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Abstract: This study focuses on the synthesis, characterization, and properties of a yellowish, prism-
shaped ligand, N,N′-(naphthalene-1,5-diyl) bis(1-(pyridin-2-yl) methanimine). The ligand was synthe-
sized through refluxing 1,5-diaminonaphthalene and pyridine-2-carbaldehyde in extra-pure ethanol,
employing X-ray diffraction on single crystal. The crystal is structured with two pyridylimine-binding
units linked to a naphthalene. The crystal has a P21/c space group in a monoclinic system. The struc-
ture was confirmed through an infrared examination. Computational spectroscopy and theoretical
methods were used to investigate the ligand HOMO, LUMO, and charge distribution. Additionally, a
Hirshfeld analysis was performed to investigate noncovalent interactions in the crystalline form. The
results showed that dispersion forces (H···H) were the primary factor contributing to the arrangement
of the ligand molecule, accounting for 45.3% of the total interactions in the absence of hydrogen
bonding. Overall, this study provides valuable insights into the synthesis, characterization, and
properties of this unique ligand.

Keywords: Schiff-base; aromatic; weak interaction; crystal structure

1. Introduction

Various fields benefit from a diverse array of practical implementations of structures
based on naphthalene [1,2]. Imine systems can also be utilized to assemble discrete cy-
clophanes, double and triple helicates, dimers, trimmers, and grids [3–13]. One of the
factors, which could affect these structure properties can be short contact. The forma-
tion of three-dimensional structures in biological and chemical systems relies heavily on
short-range interactions, which can also aid in the creation of new materials with bene-
ficial properties [14–17]. The other importance of short contacts is that these contacts a
considerable impact on the physical and chemical properties of a compound, including
its melting point, boiling point, and reactivity [18]. The study of short contacts in organic
structures has gained increasing attention in recent years. This interest has been driven by
advances in computational chemistry, which have made it possible to study the properties
and behavior of organic compounds at the molecular level. Here we synthesized and
characterized a structure that has two parallel pyridylimine binding units on both sides.
These kinds of structures, which look rigid, can support grid structures such as Oborn
and Youinou [19] or Lehn [20]. A similar structure on both sides of naphthalene has been
observed in the works of other researchers, such as Piontek [21]. In this article, we will
explore the synthesis, characterization, and DFT calculation of naphthalene-based crystal
structures with pyridylimine-binding units.
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2. Experimental
2.1. Synthesis

The ligand was made by refluxing 1,5-diaminonaphthalene (1 mol, 158.20 g) and
pyridine-2-carbaldehyde (2 mol, 214.22 g) for 10 h in extra-pure ethanol. The crystal was
washed with an ethanol/acetone solution and dried at 60 ◦C. Analysis calculated for
C22H16N4: C, 78.55; H, 4.79; N, 16.66. Found: C, 79.00; H, 5.00; N, 16.00. Characteristic
FT-IR data (KBr, cm−1): 519, 628, 996, 1063, 1108, 1448, 1359, 1592, 3261, 3421. Scheme 1
demonstrates the ligand preparation.
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Scheme 1. Ligand preparation.

2.2. X-ray Diffraction

The compound formed a yellowish, prism-shaped crystal measuring 0.06 × 0.06 ×
0.30 mm3. The crystal was placed on a glass fiber and cooled to−93 ◦C using a nitrogen gas
stream controlled by the Cryostream Controller 700. X-ray diffraction data were collected
using a Bruker SMART APEX II instrument (Madison, WI, USA). The instrument used
graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). The diffractometer operated at
50 kV and 30 mA. The data was collected over 2θ ranges of 8.08~52.00◦. The data collection
process did not show any significant decay.

