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Abstract: Among nanocomposite materials, multifunctional polymer nanocomposites have prompted
important innovations in the field of sensing technology. Polymer-based nanocomposites have been
successfully utilized to design high-tech sensors. Thus, conductive, thermoplast, or elastomeric, as
well as natural polymers have been applied. Carbon nanoparticles as well as inorganic nanoparticles,
such as metal nanoparticles or metal oxides, have reinforced polymer matrices for sensor fabrication.
The sensing features and performances rely on the interactions between the nanocomposites and ana-
lytes like gases, ions, chemicals, biological species, and others. The multifunctional nanocomposite-
derived sensors possess superior durability, electrical conductivity, sensitivity, selectivity, and respon-
siveness, compared with neat polymers and other nanomaterials. Due to the importance of polymeric
nanocomposite for sensors, this novel overview has been expanded, focusing on nanocomposites
based on conductive/non-conductive polymers filled with the nanocarbon/inorganic nanofillers.
To the best of our knowledge, this article is innovative in its framework and the literature covered
regarding the design, features, physical properties, and the sensing potential of multifunctional nano-
materials. Explicitly, the nanocomposites have been assessed for their strain-sensing, gas-sensing,
bio-sensing, and chemical-sensing applications. Here, analyte recognition by nanocomposite sensors
have been found to rely on factors such as nanocomposite design, polymer type, nanofiller type,
nanofiller content, matrix–nanofiller interactions, interface effects, and processing method used.
In addition, the interactions between a nanocomposite and analyte molecules are defined by high
sensitivity, selectivity, and response time, as well as the sensing mechanism of the sensors. All these
factors have led to the high-tech sensing applications of advanced nanocomposite-based sensors. In
the future, comprehensive attempts regarding the innovative design, sensing mechanism, and the
performance of progressive multifunctional nanocomposites may lead to better the strain-sensing,
gas/ion-sensing, and chemical-sensing of analyte species for technical purposes.

Keywords: nanocomposite; polymer; interaction; strain-sensing; gas-sensing; chemical-sensing

1. Introduction

Nanocomposites have been applied as efficient materials for sensing applications [1].
The chemical structure of nanomaterials greatly influences sensing properties [2,3]. In the
case of polymer nanocomposites, a range of polymers from the categories of conducting
polymers, thermoplastics, elastomers, etc., have been used [4–6]. Among all polymers,
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conducting or conjugated polymers have been found effective to be utilized to design com-
petent nanocomposite sensors [7,8]. Conjugated polymers like polyaniline, polypyrrole,
polythiophene, and conducting blends have been mostly used for the sensing applications.
The inclusion of nanoparticles in conducting polymers has further increased the perfor-
mance of the sensors by enhancing the electrical conductivity and percolation features of
the nanomaterials [9]. However, various non-conducting polymers have also been applied
to form nanomaterials for sensors [10]. Carbon nanoparticles (graphene, graphene oxide,
reduced graphene oxide) and inorganic or metal nanoparticles have been used as effective
reinforcements [11,12]. The nanocomposite sensors showed good sensitivity towards the
electronic signals as well as chemical, biological, ionic, and gaseous species [13]. The
nanocomposite sensors had high molecular recognition sensitivity and response towards
various analytes, ions, and molecules [14,15]. The nanoparticle dispersion in the nanocom-
posite and interaction with the matrix define the final sensing properties [16]. For good
dispersion, methods like in situ and solution techniques have been utilized [17]. The use of
nanocomposite sensors has been detected in a wide range of technical fields like motion-
sensing, gas-sensing, chemical detection, and biomolecule-sensing [18]. Though sensors
have been developed using conjugated as well as non-conjugated matrices, conductive
polymers revealed noteworthy sensing properties. In particular, conducting polymers
combined with carbon nanofillers like graphene-related nanofillers or carbon nanotubes
may form a better charge transfer complex due to π–π interactions, leading to high sensing
properties. Moreover, polymer nanocomposites with inorganic nanoparticles (metal or
metal oxide) have been studied; however, no substantial studies have been reported on
these materials. As the sensing mechanism seemed dependent on matrix–nanofiller interac-
tions, the organic nature of polymer/nanocarbon nanocomposites led to more enhanced
sensing features than in polymer/inorganic nanocomposite designs. Interactions between
inorganic nanoparticles and polymers can be enhanced using functional nanofillers for
better dispersal. Thus, poor nanoparticle dispersion and interactions with polymers along
with an improper processing technique may lead to fewer interactions with the analyte
molecules and inadequate sensing properties. Here, novel design strategies need to be
established to overcome the dispersion and fabrication challenges of the sensing nanocom-
posite towards high selectivity, sensitivity, and response time. The sensing mechanisms in
the nanocomposites need to be explored thoroughly, especially for the physisorption or
chemisorption of analytes on the nanocomposites.

