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Abstract: Aluminum matrix composites (AMCs) are largely used in defense, maritime, and space
applications for their excellent properties. LM5 is used where very high resistance to corrosion from
seawater or marine atmospheres is required, for equipment used for the manufacture of foodstuffs,
cooking utensils, and chemical plants. Zirconia is preferred over other reinforcements as it shows
comparatively great refractory properties, high scratch resistance, and thermal shock resistance.
Utilizing the stir casting technique, an attempt was made to produce AMCs of LM5 aluminum alloy
strengthened with ZrO2. The weight percentage of ZrO2 was changed to 0%, 3%, 6%, and 9%. The
specimens were prepared and tested as per ASTM standards to find the density, micro and macro
hardness, impact, tensile, and compressive strength. The micrographs and SEM images confirm the
uniform distribution of ZrO2 particles in the aluminum matrix. LM5/9%ZrO2 AMC has the highest
density value of 2.83 g/cm3 and LM5/3%ZrO2 has the least porosity of 2.55%. LM5/9% ZrO2 has the
highest hardness values of 78 VHN and 72 HRE. LM5/6% ZrO2 AMC has the highest tensile strength
of 220 MPa, compressive strength of 296 MPa, and toughness of 12 J. LM5/6% ZrO2 AMCs may be
used for many structural applications.

Keywords: aluminum matrix composites; impact test; microstructure; stir casting; tensile test; zirconia

1. Introduction

In this new era, aluminum is one of the most attractive materials of higher importance,
having wider applications in the automobile, construction, electrical, public transport, and
aerospace industries. Since conventional construction materials are monolithic, composite
materials meet the necessities of such applications. Composites consist of two or more
distinct phases, with the additional phase contributing to desired performance characteris-
tics such as rigidity, strength, durability, and self-lubrication. The essential properties of
composites are extreme strength, extraordinary thermal conductivity, very high rigidity, low
density, oxidation resistance, improved strength-to-weight ratio, and enhanced mechanical
properties [1,2].

For many researchers, aluminum metal matrix composites were of interest since the
aluminum alloy overwhelms the weaknesses of ferrous materials and offers the preferred
specific performance characteristics. Because of its superior resistance to corrosion, light
weight, and lower cost compared to other materials, aluminum alloys are still employed as
structural materials in ship building and aircraft industries today [3]. MMCs combine the
properties of alloys (toughness and ductility) with refractory reinforcement (extraordinary
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strength and high modulus) and result in sophisticated service temperature competencies,
higher strength, and compression [4,5]. Light weight is the first prerequisite for using
AMCs in many sectors. It also provides a remarkable increase in strength. In addition,
silicon carbide and boron carbides may be used to modify the thermal expansion coefficient
of AMCs [6].

Aluminum alloy has an extreme strength-to-weight ratio, better ductility, and high
corrosion resistance [7]. AMCs are manufactured using different practices, such as spray
forming, liquid metallurgy, diffusion bonding, and powder metallurgy. The powder
metallurgy route is less cost effective than the liquid metallurgy route [8,9]. The main
problem with the liquid metallurgy technique is obtaining adequate particle wetting by
the molten metal and consistent spreading of the ceramic particles [10]. The unsatisfactory
casting technique reported many physical imperfections, such as oxide inclusions, porosity,
and particle clustering [11]. The thixotropic behavior, particle formation, and particle
distribution of metal matrix composites may be studied.

To determine the effect of stir casting process parameters on homogeneous distribution
of reinforcement material in the metal, AMCs were produced using different melting
temperatures and holding times. The resulting mechanical properties depend on the
cooling rate and the stirring speed used, which depend on the pouring temperature [12,13].
These parameters influence particle dispersal within the matrix. The cluster diameter
appeared smaller at a low stirring rate than at a higher stirring rate [14,15]. It has been
noted that the hardness is increased through adding reinforcements like fly ash and zirconia
with aluminum [16]. A relatively unique aluminum alloy, LM5, is chosen for producing
and characterizing composites with a comprehensive literature review [17,18].

Earlier research did not deal with the combination of zirconia and LM5; this composite
itself is new. LM5/ZrO2 composites were fabricated for testing and evaluation. LM5 alloys
need more attention in preparation and casting than alloys containing less magnesium
because they are more sensitive to oxygen, lubricants, and atmosphere-like moisture. LM5
alloys lack fluidity and appear hot short [19].