The data processing steps were performed on a PC using the Bruker AXS Crystal
Structure Analysis Package [22–25]: The following steps were taken: The data were col-
lected using APEX2, and cell refinement and data reduction were performed with SAINT.
Absorption correction was carried out using SADABS, while the structure solution involved
the use of XPREP and SHELXS-97. Structure refinement was performed with SHELXL-97,
and molecular graphics and publication materials were generated using SHELXTL [26].
Cromer and Waber were the sources of the neutral atom scattering factors [27]. The mon-
oclinic space group P21/c was identified through E statistics, systematic absences, and
successful structure refinement. Direct methods were used to solve the structure. The
compound was refined using full-matrix least-squares, with a minimization function of
∑w (Fo2 − Fc2)2. All non-hydrogen atoms underwent anisotropic refinement. Hydro-
gen atoms were positioned geometrically with a C-H distance of 0.95 Å and refined as
riding atoms with a Ui-so(H) value of 1.2 UeqC. For 1204 independent reflections with
I > 2σ(I), the final R1 value was 0.0410 and wR2 was 0.0872. For all 1599 independent
reflections with R(int) = 0.0250, the final R1 value was 0.0606 and wR2 was 0.1021. The
refinement involved 118 parameters and 0 restraints (R1 = ∑||Fo| − |Fc||/∑|Fo|;
wR2 = {∑[w (Fo2 − Fc2)2]/∑[w(Fo2)2]}1/2; (w = 1/[σ2(Fo2) + (0.0364P)2 + 0.2981P], where
P = [Max (Fo2, 0) + 2Fc2]/3)). The largest residual peak was 0.200 e/Å3, and the largest
residual hole was −0.231 e/Å3. The crystallographic data for compound 1 has been de-
posited with the Cambridge Crystallographic Data Centre as Supplementary Publication
CCDC-2252233. The crystal characteristics and structure refinement were presented in
Table 1. Tables 2–6 provide additional crystallographic information, including atomic
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coordinates (Table 2), bond lengths (Table 3), angles (Table 3), anisotropic displacement
parameters (Table 4), hydrogen coordinates (Table 5), and torsion angles (Table 6).

Table 1. Crystal data and structure refinement.

Formula C22 H16 N4
Formula weight 336.39

Temperature 180 (2) K
Wavelength 0.71073 Å

Crystal system Monoclinic
Space group P21/c

Unit cell dimensions
a = 4.8908 (2) Å α = 90◦

b = 16.8343 (7) Å β = 91.106 (2)◦

c = 10.0884 (4) Å γ = 90◦

Volume 830.46 (6) Å3

Z 2
Density 1.345 Mg/m3

Absorption coefficient 0.082 mm−1

F(000) 352
Crystal size 0.20 × 0.06 × 0.06 mm3

Theta range for data collection 4.04 to 25.98◦

Index ranges −6 ≤ h ≤ 5, −20 ≤ k ≤ 12, −12 ≤ l ≤ 9
Reflections collected 2869

Independent reflections 1599 [R (int) = 0.0250]
Completeness to theta= 25.98◦ 98.80%

Absorption correction Multi-scan
Maximum and minimum

transmission 0.9951, 0.9837

Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 1599/0/118
Goodness–of-fit on F2 1.034

Final R indices [I > 2sigma(I)] R1 =0.0410, wR2= 0.0872
R indices (all data) R1 =0.0606, wR2= 0.1021

Largest diff. peak and hole 0.200 and −0.231 e/Å3

Table 2. The atomic coordinates are expressed in units of 10−4, while the equivalent isotropic
displacement parameters are expressed in units of 10−3 Å2. U (eq) is defined as one-third of the trace
of the orthogonalized Uij tensor.

x y z U (eq)

N (1) −1614 (3) 3811 (1) 4851 (1) 35 (1)
N (2) 2688 (3) 3992 (1) 7709 (1) 28 (1)
C (1) −3381 (4) 3309 (1) 4265 (2) 38 (1)
C (2) −3915 (4) 2552 (1) 4706 (2) 35 (1)
C (3) −2561 (4) 2291 (1) 5832 (2) 35 (1)
C (4) −731 (4) 2793 (1) 6466 (2) 33 (1)
C (5) −301 (3) 3546 (1) 5951 (2) 27 (1)
C (6) 1518 (3) 4131 (1) 6597 (2) 27 (1)
C (7) 4348 (3) 4594 (1) 8288 (2) 25 (1)
C (8) 6167 (3) 5039 (1) 7575 (2) 28 (1)
C (9) 7851 (3) 5604 (1) 8210 (2) 29 (1)

C (10) 7705 (3) 5729 (1) 9543 (2) 27 (1)
C (11) 4154 (3) 4709 (1) 9688 (2) 23 (1)

It might be interesting to present crystallography data in a visual format to provide a
clear understanding of these pieces of information. Thus, we provided some Figure 1.
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Table 3. Bond lengths [Å] and angles [◦].(Symmetry transformations used to generate equivalent
atoms: #1 − x + 1, −y + 1, −z + 2).

