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Abstract: Nonpolar (1120) a-plane GaN films were grown on semipolar (1102) r-plane sapphire
substrates using various buffer layers within a low-pressure metal organic chemical vapor deposition
system. The structural properties of nonpolar a-plane GaN films were intensively investigated by
X-ray diffraction and Raman spectra measurements. A set of buffer layers were adopted from a
GaN layer to a composite layer containing a multiple AlN layers and a gradually varied-Al-content
AlGaN layer, the full width at half maximum of the X-ray rocking curves measured along the [0001]
and [1010] directions of a-plane GaN were reduced by 35% and 37%, respectively. It was also found
that the basal-plane stacking faults (BSFs) density can be effectively reduced by the heterogeneous
interface introduced together with the composite buffer layer. An order of magnitude reduction in
BSFs density, as low as 2.95 × 104 cm−1, and a pit-free surface morphology were achieved for the
a-plane GaN film grown with the composite buffer layer, which is promising for the development of
nonpolar GaN-based devices in the future.

Keywords: buffer layer; structural properties; nonpolar GaN

1. Introduction

The light emitting and optoelectronic devices fabricated based on III-nitrides offer
a wide spectral range varying from near-infrared (InN) to deep ultraviolet (AlN) [1–3].
Remarkable progress has been reported on the research of InGaN-based green and red
light-emitting diodes (LEDs) [4–7], AlGaN-based deep ultraviolet (DUV) LEDs [8,9], GaN-
based ultraviolet photodetectors [10], and AlGaN-based solar-blind photodetectors [11].
High-bandwidth light communication could be achieved based on the above visible light
and ultraviolet LEDs [9,12]. Accompanied with these achievements, both the efficiency and
the modulation bandwidth of III-nitride-based LEDs were limited by the built-in electric-
field-induced quantum-confined Stark effect (QCSE) [13–15]. Although the QCSE can be
suppressed/eliminated by growing semipolar/nonpolar GaN-based structures [16], the epi-
taxial growth of semipolar/nonpolar III-nitride structures was still a great challenge [17,18].
Therefore, the development of semipolar/nonpolar structures has lagged behind the devel-
opment of polar structures.

Recently, high-bandwidth semipolar (2021)-plane GaN-based LED has been widely
reported for visible-light communication [19,20] due to the successful fabrication of high-
quality commercial semipolar (2021)-plane GaN templates. Meanwhile, a bandwidth of
540 MHz for (1122)-plane semipolar green LEDs had been demonstrated by growing an
(1122)-plane GaN template whose crystalline quality was similar to or close to that of polar
GaN [21]. The research on nonpolar AlGaN-based ultraviolet light-related structures [22,23]
and InGaN-based visible light-related structures [24,25] has been investigated, but there is
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still much room for the investigation of devices based on nonpolar III-nitrides. Obviously,
the successful fabrication of nonpolar GaN templates is the basis for the realization of non-
polar GaN-based devices. Although free-standing nonpolar GaN templates of comparable
quality to polar GaN are currently available, they are cut at a specific angle from ultra-
thick c-plane GaN, are typically only a few millimeters (~5 mm) width, and are difficult
to commercialize.