In the present work, a novel composite is fabricated through combining LM5 alu-
minum alloy reinforced with a varying weight percentage of zirconium dioxide using the
stir casting method. Mechanical properties like hardness, impact strength, tensile strength,
and the microstructure of the fabricated novel composite were evaluated. The motivation
behind choosing LM5 aluminum alloy is its excellent corrosion resistance; it can be used in
marine applications. So, the authors produced and characterized the composites to find
their suitability.

2. Materials Used
2.1. Aluminum Alloy (LM5)

Due to its wide availability and common usage in high-temperature applications, LM5
aluminum is chosen as the matrix metal. The alloy is used for utensils, culinary dishes,
chemical industries, and for making castings which need good surface finish, where very
much durability against corrosion from sea water or coastal atmospheres is required. LM5
is renowned for its use in industrial, marine plumbing fixtures, structural, and aesthetic
maritime gears. The chemical composition of LM5 aluminum alloy was determined through
chemical analysis, and the results are presented in Table 1.

Table 1. Chemical composition of LM5 aluminum alloy.

Cu Mg Si Mn Fe Pb Zn Al

0.032 3.299 0.212 0.022 0.268 0.02 0.01 Balance
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2.2. Zirconium Dioxide (ZrO2)

Zirconium dioxide or zirconia is a commonly studied ceramic material. Zirconia can
be extracted using a variety of processes, such as lime fusion, plasma disassociation, and
the breakdown of chlorine and alkali oxide. Zirconium dioxide has huge tolerance to the
spread of cracks, similar to other ceramic materials. Zirconium dioxide ceramics are thus
often thermally produced and are the preferred material for combining ceramics and steel.
Zirconium dioxide exhibits desirable properties, such as superior strength and low thermal
conductivity [20].

3. Fabrication of LM5/ZrO2 Composites

The Remi RQM-122/R agitator system is used in the configuration of the stir casting
assembly, which features a C-Type sealed kiln with a power rating of 5 KVA and a suitable
temperature range of 500 ◦C to 1100 ◦C. The stirrer has a stirring shaft made of SS304 that
is 350 mm long, 6 mm in diameter, and includes a socket for simple shaft interchangeability.
It comes with a slanted fan-type impeller with four blades that are 38 mm in diameter. The
impeller is formed of high chromium steel with high levels of carbon and has been coated
with zirconia. Inside the furnace, a silicon carbide crucible is held [21,22].

The LM5 alloy was first charged in a furnace to a temperature of roughly 850 ◦C till
the entire alloy melted there. In a muffle furnace with a 4 KVA output, ZrO2 is preheated
for 20 min to 200 ◦C in order to remove dampness. The liquid metal is then gradually
stirred with ZrO2 of 70 µm size at a rate of 600 rpm [23,24]. Magnesium (0.5 wt%) was
added to the molten metal to ensure good wettability of ZrO2 particles with the molten
metal. Mg reduces the agglomeration of the ZrO2 particles and produces sound, defect-free
castings [25,26]. For seven minutes, the stirring was continued. Hexachloroethane tablets
were used for degassing. Also, argon gas was introduced into the slurry before pouring
it into the mold to reduce porosity. The pouring temperature was maintained at 750 ◦C.
The mold was preheated to 650 ◦C before pouring the slurry into it so that homogeneous
solidification could be achieved.

This process produced LM5 alloy and three sets of novel composites consisting of
aluminum alloy LM5 reinforced with 3%, 6%, and 9% by weight of ZrO2 particles [27,28].
The stir casting setup is shown in Figure 1. Figure 2 depicts the fabrication of the LM5 and
composites, and the molten mixture is poured into the mold.
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4. Micro Structural Analysis
4.1. Optical Microscopy

Examining the microstructure of aluminum and its composites requires a carefully
executed series of steps that depend on theoretical knowledge and professional experience.
Generally, sample preparation involves a series of steps: sectioning or cutting, arranging,
processing, and polishing. In several cases, cutting is sufficient to obtain a small piece
for examination. An inverted optical microscope examined the AMCs. The sample’s
surfaces are smoothed using sandpaper via mesh sizes ranging from 220 to 1500, and
then polished using velvet cloth. Each composite specimen was meticulously polished to
match the surface’s texture [29]. The specimens were then etched using HF solution prior
to microscopic examination. Metallographic analyses provide beneficial information for
fabricating good-quality composites.

Microstructure is the very-small-scale structure of a material, defined as the structure
of a prepared material surface as revealed using an optical microscope. Crystalline lattice
materials (composites, metals, ceramics, and polymers) may significantly impact physical
properties like resilience, strength, ductility, stiffness, corrosion protection, etc. Those
properties also regulate the usage of such materials in industrial applications. Numerous
faults in the structure might either be present or not, which impacts the microstructure’s
role in a material’s physical and mechanical properties. Although these faults can take
many shapes, pores are the most common. These pores ultimately determine the features of
materials and their formulation. Additionally, different phases may exist in some materials
at the same time. If properly handled, these phases may have a variety of characteristics
and stop the material from breaking [30].