Length [Å] Angle [◦]

N (1)-C (1) 1.338 (2) C (1)-N (1)-C (5) 116.67 (15) C (7)-C (8)-H (8A) 119.7
N (1)-C (5) 1.348 (2) C (6)-N (2)-C (7) 118.43 (14) C (9)-C (8)-H (8A) 119.7
N (2)-C (6) 1.272 (2) N (1)-C (1)-C (2) 124.50 (17) C (10)-C (9)-C (8) 120.83 (16)
N (2)-C (7) 1.418 (2) N (1)-C (1)-H (1A) 117.7 C (10)-C (9)-H (9A) 119.6
C (1)-C (2) 1.377 (3) C (2)-C (1)-H (1A) 117.7 C (8)-C (9)-H (9A) 119.6

C (1)-H (1A) 0.95 C (3)-C (2)-C (1) 118.13 (17) C (9)-C (10)-C (11) #1 120.43 (16)
C (2)-C (3) 1.376 (2) C (3)-C (2)-H (2A) 120.9 C (9)-C (10)-H (10A) 119.8

C (2)-H (2A) 0.95 C (1)-C (2)-H (2A) 120.9 C (11) #1-C (10)-H (10A) 119.8
C (3)-C (4) 1.379 (2) C (2)-C (3)-C (4) 118.99 (17) C (10) #1-C (11)-C (11) #1 119.42 (18)

C (3)-H (3A) 0.95 C (2)-C (3)-H (3A) 120.5 C (10) #1-C (11)-C (7) 121.81 (15)
C (4)-C (5) 1.387 (2) C (4)-C (3)-H (3A) 120.5 C (11) #1-C (11)-C (7) 118.76 (18)

C (4)-H (4A) 0.95 C (3)-C (4)-C (5) 119.22 (16)
C (5)-C (6) 1.470 (2) C (3)-C (4)-H (4A) 120.4

C (6)-H (6A) 0.95 C (5)-C (4)-H (4A) 120.4
C (7)-C (8) 1.376 (2) N (1)-C (5)-C (4) 122.49 (16)
C (7)-C (11) 1.430 (2) N (1)-C (5)-C (6) 114.71 (15)
C (8)-C (9) 1.404 (2) C (4)-C (5)-C (6) 122.74 (15)

C (8)-H (8A) 0.95 N (2)-C (6)-C (5) 121.71 (15)
C (9)-C (10) 1.365 (2) N (2)-C (6)-H (6A) 119.1
C (9)-H (9A) 0.95 C (5)-C (6)-H (6A) 119.1

C (10)-C (11) #1 1.414 (2) C (8)-C (7)-N (2) 123.00 (14)
C (10)-H (10A) 0.95 C (8)-C (7)-C (11) 119.92 (15)
C (11)-C (10) #1 1.414 (2) N (2)-C (7)-C (11) 117.03 (14)
C (11)-C (11) #1 1.422 (3) C (7)-C (8)-C (9) 120.63 (15)

Table 4. The anisotropic displacement parameters expressed in units of Å2 × 103. The exponent of
the anisotropic displacement factor is given by the formula: −2π2 [h2a*2U11 + ... + 2 h k a* b* U12].

U11 U22 U33 U23 U13 U12

N (1) 48 (1) 31 (1) 26 (1) 0 (1) −8 (1) −4 (1)
N (2) 30 (1) 26 (1) 26 (1) −4 (1) −3 (1) 2 (1)
C (1) 49 (1) 37 (1) 28 (1) −2 (1) −13 (1) −3 (1)
C (2) 37 (1) 33 (1) 33 (1) −7 (1) −4 (1) −5 (1)
C (3) 40 (1) 28 (1) 37 (1) 1 (1) −1 (1) −3 (1)
C (4) 37 (1) 31 (1) 30 (1) 2 (1) −5 (1) 1 (1)
C (5) 30 (1) 29 (1) 23 (1) −3 (1) −1 (1) 1 (1)
C (6) 32 (1) 23 (1) 28 (1) 0 (1) 0 (1) 1 (1)
C (7) 27 (1) 21 (1) 27 (1) −2 (1) −5 (1) 5 (1)
C (8) 31 (1) 27 (1) 25 (1) 0 (1) −1 (1) 5 (1)
C (9) 29 (1) 29 (1) 31 (1) 3 (1) 1 (1) −1 (1)

C (10) 27 (1) 24 (1) 31 (1) −1 (1) −3 (1) 0 (1)
C (11) 23 (1) 20 (1) 26 (1) 1 (1) −3 (1) 5 (1)

Table 5. Units of Measurement for Hydrogen Coordinates (×104) and Isotropic Displacement
Parameters (Å2 × 103).

x y z U (eq)

H (1A) −4333 3488 3491 46
H (2A) −5184 2220 4246 41
H (3A) −2881 1773 6167 42
H (4A) 224 2625 7246 39
H (6A) 1828 4625 6171 33
H (8A) 6285 4963 6645 33
H (9A) 9107 5903 7704 35

H (10A) 8861 6113 9958 33
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Table 6. Torsion angle [◦].(Symmetry transformations used to generate equivalent atoms: #1 − x + 1,
−y + 1, −z + 2).