This state-of-the-art review provides an overview of polymeric nanocomposites in
sensing applications, and the design, fabrication, features, and performance of various
polymers and derivative nanocomposites reinforced with nanocarbons and inorganic
nanoparticles are discussed. Accordingly, nanocomposite materials have been developed
and found functional for high-efficiency sensing solicitations. The present article essentially
aims to highlight the significance of using multifunctional nanocomposites for sensing
applications, covering the design specifications, related physical features, processing meth-
ods, technical applications, and the main glitches in this direction. As conceded in this
state-of-the-art overview, several polymers have been amalgamated with nanofillers for
sensor designs, desired physical features, and sensing performances such as response, sen-
sitivity, selectivity, etc., towards several analyte species. To the best of our knowledge, this
review is novel in the literature due to uniqueness of its outline and the literature enclosed,
relative to any previous reports in the literature. Moreover, this review is comprehensive
when expressing the essential technical as well as viable progresses of nanocomposites in
the sensing sector.

2. Design and Features of Multifunctional Nanocomposites Applied for Sensing
2.1. Nanocarbon-Reinforced Nanocomposites

Graphene is a unique carbon nanomaterial with sp2 hybridized atoms in a one atom-
thick nanosheet [19]. It has a two-dimensional structure and a range of exclusive structural
and physical properties. Graphene exist in number of modified forms or derivatives such
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as graphene oxide, reduced graphene oxide, functional graphene, and functional graphene
oxide [20]. To convert graphene to graphene oxide, Hummer’s method has been found
successful. Similarly, for the conversion of graphene oxide to reduced graphene oxide,
various reducing agents have been used. Graphene as well as the derivatives have been
found to be efficient regarding significant sensor applications [21,22]. In particular, the
formation of conducting polymer- and graphene-derived nanocomposites led to high
sensing responses [23–25]. A sensor response can be referred as relative change in resis-
tance [26]. It can be determined as the ratio of sensor resistance in contact with desired
analyte and resistance in the absence of analyte. Polyaniline, an important conducting
polymer, reinforced with graphene or graphene-based forms, has been used for gas-sensing,
ion-sensing, glucose-sensing, and bio-sensing purposes [27–29]. Wu et al. [30] designed the
polypropylene, polyaniline, and graphene nanofiller-derived nanocomposite sensor. Facile
in situ polymerization and dip coating techniques were applied to form nanomaterials.
The designed nanocomposite sensor was used to detect the volatile sulfur compounds and
ammonia gases. The fabrication of polypropylene/graphene/polyaniline nanocomposite
sensor is given in Figure 1. The in situ method using surfactants was employed to form a
nanocomposite sensor. The organization of gas-sensing testing system is also presented.
The as prepared nanocomposite film was placed in a test chamber. The controlled amounts
of desired gases were injected using mass flow controllers. Figure 2 illustrates the sug-
gested sensing mechanism of nanocomposite film. Sensing performance seemed dependent
upon the interface formation in the polypropylene/graphene/polyaniline nanocomposite.
Moreover, polyaniline/graphene developed interconnecting network nanostructure within
hierarchically porous polypropylene matrix. Thus, several effective conducting pathways
have been developed in the matrix. Consequently, reversible doping/de-doping occurred
at the interface of polypropylene/graphene/polyaniline nanocomposite to form charge car-
riers for rapid sensing responses [31]. Interface formation and the superior conductivity of
nanocomposite caused a high sensing response towards the ammonia molecules. Figure 3
shows the sensing response towards the detection of volatile sulfur compounds in exhaled
garlic breath. The sensor response revealed only around 2% of H2S gas detected in breath,
suggesting a low non-toxic amount of sulfur compounds. The nanocomposite sensor also
showed a detection limit of 100 ppb and a fast response of 114 s for the ammonia NH3 gas-
sensing. The response of the polypropylene/graphene/polyaniline nanocomposite sensor
was approximately 250% higher than in neat polyaniline sensor. Several combinations
of the polyaniline/graphene and the polyaniline/graphene oxide nanocomposites have
been utilized for sensing gases and ions [32]. These nanocomposites revealed improved
the electrical conductivity and sensing in terms of various gases like hydrogen, methane,
methanol, and ions (Zn(II), Pb(II), Cd(II), etc.) [33–35].