4.2. Scanning Electron Microscopy (SEM & EDAX)

Microstructure analysis has become one of the methods to study alloys, and composite
materials to ascertain the results of different products and measure the effects of new
techniques, the cause of errors, and evaluate them. Microstructure analysis is typically
performed to assess the material response to thermal processing. The chosen microstruc-
ture of metal and non-metal is formed or altered through heat treatment production. A
“fingerprint” of processing can be seen in the crystal structure of materials.

AMCs’ microstructure is studied to confirm the uniform distribution of the reinforce-
ment. SEM offers numerous advantages, including easy handling of specimens, the largest
magnification scale (often between 15 to 50,000 times), and the ability to see significant
portions of the specimen’s outer layer, including the origin and spread zones. It is possible
to focus on surfaces with broad topographies through placing the surface directly into the
microscope because of its superior field depth [31]. EDAX is an energy-dispersive X-ray
spectroscopy (EDS) technique used for elemental analysis [32].
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5. Mechanical Characterization
5.1. Density

Density is the physical property that reflects the characteristics of composites. Ex-
perimentally, the density of a composite is obtained via displacement techniques using a
physical balance with a density measuring kit as per the ASTM: D 792-66 test method. The
mass of a specimen is measured using an electronic weighing machine with 0.001 g accu-
racy. The volume of a specimen is measured through measuring the water displacement
using a graduated cylinder. First, the water level of the graduated cylinder is noted, and
then the test specimen is immersed in it. The difference in water level is measured; it is
the volume of the specimen. Density was determined using the formula mass/volume.
Porosity measures a material’s volume (or amount) of space about its overall size [33].
Utilizing the formula, it is calculated as shown in Equation (1).

Porosity% = (1 − De/Dt) × 100 (1)

where De is the experimental density; Dt is the theoretical density.

5.2. Micro Hardness

The Vickers hardness test (ASTM E384) is commonly used to assess the micro hardness
of materials. The hardness value is mentioned in VHN (Vickers Hardness Number). Micro
hardness tests can gather the information required to measure distinct microstructures into
a larger matrix, analyze excellent foils like plastics, or determine the hardness gradient
along a specimen’s transverse. It uses loads < 1 kgf. An apical angle diamond with 136◦ is
used in the Vickers Hardness Test. Typically, the surface that will be evaluated requires a
highly polished surface. A higher metallographic polish is obtained with the little force
that is used. Direct measurement of the contoured indents requires a microscope with
500×magnification.

5.3. Macro Hardness

The indentation hardness of the substrate serves as the basis for the Rockwell scale.
The Rockwell hardness test (ASTM E18) is used to quantify hardness. The Rockwell
hardness of the material can be determined through first applying a light load and then a
heavy force. An outcome is a dimensionless number presented as HRA, HRB, HRC, HRE,
etc., where the Rockwell scale is indicated by the letter before it based on the different
indenters or weights used. The hardness of as-cast composites and the unreinforced alloy
was measured using Rockwell hardness test scale E (1/8-inch steel ball with a minor load
of 10 kgf and a major load of 90 kgf). The samples were first surface finished, and at least
five measurements were performed randomly in each sample and averaged to obtain the
accurate hardness of the specimen [34].

5.4. Tensile Strength

The fabricated composite materials were evaluated using a computerized Universal
Testing Machine (UTM). The tensile test was conducted at ambient temperature following
the ASTM E8 standard. The results of the tensile test are taken into consideration while
choosing engineering materials. Tensile qualities must be included in the material speci-
fications to guarantee performance. To compare various materials and methods, tensile
properties are measured when producing new materials and processes. Eventually, the
tensile characteristics are used to assess a material’s behavior under conditions apart from
uniaxial stress charging [35,36]. The stress required for significant plastic deformation or
the maximum stress a material can withstand can be used to gauge a material’s strength,
which is always the main issue. Another issue is the material’s toughness, which measures
how far it can bend before breaking. Ductility is the ability of a material to plastically
deform without breaking when tensile stress is applied to it. Elastic properties can also
be of concern. Universal testers are the most popular testing machines which measure
materials’ response to stress, compression, or bending [37].
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5.5. Compressive Strength

The fabricated composites were tested for compressive strength using a computer-
ized UTM following ASTM E8 standards. Numerous fields require compressive tests.
Engineering materials are chosen using the results of the compressive test. The material
specifications must provide compressive qualities to assure performance. Compressive Test
properties are measured when producing new materials and processes to compare various
materials and methods. Ultimately, the compressive Test characteristics are used to assess a
material’s behavior under conditions apart from uniaxial stress charging. Universal testers
are the most popular testing machines which measure materials in stress, compression, or
bending [38].