C (5)-N (1)-C (1)-C (2) −0.4 (3)
N (1)-C (1)-C (2)-C (3) 0.5 (3)
C (1)-C (2)-C (3)-C (4) −0.2 (3)
C (2)-C (3)-C (4)-C (5) −0.1 (3)
C (1)-N (1)-C (5)-C (4) 0.1 (3)
C (1)-N (1)-C (5)-C (6) −177.18 (15)
C (3)-C (4)-C (5)-N (1) 0.2 (3)
C (3)-C (4)-C (5)-C (6) 177.22 (16)
C (7)-N (2)-C (6)-C (5) −178.12 (15)
N (1)-C (5)-C (6)-N (2) 173.21 (16)
C (4)-C (5)-C (6)-N (2) −4.0 (3)
C (6)-N (2)-C (7)-C (8) −43.3 (2)

C (6)-N (2)-C (7)-C (11) 139.21 (16)
N (2)-C (7)-C (8)-C (9) −177.12 (15)
C (11)-C (7)-C (8)-C (9) 0.3 (2)
C (7)-C (8)-C (9)-C (10) −0.5 (3)

C (8)-C (9)-C (10)-C (11) #1 −0.1 (2)
C (8)-C (7)-C (11)-C (10) #1 179.36 (15)
N (2)-C (7)-C (11)-C (10) #1 −3.1 (2)
C (8)-C (7)-C (11)-C (11) #1 0.6 (3)
N (2)-C (7)-C (11)-C (11) #1 178.14 (17)
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2.3. IR Characterization

Confirmation of the successful synthesis of the ligand was obtained through analysis
of the IR. The spectrum displays a strong peak at 1288 cm−1, indicating the stretching
frequency due to aromatic nitrogen. Additionally, there are two medium peaks at 1384 cm−1

and 1414 cm−1, which correspond to the deformation of CH2 and CH3, respectively. The
medium peak at 1472 cm−1 is attributed to the symmetric bending vibration of the CH2
group. The weak peak at 1514 cm−1 in the IR spectrum is caused by the bending vibration
of the aromatic ring in the compound. Figure 2 demonstrates IR spectrum.
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2.4. Computational Method

For this research, we utilized GaussView 6.0 and Gaussian 09W software on a Windows
operating system. To make the Gaussian work more manageable, we broke it down into
two steps and completed them separately. Initially, we optimized the structure, and
subsequently, we used the output file from the previous step to compute the Raman, NMR,
HUMO, and LUMO structures.

2.5. Hirshfeld Surface Analysis

To perform an analysis of intermolecular contacts in the crystals under investigation,
the Crystal Explorer Ver. 3.1 program package was used [28]. This involved utilizing Hirsh-
feld surface analyses, 2D fingerprint plots, and calculating the percentage contributions.

3. Results and Discussion

X-ray diffraction analysis was used to determine the structure of the ligand, revealing
that it has a symmetrical structure with naphthalene in the center and two pyridines on the
sides and belongs to the P21/c space group in a monoclinic system. C (7) on naphthalene
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and N (2) on the sides, connected naphthalene and pyridine with bond length 1.418 (2)
to form a molecule structure (Figure 3a). Figure 3b depicts the unit cell packing. The
multi-layer structure shows empty spaces in the unit cell in Figure 3b. Another structure,
Figure 3c, is created by the direct growth of the compound structure and bears a striking
resemblance to the Z shape when viewed from a specific orientation. Figure 3: The
molecular structure: (a) The molecular structure (50% probability); (b) Unit cell packing;
(c) The Z shape structure.
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The bond between C (5) and C (6) has the longest bond length at 1.470 (2) Å. N (2) is
bonded to C (7) on one side and C (6) on the other, with bonding distances of 1.418 (2) Å
and 1.272 (2) Å, respectively. Additionally, the bond between N (2) and C (6) on both sides
is the shortest non-hydrogen ligand bond.

The nitrogen and carbon bonds mentioned have slight differences compared to other
nitrogen (N (1)) and carbon bonds within the ligand. At the ligand ends, we find N (1)-C (1)
and N (1)-C (5), which measure 1.338 (2) Å and 1.348 (2) Å, respectively. The title compound
molecule has a linker section (C (7)-N (2)-C (6)-C (5)) with an angle of−178.12◦ (15). There are
no hydrogen bonding interactions present in the structure. The structure shown in Figure 4 is
a result of the short contacts caused by C (6) and C (8), which attract neighboring molecules.