Chuiprasert et al. [36] formed polyaniline, poly(o-phenylenediamine), and reduced
graphene oxide-derived sensors for human health monitoring. The sensor was devel-
oped via molecularly imprinting polymer technology onto a glassy carbon electrode. For
ciprofloxacin, sensors revealed a good detection limit and sensitivity of 5.28 × 10−11 mol L−1

and 5.78 µA mol−1 L, correspondingly. The sensing device also had good reproducibility.
Zhou et al. [37] fabricated a nanocomposite sensor of polyaniline, natural rubber, and
reduced graphene oxide through an in situ method. Graphene oxide was converted to
reduced graphene oxide in situ and then the polymerization of aniline led to nanocomposite
formation (Figure 4). The in situ method caused the good dispersion of reduced graphene
oxide in the polyaniline and natural rubber blended matrices. Homogeneous nanofiller dis-
persion was supportive for enhancing the sensing performance of nanocomposites. On the
other hand, simple blends of polyaniline, natural rubber, and reduced graphene oxide were
also prepared without using an in situ technique. The in situ-formed polyaniline/reduced
graphene oxide/natural rubber nanocomposite sensor was connected to a blue LED light
to observe the chemical sensing features via changes in illumination (Figure 5). The LED
light connected to nanocomposite sensor was dipped in toluene. The light faded due
to an increase in electrical resistivity. After its removal from the toluene, the LED light
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regained illumination and worked for 8 min. Outcomes proposed a commercial level use
of polyaniline/reduced graphene oxide/natural rubber nanocomposite sensor for chemical
sensing purposes.
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Figure 1. (a) Schematic diagram of the flexible PP/G/PANI hybrid sensor preparation pro-
cess; and (b) organization of the gas-sensing testing system [30]. PP = polypropylene;
PANI = polyaniline; G = graphene; PP/G = polypropylene/graphene; PP/G/PANI = polypropy-
lene/graphene/polyaniline; MFCs = mass flow controllers. Reproduced with permission from ACS.
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blend [37]. PANI@rGO/NR = polyaniline@reduced graphene oxide and natural rubber. Reproduced
with permission from Elsevier.
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Figure 5. The relative resistance change plots as a function of time and photos of illu-
mination changes during PANI@rGO/NR nanocomposite immersion in toluene (inset) [37].
PANI@rGO/NR = polyaniline@reduced graphene oxide and natural rubber; rGO/PANI/NR = re-
duced graphene oxide/polyaniline/natural rubber. Reproduced with permission from Elsevier.