5.6. Impact Strength

Impact strength refers to a material’s capacity to endure an applied force or a rapid
load. It is presented as energy lost per unit of area in square meters (J/m2). The Izod impact
test is a common ASTM method (ASTM E23) for evaluating the toughness of a material.
The Izod impact test involves striking a sample with a swinging arm of known energy. The
sample is fixed in a cantilever beam. A pivoting arm is raised to a specific height (constant
potential energy) and then released. The arm swings down, hitting a notched sample,
breaking the specimen. The energy absorbed by the sample is calculated from the height
the arm swings to after hitting the sample [39].

6. Results and Discussions
6.1. Microstructural Analysis

The optical micrographs show how evenly the zirconia particles have dispersed
throughout the matrix. Particles in the order of distribution start to coagulate and disturb
homogeneity as the wt% of the reinforcement rises. The AMCs strength is provided by
uniform reinforcement spread, which is the primary reason for improved mechanical
characteristics [40,41]. Figure 3 shows the microstructure of LM5 and all the fabricated
composites at 100 times magnification.

Crystals 2023, 13, x FOR PEER REVIEW 7 of 17 
 

 

  
(a) LM5 (b) LM5 + 3% ZrO2 

  
(c) LM5 + 6%ZrO2 (d) LM5 + 9% ZrO2 

Figure 3. Micrographs of LM5 alloy and LM5/ZrO2 composites  

The microstructure of LM5 shows an interdendritic pattern of aluminum. The grain 
borders are precipitated with MgAl2 eutectic particles, which were not dissolved during 
solidification [42]. 

The primary aluminum phase grain size is measured as 40 to 50 microns. The 
precipitated eutectic MgAl2 particles are present in the primary aluminum grains. The 
microstructures of AMCs with 3% and 6% ZrO2 show a uniform distribution of ZrO2. The 
particles are embedded in the aluminum grains. A ZrO2 particle distribution of 9% is 
present as clusters along the grain boundaries [43]. During this research, ZrO2 is 
introduced to the aluminum alloy LM5 as reinforcement to evaluate the transition in 
AMC properties. The work aims to examine the impact of reinforcement (zirconia) on 
castability as part of the larger initiative to enhance the efficiency of cast aluminum LM5. 
Figure 4 displays the SEM pictures of LM5 Al alloy and AMCs (LM5/ZrO2). It is clear 
from these SEM images that particles scattering within the matrix were uniform. At lower 
magnifications, scanning electron micrographs show uniform ceramic particle dispersion 
in the AMCs, while at greater sizes; the SEM shows matrix–particle interfaces. 

 

Figure 3. Micrographs of LM5 alloy and LM5/ZrO2 composites.



Crystals 2023, 13, 1220 7 of 16

The microstructure of LM5 shows an interdendritic pattern of aluminum. The grain
borders are precipitated with MgAl2 eutectic particles, which were not dissolved during
solidification [42].

The primary aluminum phase grain size is measured as 40 to 50 microns. The precipi-
tated eutectic MgAl2 particles are present in the primary aluminum grains. The microstruc-
tures of AMCs with 3% and 6% ZrO2 show a uniform distribution of ZrO2. The particles
are embedded in the aluminum grains. A ZrO2 particle distribution of 9% is present as
clusters along the grain boundaries [43]. During this research, ZrO2 is introduced to the
aluminum alloy LM5 as reinforcement to evaluate the transition in AMC properties. The
work aims to examine the impact of reinforcement (zirconia) on castability as part of the
larger initiative to enhance the efficiency of cast aluminum LM5. Figure 4 displays the SEM
pictures of LM5 Al alloy and AMCs (LM5/ZrO2). It is clear from these SEM images that
particles scattering within the matrix were uniform. At lower magnifications, scanning
electron micrographs show uniform ceramic particle dispersion in the AMCs, while at
greater sizes; the SEM shows matrix–particle interfaces.
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The SEM images demonstrate the homogeneous distribution of reinforced ZrO2 par-
ticles within the aluminum alloy matrix. These figures illustrate the homogeneity of
composite materials in comparison. Scanning electron micrographs test the relationship
between particle distribution and Zirconia weight fraction. The wettability improved since
no pores were discovered in either situation. This interfacial bonding was achieved because
of too-quick cooling. The area fraction increases with the increase in the wt% of ZrO2. It is
also observed that the ZrO2 reinforcement weight percentage increases while the average
grain size of the Aluminum LM5 matrix decreases.
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It is also believed that the increase in the interfacial bonding of the reinforcement with
the aluminum matrix alloy is responsible for increased mechanical characteristics. This is
due to ZrO2′s high specific gravity, which is consistent with the efficient selection of stirring
settings and full wetting of warmed ZrO2 particles prior to application to the matrix alloy.
When primary and structural information is needed for micro- and nano-characterization,
EDAX creates the optimum solutions, enhancing the usability and precision of analysis.
Figure 5 displays the EDAX of composites made of LM5, ZrO2, and LM5. EDAX confirms
the presence of ZrO2 and graphite particles scattered in composites.
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6.2. Density