Similar to the studies such as the SiNx interlayer [26] and the NH3 pulsed-flow growth
technology [27] on the conventional c-plane polar III-nitride structures, various technologies
such as buffer layers [28,29], in situ SiNx interlayers [30], growth interruption [31], and
substrate nitridation [32] have been extensively investigated to acquire nonpolar GaN
films. The blocking effect of the SiNx insertion layer on BSFs was verified by the TEM
measurements reported by M.J. Kappers et al. [33]. It was found that a nonpolar GaN
film with a pit-free and smooth surface could be achieved by using a composite buffer
layer containing a low-temperature-grown AlN layer sandwiched in between two high-
temperature-grown AlN layers [28]. R. Hao et al. reported that the defects in nonpolar
a-plane GaN film could be reduced using either a SiNx interlayer or a direct-growth
technology (without a nucleation layer) [34]. In addition, a composite buffer layer consisting
of a low-temperature-grown AlN layer, a low-temperature-grown pulsed AlN layer, and
a low-temperature-grown AlGaN layer improved the crystal quality of nonpolar a-plane
GaN film [35]. Recently, (1120)-plane nonpolar GaN film was successfully grown on a
(0001)-plane sapphire substrate using pulsed laser deposition (PLD) technology [36]. It was
reported that the crystalline quality of nonpolar GaN could be improved by introducing
a patterned SiO2 layer [37]. However, the introduction of secondary epitaxy processes
or growth techniques that are not entirely based on the metal organic chemical vapor
deposition (MOCVD) system is detrimental to commercialization. Therefore, epitaxial
structures grown in a single process by using pure MOCVD technology are usually pursued.

In this study, several nonpolar (1120)-plane GaN films were grown on r-plane sapphire
substrates by using a low-pressure MOCVD system. The buffer layer was modified to
investigate the effect of the buffer layer on the structural properties of nonpolar (1120)-plane
GaN films. It was found that a composite buffer layer containing multiple AlN layers
and a gradually varied-Al-content AlGaN layer was effective in improving the crystal
quality and suppressing the basal-plane stacking faults (BSFs) density. The FWHM of XRCs
measured along the [0001] and [1010] directions of a-plane GaN was reduced by 35% and
37%, respectively, and a BSFs density as low as 2.95 × 104 cm−1 was achieved using the
optimized composite buffer layer.

2. Experiment

In this study, a low-pressure MOCVD system was used to grow the nonpolar (1120) a-
plane GaN films on the semipolar (1102) r-plane sapphire substrates. This MOCVD system
is a domestically manufactured 2-inch monolithic system with a vertically coupled chamber.
The chamber pressure was maintained at 40 Torr throughout the growth process. The
precursors for Al, Ga, and N elements were trimethylaluminum (TMAl), trimethylgallium
(TMGa), and ammonia (NH3), respectively, while the carrier gas of the MOCVD system
was hydrogen (H2). Five nonpolar GaN samples, labeled as A–E, were grown based on
various buffer layer structures to investigate the effects of the buffer layer on the structural
properties of nonpolar GaN films. The epitaxial structures of the nonpolar GaN films are
shown in Figure 1. Specifically, the buffer layer of sample A contained a low-temperature
(650 ◦C) grown GaN nucleation (LT-GaN) layer and a high-temperature (1030 ◦C) grown
GaN (HT-GaN) layer. The growth duration time, NH3 flow rate, and TMGa flow rate of
the LT-GaN layer were 7 min, 112 mmol/min, and 15.6 µmol/min, respectively, while
these parameters were 15 min, 80 mmol/min, and 38.9 µmol/min, respectively, for the
growth of the HT-GaN layer. For sample B, its buffer layer contained a low-temperature
(720 ◦C) grown AlN layer (LT-AlN) and a high-temperature (1090 ◦C) grown AlN (HT-AlN)
layer, respectively. Correspondingly, the growth duration time, NH3 flow rate, and TMAl
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flow rate of the LT-AlN layer were 7 min, 62.5 mmol/min, and 3.5 µmol/min, respectively,
while these parameters were 30 min, 44.6 mmol/min, and 23.2 µmol/min, respectively,
for the growth of the HT-AlN layer. The buffer layer of sample C was a multiple AlN
layer, which was identical to our previous report [30]. Specifically, it contained a 720 ◦C
grown LT-AlN layer sandwiched in between two 1050 ◦C grown HT-AlN layers. The NH3
and TMAl flow rates were 22.3 mmol/min, and 8.7 µmol/min for all the three AlN layers,
respectively, and the growth duration time was 3, 4.5, and 7.5 min for the first HT-AlN layer,
the LT-AlN layer, and the second HT-AlN layer, respectively. An AlGaN layer was grown
on the multiple AlN layers of sample C to constitute the buffer layer of sample D. The
growth temperature, duration time, NH3 flow rate, TMAl flow rate, and TMGa flow rate
were 1090 ◦C, 15 min, 112 mmol/min, 14.7 µmol/min, and 32.4 µmol/min, respectively.
In other words, the gas phase Al content of this AlGaN layer was ~0.31. For structure E,
the fixed Al content AlGaN layer was replaced by a varied-Al-content AlGaN layer whose
gas phase Al content was gradually decreased from 0.7 to 0.07 from the beginning to the
end, as a strain-relaxation layer. The growth temperature and NH3 flow rate were fixed
at 1090 ◦C and 84.8 mmol/min, respectively, while the flow rate of TMAl and TMGa was
varied over the growth time. As shown in Figure 2, the flow rate of TMAl was started at
29.0 µmol/min, and gradually decreased linearly over time to 2.9 µmol/min, while the
flow rate of TMGa was started at 12.3 µmol/min, and gradually increased linearly over
time to 38.1 µmol/min. During this growth period, the flow rate of TMAl and TMGa was
kept constant, so that the V/III ratio was maintained at ~2000.
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After growing the buffer layer, an unintentionally doped nonpolar a-plane GaN film
was grown on top of the buffer layer at 1030 ◦C. During this growth process, the flow rates
of NH3 and TMGa were 67.0 mmol/min and 68.1 µmol/min, respectively, resulting in a
growth rate of 1.8 µm/h, as verified in our previous work [30]. In this study, a 1.2 µm thick a-
plane GaN film was grown in 40 min. After growing all the nonpolar a-plane GaN samples,
the crystalline quality was characterized by measuring the X-ray rocking curves (XRCs) of
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(1120)-plane GaN along the in-plane c- and m-directions. The BSFs density was calculated
based on the modified Williamson–Hall analysis by measuring the XRCs of (h0h0)-planes
GaN. Meanwhile, the in-plane strains along the c- and m-directions of nonpolar GaN were
analyzed by measuring Raman spectra at RT under the x(-,-)x configuration. The surface
morphology was observed with an optical microscope at 500X.