Carbon nanotubes are one-dimensional hollow nanotubes of sp2 hybridized carbon
atoms [38,39]. Carbon nanotubes have large surface areas and superior structural and
physical features. Their unique nanostructure was found to be responsible for superior
sensing behaviors due to capturing ions, chemicals, and gaseous molecules [40]. Carbon
nanotubes also possesses inert nature and ecological constancy [41,42]. Additionally,
carbon nanotubes have fast electron conduction and charge transference properties [43–45].
Sensors based on carbon nanotubes have good sensitivity, rapid responsiveness, and
selectivity characteristics [46,47]. In the form of gas sensors, carbon nanotube reveal
good interaction with gas molecules via adsorption or bonding modes [48]. Generally,
conducting polymer and carbon nanotube may form donor acceptor sites for electron
or charge transference [49–51]. For example, carbon nanotubes have caused changes in
electron conductivity upon interaction with hydrogen and other gas molecules [52,53].
Among the conjugated polymers, polyaniline has been greatly studied for its gas-sensing
applications. Combinations of polyaniline matrix and single-walled carbon nanotube or
multi-walled carbon nanotube have been applied to form efficient sensing devices [54].
Srivastava et al. [55] developed change in resistance sensors for hydrogen gas. Thus,
polyaniline, polyaniline/single-walled carbon nanotubes, and polyaniline/multi-walled
carbon nanotube nanocomposites were fabricated via a solution technique. Afterwards,
the nanomaterials were spin-coated to use as sensors [56]. The spin-coated films were
deposited on an indium tin oxide coated glass substrate. Table 1 illustrates the change in
the electrical resistance response of these sensors towards hydrogen gas. The resistance
change was due to the good gas sensitivity of the sensors. The superior performance was
credited to high a surface area and the density of nanocomposite materials.
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Table 1. The change in resistance and conforming response of PANI, PANI/SWCNT,
and PANI/MWCNT nanocomposite sensors for hydrogen gas [55]. PANI = polyaniline;
PANI/SWCNT = polyaniline/single-walled carbon nanotube; PANI/MWCNT = polyaniline/multi-
walled carbon nanotube. Reproduced with permission from Elsevier.

Sample Initial Resistance
(Air)

Shift in Resistance Response (Rg/R0)
(2% H2 in Air)

PANI film 3.10 MΩ 2.05 ± 0.02 MΩ 1.66
PANI/SWCNT 69.2 kΩ 57.2 ± 0.09 kΩ 1.83
PANI/MWCNT 99.1 kΩ 129 ± 0.1 kΩ 2.30

Gao et al. [57] reported efficient motion sensor based on polyurethane/carbon nan-
otube nanocomposite-derived helical yarn. The designed sensor was low weight, flexible,
and wearable, as well as stretchable. Due to the synergistic effects of polyurethane and car-
bon nanotubes, the nanocomposite developed winding locks in the form of yarns. Figure 6
shows the strain-sensing performance of a polyurethane/carbon nanotube nanocomposite
helical yarn sensor. Its performance was evaluated during finger-, arm-, wrist-, and leg-
bending movements. The strain sensor exhibited resistances of 2–5 kΩ, during movements.
The linearity in resistance and repeatability were observed in the real time movement
curves. The sensor had a recoverability of 900% and a tensile elongation of ~1700%. By
varying nanotube contents, sensor response rate was also improved. Thus, these strain
sensors were suggested for application in low-price, stretchable, and wearable electronics,
such as human body sensors.
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2.2. Inorganic Nanoparticle-Reinforced Nanocomposites