Computational studies with Gaussian were conducted in this research, and Table 7
provides a summary of the ligand calculation obtained in the 6-311+(2d, p) basis set. The
results suggest that the molecule is nonpolar or only slightly polar, which is supported by
the very small dipole moment of 0.000039 D. This value indicates that there is minimal
charge separation within the molecule. These findings align with previous discussions.

Table 7. Gaussian calculation summary.

Basis Set 6-311+(2d, p)
Charge 0

Spin Singlet
Solvation None

Electronic Energy −1067.265351 Hartree
RMS Gradient Norm 0.000014 Hartree/Bohr

Dipole Moment 0.000039 Debye
Polarizability (α) 350.831853 a.u.

Hyperpolarizability (β) 0.016519 a.u.

The charge distribution on the molecule in Figure 5 is symmetrical, and the level of
polarity is low.
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Figure 5. Charge distribution with a color range from −0.614 to 0.614 Mulliken (red for negative,
green for positive).

Figure 6 displays the structures of HOMO and LUMO, with EHOMO and ELUMO values
of 0.20847 (eV) and 0.08374 (eV), respectively. To investigate noncovalent interactions in
the solid state, we utilized Hirshfeld Surfaces analysis on the ligand. Figure 7 displays all
the Hirshfeld properties. When the contact distance between atoms inside and outside the
surface is greater than the sum of their respective van der Waals radii, the areas in blue on
the dnorm property are indicated. The dnorm property has white areas that correspond to
a contact distance equal to the sum of the van der Waals radii, and small amounts of red
areas where the contact distance between atoms inside and outside the surface is less than
the sum of their respective van der Waals radii [29].

The red areas on the plot represent non-covalent regions, and they are primarily
located on the C6 and C8 atoms, which we identified in Figure 4 as being associated
with these interactions. Figure 8 displays the fingerprint plot, which provides a visual
representation of the interactions involved and their respective percentage contributions to
the total interactions.
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According to Figure 8, the primary interaction throughout the surface is dispersion
forces (H···H), which account for over 45% of the total interactions. The combined per-
centage of H and C in the structure is 29.2%, which includes contributions from both
H(i)···C(e) and C(i)···H(e) interactions. Additionally, the total contribution of N and H is
14.6%. Therefore, carbon and hydrogen, with a contribution of 29.2%, along with the C8
and C6 interaction and dispersion forces (H···H), as depicted in Figure 9, are the forces that
govern the stacking arrangement of the ligand molecules.
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The ligand being discussed can potentially form coordination complexes with multiple
metals. Some of the metals that have been utilized to create coordination complexes
with Schiff base ligands, which have structural similarities to our synthesized ligand,
are Co (II), Ni (II), Cu (II), Zn (II), gold (III), and copper (II) [30–33]. Furthermore, the
ligand has the potential to create coordination complexes with other transition metals,
including Pd (II) [34]. The coordination geometry of metal complexes may differ based
on the specific metal involved, although octahedral coordination is preferred for certain
metals [30]. The crystal structures of metal complexes may differ based on the metal used
and the coordination geometry formed. As an example, in a previous study [31], the author
reported on gold (III) complexes with 1,1-dimethylbiguanide. In this case, the gold atom is
coordinated by two chloride ligands and two nitrogen atoms from the biguanide ligand,
resulting in a square planar coordination geometry.
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4. Conclusions

In conclusion, we successfully synthesized and characterized a symmetrical ligand,
N, N′-(naphthalene-1,5-diyl) bis(1-(pyridin-2-yl) methanimine), through refluxing 1,6-
diaminonaphthalene and pyridine-2-carbaldehyde in extra-pure ethanol. The ligand was
found to have a structure containing central naphthalene and two parallel parts on the
sides, with two pyridylimine-binding units connected to a 1,5-naphthalene structure. The
structure was confirmed through infrared examination, and computational spectroscopy
and theoretical methods were used to show the ligand HOMO, LUMO, and charge dis-
tribution. Additionally, we conducted a Hirshfeld analysis and demonstrated all of its
properties. Our findings suggest that dispersion forces (H···H) were the primary factor
contributing to the arrangement of the ligand molecule, accounting for 45.3% of the total
interactions in the absence of hydrogen bonding.

Supplementary Materials: Crystallographic data for the structure reported in this paper have been
deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC-
2252233 for C22H16N4 (1). Copies of the data can be obtained by request from the CCDC, 12 Union
Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336033, e-Mail: de-posit@ccdc.cam.ac.uk).
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