3. Results and Discussions

The X-ray diffraction (XRD) 2θ-ω scanning curves for samples A–E are shown in
Figure 3a. The two main peaks located at 2θ = 52.56 and 57.76◦ were diffracted from the
(2204)-plane of sapphire and (1120)-plane of GaN, as labeled in Figure 3a. These XRD
2θ-ω scanning curves indicated the successful growth of nonpolar a-plane GaN film. For
samples B–E, a relatively weak peak located at 59.35◦ can be observed. These peaks were
diffracted from the (1120)-plane AlN. On the other hand, a distinct “shoulder peak” can
be distinguished between the XRD peaks of GaN and AlN, which was diffracted from
the inserted AlGaN layers for samples D and E. The relatively broad diffraction peak
of AlGaN in sample E was due to the fact that this layer was grown with a gradually
decreasing gas phase Al content. Meanwhile, the XRCs were scanned along the in-plane
[0001] c-direction and [1010] m-direction for each sample, and their corresponding full
width at half maximum (FWHM), denoted as CFWHM and MFWHM, respectively, were
determined by a single Gaussian function fitting and are illustrated in Figure 3b. These
relatively large FWHM indicated that the crystalline quality of nonpolar GaN was inferior
to that of conventional polar GaN, which was the main reason for the slow development
of nonpolar GaN-based structures compared to their polar counterpart [17]. The fact that
CFWHM was much smaller than MFWHM indicated the anisotropy in the crystalline quality
of nonpolar GaN due to the anisotropy in lattice mismatch between the GaN epilayer
and the sapphire substrate along the c- and m-directions [38], which is a typical feature
of nonpolar GaN [18,30]. In fact, the in-plane c- and m-directions of the nonpolar a-plane
III-nitrides epitaxially grown on an r-plane sapphire substrate are parallel to the [1101] and
[1120] directions of the sapphire substrate, respectively [38]. Here, the lattice mismatch is
defined as follows:

δ =
asub − aepi

aepi
× 100%, (1)

where asub and aepi are the lattice lengths along a specific direction of the substrate and
epitaxial layers, respectively. Along the c-direction of nonpolar a-plane III-nitrides, the
lattice lengths for GaN and AlN are 4.982 and 5.185 Å, respectively, i.e., their lattice
constant c. The lattice length for [1101] sapphire is 5.09 Å. In contrast, along the m-direction
of nonpolar a-plane III-nitrides, the lattice lengths for GaN and AlN are 5.39 and 5.52 Å,
respectively, which is

√
3 times their lattice constant a. The lattice length for [1120] sapphire

is 4.71 Å [39]. Thus, the lattice mismatch along the two directions between the grown
nonpolar III-nitrides and sapphire substrate can be calculated and are summarized in
Table 1.

Table 1. The lattice mismatch between the nonpolar a-plane III-nitrides and the semipolar r-plane
sapphire substrate.

III-Nitrides Along c-Direction of
III-Nitrides

Along m-Direction of
III-Nitrides

GaN −1.83% −14.73%
AlN 2.17% −12.62%
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The FWHM of the XRCs was found to vary with respect to the buffer layers. Among
them, the crystalline quality of samples B and C contacted with the AlN buffer layers was
slightly better than that of sample A containing only a GaN buffer layer. The improved
quality was inferred due to the introduction of tensile stress along the c-direction induced by
the AlN buffer layer, which partially compensated the compressive stress in the upper GaN
layer [40]. Therefore, due to the extra stress relaxation effects of the AlGaN layer, the crystal
quality of samples D and E was further improved, and the best crystal quality was achieved
for sample E, which contained a gradually varied-Al-content AlGaN layer. Specifically, the
CFWHM and MFWHM for sample E were reduced by 35% and 37%, respectively, compared
to sample A, due to the introduction of the optimized buffer layer. The reduced CFWHM
and MFWHM indicated the improved crystalline quality and the reduced structural defects,
which will improve the performance of future devices.

The BSFs in nonpolar a-plane III-nitrides stacked along the c-direction and propagated
from bottom to top along the growth direction, the a-direction, and acted as a leaky, non-
radiative recombination center. Thus, the BSFs are usually considered to be the major
defects in nonpolar III-nitrides. To investigate the effects of different buffer layers on the
BSFs density, the modified Williamson–Hall analysis [41] was introduced to calculate the
BSFs density in all the five a-plane nonpolar GaN samples. First, the XRCs of the (1010)-
and (2020)-planes of each nonpolar GaN sample were measured along the c-direction. Then,
the BSFs density was derived based on the flow equation:

∆ωmeasured = ∆ωmosaic +
λ

2Lsin(θhkl)
. (2)

Here, 1/L is the BSFs density, which can be calculated by a linear fitting based on the
FWHM values of the XRCs diffracted from the (1010)- and (2020)-planes of GaN. The XRD
ω-2θ scanning curves of the (1010)- and (2020)-planes for sample A are shown in Figure 4a
as representative. Figure 4b demonstrates the modified Williamson–Hall plots for the five
samples based on the measured XRCs. The intercept of the corresponding fitted line in
Figure 4b is the calculated BSFs density for each sample, and their values are plotted in
Figure 4c.
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Figure 4. The ω-2θ XRD curve scanned along c-direction for (1010)- and (2020)-planes of sample A
(a). The modified Williamson–Hall plots (b), and the calculated BSFs density (c) for the five samples.