In addition to carbon nanoparticles, inorganic nanoparticles have inimitable sensing
features when reinforced in the conducting polymer matrices [58]. The unfilled conduct-
ing polymers reveal good electron transference properties and low sensitivity properties
due to weak interactions with analyte species [59]. On the other hand, the inclusion of
inorganic nanoparticles in conductive matrices significantly improved the sensing charac-
teristics of conducting polymer/inorganic nanoparticle nanocomposites [60]. Generally,
the conducting polymers are filled with metal or metal oxide nanoparticles to fabricate
the sensors [61]. In nanocomposites, the desired analyte molecules efficiently diffuse the
materials, leading to an active sensing response [62]. Nevertheless, designing conducting
polymer/inorganic or metal nanoparticle nanocomposites for sensing purposes face sev-
eral challenges [63]. With polyaniline matrix, tin oxide, and zinc oxide nanofillers have
revealed efficient sensing responses [64,65]. Such nanomaterials have been specifically
found operative to sense ammonia gas [66]. Moreover, the mixing of copper nanoparticles
with polyaniline matrix reveal a good sensing performance to detect chloroform [67,68].
The sensing properties of polyaniline-derived nanocomposites were reliant on nanofiller
dispersion and contents. In addition, polyaniline and polypyrrole were also utilized to
fabricate nanocomposite sensor with various inorganic nanoparticles [69]. Consequently,
polypyrrole/tin oxide- and polypyrrole/zinc oxide-derived nanomaterial sensors have
been reported [70–72]. These sensors have also been utilized for ammonia recognition.
Similarly, the alumina nanoparticles with polypyrrole matrix have yielded good ammonia-
sensing features [73–75]. Henceforth, the addition of inorganic nanofillers has been found
to improve the electron conduction and the gas-, ion-, or chemical-sensing performance of
the nanomaterials [76].

3. Technical Applications of Multifunctional Nanocomposites towards
Various Sensors
3.1. Strain-Sensing

In strain-sensing applications, the nanomaterials must have good electrical or optical
responses. Thus, innumerable polymer nanocomposites have been used in strain sensors.
Most importantly, polyaniline [77,78], polypyrrole [79], poly(3,4-ethylenedioxythiophene) [80],
and other conducting polymers have been used to develop strain sensors. For this purpose,
these polymers have been combined with nanocarbons like graphene [81,82], carbon nan-
otube [83,84], carbon black [85,86], and other nanoparticles [87,88]. These nanoparticles
have been found to develop conducting pathways in polymers to create a percolation thresh-
old [89,90]. The percolation threshold is a concept adopted from percolation theory, which
designates the development of long-range connectivity in random systems like nanocom-
posites [91]. Here, the percolation threshold conforms to the nanofiller content, above which
the electrical conductivity properties of nanocomposite increase in an exponential way,
due to the development of interlinked pathways in the matrix [92]. Competent electron
transportation and percolation features resulted in the good strain-sensing properties of
nanocomposites [93–95]. Subsequently, nanocomposite sensors may easily monitor the
applied strain effects [96]. Investigations on electron conduction and microstructure prop-
erties have been found essential to unfold the strain-sensing effects of nanocomposites [97].
Moreover, nanocomposite sensors have excellent durability, stretchability, and sensitivity
properties [98]. Strain sensors had beneficial applications in human health diagnosis [99],
motion detection [100], and facile wearable electronics [101,102]. Non-conducting thermo-
plastic elastomers (poly(dimethylsiloxane), polyurethane, poly(styrene-butadiene-styrene),
natural rubber, isoprene rubber, and block copolymers) have also been employed to develop
strain sensors [103]. In some cases, blends of conjugated and non-conjugated polymers have
been used to form nanocomposite strain sensors. Ding et al. [104] developed thermoplastic
polyurethane, hydroxyethyl cotton cellulose nanofibers, and carbon nanotube-derived
nanocomposite as strain sensors. Figure 7 shows the formation route of the nanocompos-
ite [105,106]. For carbon nanotube and hydroxyethyl cotton cellulose nanofiber nanofillers,
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a freeze-drying method was used [107,108], whereas the solution procedure and curing ap-
proaches were applied to form nanocomposites. Nanofiller functionalities have hydrogens
that bond with polyurethane matrix and a strong interface. Consequently, thermoplastic
polyurethane/hydroxyethyl cotton cellulose nanofibers/carbon nanotube nanocompos-
ites have been effectively used as a wearable electronic device. Human motion-sensing
performance was investigated in the form of finger movements (Figure 8). The 90◦ finger
bending motion was studied. The finger movements produced periodic sensing signals
at an adjustable strain [109,110]. The nanocomposite sensor had a shape fixity ratio and a
shape recovery of 49.7% and of 76.6%, respectively. Efficient sensors have been found to be
effective for next generation smart devices.
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Figure 7. Schematic diagram of the hydrogen bonding interaction mechanism among the molecules
of TPU, CNF-C, and CNTs and the film formation of TPU/CNF-C/CNTs [111]. TPU = thermoplas-
tic polyurethane; CNF-C = hydroxyethyl cotton cellulose nanofibers; CNTs = carbon nanotubes;
TPU/CNF-C/CNTs = thermoplastic polyurethane/hydroxyethyl cotton cellulose nanofibers/carbon
nanotubes; DMF = dimethyl formamide. Reproduced with permission from MDPI.

