at which coherency is lost is about 180–200 nm. Figure 7 shows a CeO2
crystal with a length of 550 nm. We can see from the SAED pattern (Figure 7b) that (020) and
(002) CeO2 planes are not parallel to the (020) and (004) NLM planes, correspondingly. An
angle of 1.6◦ appeared between the planes, as indicated on the SAED diagram. The EDXS
element maps confirm the presence of O, Na, Mo, La, and Ce and the quantification leads to
the composition of CeO2 crystal.
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Figures 6 and 7 show that CeO2 precipitates grow predominantly in the [100] and [010]
NLM directions. In addition, another set of preferred growth directions for precipitates
was observed, namely along [0 ± 51] NLM, i.e., by adding (011) or (011) NLM planes, as
shown in Figure 8. Perfect agreement would require a rotation of 1.8◦ between the two
gratings. This is only compensated by strain in the smallest precipitates (Figure 6) and
becomes apparent in the largest (Figure 7). These precipitates are also slightly misoriented
relative to the main direction in NLM; however, the rotation angle is about 0.5◦.
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SAED patterns obtained along [100]NLM//[100]CeO2 (b,c).

4. Discussion and Conclusions

TEM images suggest that the nucleation of precipitates in NLM can be mainly hetero-
geneous on dislocations. In as-grown NLM matrices, EDXS measurements reveal some
Ce-rich areas along the dislocations, which EELS confirmed to be Ce3+. In accordance with
the SAED patterns, the Ce2O3 phase was identified and lattice misfit between two phases
is very small.

The phase transformation from precipitated Ce3+
2O3 to Ce4+O2 occurred during 72 h

of high (700 ◦C and 1000 ◦C) temperature annealing. The Ce3+ ions in the NLM lattice were
not oxidized.

The length of most precipitated CeO2 crystals ranged between 100 nm and 550 nm
(average length is 200 nm) and their width was 30–70 nm.

It was estimated that about 20% of the nominal Ce content in the melt is involved
in the formation of Ce2O3 precipitates, which transform into CeO2 after annealing. The
small CeO2 precipitates up to 180 nm in length have nearly perfect orientation relationships
with the NLM matrix at the interface between (020) and (200) NLM and {020}CeO2 planes
with the misfit of about 0.9% which means the presence of one misfit dislocations over
100 planes. Meanwhile, the misfit between (004) NLM and (002) CeO2 planes reached
8.5% which requires one CeO2 extra plane approximately over 12 NLM planes.
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The preferential growth directions of CeO2 crystal growth are parallel to NLM [100],
[010], or [0 ± 51] NLM. The CeO2 crystals of about 180 nm in length and longer are losing
the coherency with the NLM matrix and the corresponding planes are no longer parallel to
each other. The angle of rotation reaches 1.5−1.8◦. Large crystals were observed both in the
samples annealed at 700 ◦C and 1000 ◦C. The smaller CeO2 crystals with semi−coherent
interfaces are the majority in the samples annealed at 700 ◦C while the number of large
crystals increases at 1000 ◦C. The distribution density of CeO2 precipitates increases with
the cerium concentration in the melt.

The presence of precipitates induces two negative effects on crystals intended for laser
application. On the hand it introduces strains and stresses that reduce optical performance
and cannot be removed by low temperature or long annealing [11,22]. Secondly, the
precipitates have different refractive coefficient (nCeO2 ≈ 2.5, nNLM ≈ 2.0) which introduces
the light scattering and absorption that impairs the laser action. The precipitation of
secondary phases in the crystals used in lasers is still a problem that is difficult to avoid and
has not been satisfactorily solved, mainly due to structural defects in real materials [23,24].

There are different reasons for the appearance of light scattering in crystals. For
instance, in the case of growth CaWO4 crystals by Czochralski the light scattering may
occur owing to the deviation from the stoichiometry to lower WO3 content in the crystal
leading to porosity [25]. It should be noted that CaWO4 is isostructural to NLM which
makes it necessary to pay particular attention to such a possibility in our case. Another
mechanism one can see in growth from solution KH2PO4 (KDP) crystals. It was found
that tetragonal KDP crystals may contain the KH2PO4 precipitates with orthorhombic
structure [26,27]. The phenomenon of the second phase precipitation, similar to that
discussed in this paper, was observed in the growth of Lu2SiO5 (LSO) and Lu1.8Y0.2SiO5
(LYSO) crystals from the melt by the Czochralski method. Optical and scanning electron
microscopy examinations of LSO show the scattering centers to mainly consist of rare-earth
oxide inclusions. A lower growth temperature of LYSO produced fewer second phase
inclusions [28]. This supports our proposed mechanism. Especially serious problems
appear in the growth of laser crystals containing transitional metal ions, one example
of which is presented here. In this regard only some technological conditions can be
optimized (growth rate, temperature gradients in the system, rate of heating and cooling
processes, etc.) to be able only to reduce defect concentration and improve laser damage
resistance and increase the transmittance [29].

The electron microscopy observations in this work provide novel information that
was not previously available with only X-ray based techniques to verify the presence of Ce
oxide precipitates in non-annealed and annealed NLM crystals for laser application. The
observation merged SEM, TEM, and STEM approaches, including conventional and atomic
resolution, electron diffraction, EDXS, and EELS analysis. These techniques were used to
identify and distinguish the second phases (Ce2O3 and CeO2), characterize their size and
morphology, and, in fine, their crystallographic relationships and growth directions in the
surrounding matrix.
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