It can be seen from Figure 4c that the BSFs density in sample A was the highest among
the five samples, while the BSFs density in samples B and C was slightly decreased after the
use of the AlN buffer layer. After the introduction of the AlGaN layer, the BSFs density in
sample D was significantly reduced by about 40% compared to samples B and C, and by 54%
compared to sample A. When the gradually varied-Al-content AlGaN layer was introduced
for sample E, the BSFs density was further reduced by 71% compared to sample D, as low as
2.95 × 104 cm−1, and an order of magnitude reduction was achieved compared to sample
A. This density was reduced by 64% compared to our previous work (8.13 × 104 cm−1)
on the growth of nonpolar a-plane GaN using an in situ SiNx interlayer [42], and reduced
by 56% compared to the result (6.7 × 104 cm−1) reported by J. Liang et al. on the growth
of a-plane GaN on lattice-matched LaAlO3 substrates [43]. In fact, the evolution trend of
the BSFs density of the five samples was basically consistent with that of the FWHM of
the XRCs, as shown in Figure 3b. In general, the BSFs, which were formed at the initial
stage of growth and propagated along the growth direction, can be partially blocked by
heterogeneous interfaces. The decrease in the BSFs density in samples B and C compared
to sample A could be attributed to the blocking of BSFs by the AlN buffer/upper GaN
interface. For sample D, two additional interfaces, the AlN/AlGaN and AlGaN/GaN
interfaces, were added based on sample C, both of which can have the effect of blocking the
propagation of BSFs. The varied-Al-content AlGaN layer in sample E corresponded to many
heterogeneous interfaces, exerting a continuous blocking effect on the propagation of BSFs.
Therefore, a significant (about an order of magnitude) decrease in the BSFs density was
achieved for sample E compared to sample A, proving that the gradually varied-Al-content
AlGaN layer played a major role in suppressing the BSFs density.

The Raman spectra measured at room temperature under a configuration of x(-,-)x for
samples A–E are plotted in Figure 5a. The three Raman peaks marked with * were sapphire
peaks [44], and the right peak marked with # was the overlapping peak of sapphire and
GaN E1(LO) [44,45]. The three Raman peaks located between 500 and 600 cm−1 from
left to right were the GaN A1 (TO), E1 (TO), and E2 (high) mode-related Raman peaks,
respectively, as marked in Figure 5a. The in-plane strains of nonpolar GaN films can be
calculated based on the Raman peak positions of the E1 (TO) and E2 (high) modes. In fact,
the mathematical relationship between the strains along different GaN in-plane directions
and the Raman shift of the corresponding mode is represented by the following equation:

∆ωλ = aλ

(
1− c12

c11

)
εyy +

(
bλ − aλ

c13

c11

)
εzz + cλ

∣∣εxx − εyy
∣∣. (3)

Here, ∆ωλ represents the Raman shift of a particular mode, c11, c12, and c13 are the elastic
stiffness constants for GaN [46], aλ, bλ, and cλ represent the corresponding phonon de-
formation potentials for the particular mode [38,47], and εxx, εyy, and εzz are the strains
along the GaN

[
1120

]
,
[
1100

]
, and [0001] directions, respectively [32,48]. The peak posi-

tions for the E1(TO) and E2(high) modes of strain-free GaN were assigned to be 558.8 and
567.6 cm−1, respectively. The measured peak positions of the E1(TO) and E2(high) modes
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of samples A–E are summarized in Table 2. Then, two equations for the strains along
different directions can be obtained by substituting the Raman shifts of the E1 (TO), and E2
(high) modes into the above equation. Meanwhile, the strain along the growth direction is
assumed to be zero based on the linear elasticity theory, while the strains, εxx, εyy, and εzz
are subject to the following expressions [38]:

εyy = − c11

c12
εxx −

c13

c12
εzz. (4)

Then, a ternary system of equations was constructed and the in-plane strains, εzz and εyy,
were obtained by solving the above equations. The solved in-plane strains of the five
nonpolar GaN are demonstrated in Figure 5b.
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Table 2. The measured peak positions of E1(TO) and E2(high) modes of nonpolar GaN samples A–E.