3.2. Gas-Sensing

For gas sensors, polymer- and nanocarbon-derived nanocomposites revealed tunable
electron conductivity, strength, durability, and chemical-sensitive features [112]. Interac-
tions of graphene or derivatives, carbon nanotube, fullerenes, etc. with polymers developed
extended π-systems in order to contribute towards efficient electron conduction. In ad-
dition, the nanocomposites of polymers and the range of metal oxides (tin oxide, silver
oxide, zinc oxide, titania, and many more) have been reported [113–115]. Consequently,
high performance nanocomposites have good sensitivity and selectivity for toxic gases
like the oxides of carbon, sulfur, nitrogen, and organic vapors [116]. Essential conjugated
polymers like polyaniline, polypyrrole, and polythiophene reveal NOx detection prop-
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erties [117]. In addition, conductive nanocomposites reinforced with nanoparticles have
sensing properties for halogens, methane, nitrogen or sulfur oxide, and other gaseous
species [118,119]. For gas-sensing, polyaniline nanocomposites can sense CO and NOx
species [120]. The polypyrrole nanocomposite-derived gas sensors can also efficiently detect
NOx molecules [121]. Likewise, polythiophene nanocomposite-derived sensors may sense
hydrazine gas [122]. All these sensors have high sensitivity and reproducibility features.
For example, the nanomaterials based on polyaniline/tin oxide [123], polypyrrole/tin
oxide [124] polyhexylthiophene/tin oxide [125], poly(ethylene dioxythiophene)/tin ox-
ide [126], etc., have been studied in order to sense hydrocarbons and NOx gases. All these
sensing materials revealed high sensitivity and selectivity. Deshpande and co-workers [127]
produced polyaniline/tin oxide nanocomposite-based gas sensors. The nanomaterial was
formed via the in situ polymerization of aniline in the presence of ammonium peroxydisul-
fate oxidizing agent and tin oxide nanoparticles. Nanocomposites were tested to sense
ammonia gas. Figure 9 demonstrates that the plots of sensitivity versus concentration for
neat polyaniline, tin oxide nanoparticles, and nanocomposites. At 300 ppm of ammonia gas,
the polyaniline/tin oxide nanocomposite sensor showed a rapid response time of 12–15 s
and recovery times of around 80 s. The good performance of gas sensors was observed due
to the formation of conducting channels via the interactions of matrixes and nanofillers in
nanocomposites, relative to the individual components.
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bending cycle of arm, the bending motion degree of the arm at angle of 90◦ [111]. TPU/CNF-
C/CNTs = thermoplastic polyurethane/hydroxyethyl cotton cellulose nanofibers/carbon nanotubes.
Reproduced with permission from MDPI.

Table 2 shows that certain essential polymers and nanocarbon or inorganic nanoparti-
cles are derived from nanocomposite-based sensors. Polymeric nanocomposites revealed
remarkable gas-sensing features with graphene, graphene oxide, carbon nanotubes, and
inorganic oxides due to interactions and charge transfer complex development. Nanocom-
posites may act as electron donor–acceptor nanostructures for the analyte molecules.
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Figure 9. Sensitivity versus concentration plots for tin oxide, polyaniline, and polyaniline/tin oxide
nanocomposites [127]. Reproduced with permission from Elsevier.

Table 2. Specifications of some important polymer nanocomposite-based sensors.

Conjugated Polymer Nanofiller Processing Property/Application Ref

Polyaniline Carbon nanotube Spin coating method Hydrogen gas-sensing [55]

Polyaniline Carbon nanotube Interfacial technique Ammonia-sensing [128]

Polypyrrole Carbon nanotube Spin coating Ammonia-sensing [129]

Polypyrrole Carbon nanotube
In situ and

Ammonia sensor [130]spin coating methods

Polyaniline Graphene Interfacial technique H2O2-sensing [131]

Polyaniline Graphene oxide In situ method
Methanol sensitivity;

[132]
electrical conductivity 241 Sm−1

Polyaniline Graphene Layer-by-layer
technique

π–π conjugation;
[133]high methane sensitivity

Polythiophene Reduced graphene
oxide In situ method Humidity sensor [134]

Polyaniline ZnO-SnO2
In situ chemical

method Ammonia-sensing [135]

Polyaniline Silver nanoparticle In situ technique Ammonia-sensing;
[136]

sensitivity ~12.5 µAmM−1 cm−2;
response time 10 s

Polypyrrole ZnO-TiO2 In situ method Ammonia-sensing [137]

Polypyrrole SnO2-ZnO In situ process Ammonia-sensing [73]

Polypyrrole Ag-ZnO In situ process Ammonia-sensing [76]

3.3. Bio-Sensing or Chemical-Sensing

To monitor the biological or chemical species, various nanocomposite sensors have
been developed [138]. For this purpose, metal nanoparticle-derived nanomaterials exhib-
ited good biomolecular sensing [139]. In particular, metal nanoparticle nanocomposite
sensors have been applied to assess biological and chemical toxins with high sensitivity
and selectivity [140]. Thus, these sensors may also assist in monitoring the chemical pro-
cesses occurring in living systems. Relative to traditional sensors, nanocomposite sensors
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revealed sensing properties that were several times better in chemical process monitor-
ing [141]. Segets et al. [142] applied zinc oxide nanoparticles of 10 nm to monitor in situ
chemical growth reactions in the biological systems. Consequently, zinc oxide nanoparti-
cles are frequently applied to biologically sense proteins, deoxyribonucleic acid (DNA),
ribonucleic acid (RNA), etc., in order to detect biological ailments [143–145]. Gold nanopar-
ticles have also been used in active biosensors [146,147]. For instance, DNA and RNA
sequence recognition has been performed via the absorption mechanism and the use of
gold nanoparticles and related nanocomposites [148,149]. Furthermore, biological species
can also be detected through the electrostatic interactions between the oligonucleotide and
nanocomposites [150–152]. Li et al. [153] studied the biodegradability and enzyme-sensing
features of the amyloid fibrils (natural protein) and graphene-derived nanocomposite sen-
sors. Nanocomposites exhibited high conductivity and degradation behavior and can thus
be employed as efficient biosensors. Figure 10 demonstrates the fabrication of the amyloid
fibrils/graphene nanocomposites. The amyloid fibrils were prepared at a high tempera-
ture of >80 ◦C. The amyloid fibrils were then coated with graphene dispersion. Figure 11
presents the enzyme-sensing properties of the amyloid fibrils/graphene nanocomposite.
The pepsin enzymatic activity was evaluated using the biosensor. The pepsin activity of
biosensor was increased with time due to the perfectly formed natural protein–graphene
sensor. Subsequently, numerous sensors have been applied for bio- or chemical-sensing
applications [154]. Nanocomposite-derived biosensors have the capability of sensing the
biological species through electrical, optical, or magnetic interactions [155]. Such biosen-
sors have high durability, non-toxicity, sensitivity, and selectivity features regarding the
detection of multiple biological or chemical molecules or ions [156].
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Figure 10. Graphic representation of the formation of free-standing films of amyloid fibrils and
graphene-derived nanocomposites: (a) the supramolecular self-assembly of b-lactoglobulin into
amyloid fibrils at pH 2 and 90 ◦C; (b) the electrostatic aggregation of amyloid fibrils and graphene
oxide; vigorous stirring is required to prevent sedimentation in the system; (c) preferential binding of
broken amyloid fibrils on graphene surfaces during the reduction of graphene oxide at 80 ◦C under
vigorous stirring; and (d) the layered organization of amyloid fibrils and graphene nanosheets into
hybrid nanocomposites using vacuum filtration [153]. Reproduced with permission from Nature.
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Figure 11. Evolution of the pristine cumulative pepsin activity, αneat(t), measured on the 1:8 hybrid
film for 1 wt.% pepsin in a native (folded) and denatured (unfolded) state. Inset: the schematic of the
biosensor designed to probe enzymatic activity [153]. Reproduced with permission from Nature.