Raman Mode Sample A Sample B Sample C Sample D Sample E

E1(TO), cm−1 556.11 556.40 554.92 557.04 558.45
E2(high), cm−1 565.13 565.79 564.13 566.29 567.55

The in-plane strains in sample A grown on GaN buffer were significantly reduced
compared to those in samples B and C grown on AlN buffer. It can be concluded that
the in-plane strains in sample A were partially released by the formation of BSFs at the
initial stage of growth. For samples B and C, the strain along the c-direction was partially
compensated by the tensile strain introduced along with the AlN buffer layer. In this case,
the residual strain in the GaN layer was reduced, and therefore the proportion of strains
released by formatting the BSFs was synchronously reduced. As a result, the in-plane
strains in samples B and C were larger, and the BSFs density was smaller than those in
sample A.

When an additional layer of AlGaN was introduced for samples D and E, the in-plane
strains were slightly reduced due to the lattice mismatch between the top GaN and bottom
AlN being transited by the inserted AlGaN layer. In other words, due to the lattice lengths
along a certain direction of the AlGaN being between AlN and GaN, the lattice mismatch
of the GaN film for samples D and E was between the upper GaN layer and the lower
AlGaN layer, while the lattice mismatch of the GaN film for samples B and C was between
the upper GaN layer and the lower AlN layer. This means that when the AlGaN was
introduced, the lattice mismatch between the GaN film and the lower layer was actually
reduced. On the other hand, the propagation of the BSFs could be partially blocked by the
additional interfaces introduced along with the AlGaN layer. Thus, both the FWHM of
the XRCs and the BSFs density were improved with the introduction of the AlGaN layer.
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Obviously, the AlGaN layer whose Al content varied gradually from 0.7 to 0.07 in sample
E produced a better transition effect on the lattice mismatch, so that sample E achieved a
smaller in-plane strains compared to sample D.

As shown in Figure 6, the directional stripes distributed on the surface parallel to the
in-plane c-direction are due to the fact that the in-plane growth rate along the c-direction
was higher than that along the m-direction [49], and are the typical surface morphology of
(1120)-plane GaN-based materials [25]. It can be seen from Figure 6 that relatively more
triangular pits were distributed on the surface of samples B and C, while the distribution
on the surface of sample C was less, and samples A and E achieved a pit-free surface
morphology. The formation of these triangular pits is usually related to the strains in
nonpolar GaN. The pit-free surface of samples A and E was inferred because the strains
were partially released by the formation of BSFs for sample A, and were compensated by
the introduced composite buffer layer for sample E. Therefore, the composite buffer layer
introduced in this study can improve the crystal quality, reduce the BSFs density, and form
a pit-free surface in the growth of nonpolar a-plane GaN films.
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Figure 6. The surface images of all the five nonpolar GaN samples. The arrows and circles indicated
the c-direction and the superficial triangular pits of nonpolar a-plane GaN, respectively.

4. Conclusions

The effects of buffer layers on the structural properties of nonpolar (1120) a-plane
GaN films have been intensively investigated. The in-plane strains can be suppressed by
optimizing the buffer layers, resulting in improved crystalline quality. An AlGaN layer
was introduced to compensate for the in-plane strains in the a-plane GaN due to the usage
of AlN buffer layer. It was calculated that the CFWHM and MFWHM were reduced by 35%
and 37%, respectively, compared to a reference sample using GaN as the buffer layer.
Meanwhile, the BSFs density can be effectively reduced by the heterogeneous interface
introduced together with the buffer layers. A BSFs density as low as 2.95 × 104 cm−1,
an order of magnitude lower than that of the reference sample, and a pit-free surface
morphology were achieved for the sample grown with a composite buffer layer containing
multiple AlN and gradually varied-Al-content AlGaN layers, providing promising insights
for the development of nonpolar devices in the future.
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