4. Prospects and Conclusions

High performance nanomaterials have been found to be remarkable contenders in the
field of sensors, such as strain sensors, gas sensors, biosensors, or chemical sensors [157].
Advancements in nanocomposite sensor technology have filled the gap between the initial
design and its real-world application. In nanocomposite sensors, nanofiller type, nanofiller
concentrations, polymer type, nanoparticle dispersion in matrix, and matrix–nanofiller
interactions contribute greatly to improving the sensing performance of the nanomaterials.
Consequently, various types of sensors have been developed to sense the strain-related
effects, electrical or optical changes, gases, ions, toxic gases, chemical compounds, proteins,
DNA, RNA, and related biomolecules. Hence, nanocomposite sensors have found practical
utilization in wearable electronics, and practical gas-sensing devices and biosensors [158].
Accordingly, nanocomposite sensors displayed high durability, sensitivity, selectivity, and
responsiveness in high-tech applications. In particular, nanocomposite sensors have been
used in strain sensors, gas or ion sensors, biosensors, and chemical sensors.

Despite the research carried out so far, future efforts are required to design novel
nanocomposite sensors of conductive or non-conductive polymers and various nanofillers [159].
Facile ways must be adopted to further enhance nanoparticle scattering in polymers to at-
tain the desired sensing performance. Moreover, the mechanism of sensing via interactions
between the nanocomposite material and analytes must be comprehensively studied [160].
The in-depth explorations of sensing mechanism and phenomenon will not only help to
interpret the detection process but also assist in monitoring the sensor performance. As
numerous sensing systems explained in this article, the mechanism interpretation can better
help to fabricate and regulate the sensing behavior of the polymers/carbon nanoparticles
and polymer/inorganic nanofiller-derived nanocomposites. The future relies on using
nanocomposite sensors in smart electronic and microelectronic devices [161]. Although
nanocomposite sensors have countless advantages, their complete utilization in the future
devices and systems still faces several technical challenges. Using shape memory materials
could lead to remarkable advancements in the field of nanocomposite sensors. Shape
memory nanocomposites can be very useful for creating smart flexible electronics. Ap-
plying three-dimensional or four-dimensional printing techniques could be advantageous
for fabricating smart sensors [162]. Here, quite a lot of new design variations need to be
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investigated in order to apply nanocomposite sensors to electronics, microelectronics, and
other device applications [163]. Further efforts on nanoparticle dispersal and compatibility
with polymers are of prime importance in order to create high performance nanomaterials.

Briefly, this comprehensive overview outlines the design and critical features of various
types of nanocomposite sensors. Here, conjugated as well as non-conductive polymers
were filled with carbon, inorganic, or metal nanoparticles to form high efficiency sensors.
The exploration of various combinations of polymer matrices and nanoparticles revealed
unique characteristics for a myriad of practical sensing applications, such as strain-sensing,
gas-sensing, bio-sensing, or chemical-sensing. This review article can certainly guide
scientists in their pursuit of progress in the field of technical nanocomposite sensors.
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