The mass of the cast composites is determined using an electronic weighing instrument
with a precision of 0.001 g. The volume of the composites is calculated through immersing
the composites into the graduated cylinder and measuring the displacement of water [44].
The De (experimental density) and Dt (theoretical density) of the cast plain LM5 aluminum
alloy is 2.61 and 2.65 g/cm3, respectively, and both densities of all the novel fabricated
composites are slightly more than LM5 plain aluminum alloy. The higher densities of the
composites result from the inclusion of ZrO2, which has a 5.68 g/cm3 density. The porosity
of the produced composites slightly increases since eutectic alloys tend to form large pores
through increasing the weight percentage of the reinforcement. Figures 6 and 7 display the
effect of ZrO2 on the density and porosity of AMCs.
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6.3. Micro Hardness

Figure 8 depicts how ZrO2 affects the hardness of AMCs. LM5 + 9%ZrO2 have the
highest hardness of 78 VHN. The introduction of ZrO2 with a metal matrix increases the
hardness value. Reinforcement strengthens the metal matrix during composite processing,
and the unique hardness properties of ZrO2 are passed to the specimen. Figure 8 shows
that the hardness is directly proportional to the addition of the ceramic reinforcement.
The presence of rigid particles increases the resistance to plastic deformation, resulting in
higher composite hardness. The total area of the reinforcements increases when reinforcing
particles are added to composites [45].
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6.4. Macro Hardness

The effect of ZrO2 on the hardness is shown in Figure 9. The Rockwell hardness value
of LM5 alloy is found to be 41 HRE. The hardness value increased drastically to 57 HRE,
67 HRE, and 72 HRE, respectively, for 3% ZrO2, 6% ZrO2, and 9% ZrO2. The presence of
hard particles makes plastic distortion more opposed, contributing to increased material
hardness. The total area of the reinforcements increases via applying the reinforcing
particles to the composites [46].
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6.5. Tensile Strength

The tensile test reveals that when the wt% of the particulates in ZrO2 rises, so does the
strength of the LM5/ZrO2 composites. The impact of zirconium dioxide weight percentage
on the composite tensile strength of aluminum alloy LM5 and ZrO2 is depicted in Figure 10.
The composition of zirconia is monoclinic, whereas the composition of aluminum crystal-
lizes in FCC. It is irrational to say that the various crystalline structures of zirconia and
aluminum cause their interaction.
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Therefore, this incoherence boosts the AMCs’ strength. The high stiffness rate of the
AMCs during their strain is likely the cause of the elevated hardness of the aluminum.
The elastic characteristics of ZrO2 particles and ability to resist matrix deformation might
enhance their hardening function. Thus, the ZrO2 particles promote work hardening and
inhibit matrix deformation in the presence of a suitable contact. The tension created by
the unique coefficient of thermal expansion of zirconia (10× 10−6 K−1) and aluminum
(16 × 10−6 K−1) can also increase the number of dislocations and, consequently, the
composite strength is increased. Dislocation movement is hampered via accumulating
behind ZrO2 particles and increasing dislocation density. The number of dislocations
generated increases with the increasing amount of ZrO2 [47].

The LM5 alloy, in its purest form, has a tensile strength of 170 MPa. The ZrO2 particles,
according to the results, significantly boost the tensile strength of the aluminum alloy
composite. The tensile strength of AMCs made of aluminum alloy with 3% ZrO2 is 193 MPa,
increasing to 220 MPa with 6% ZrO2 and decreasing to 207 MPa with LM5 + 9 wt% ZrO2.
It is evident from the findings of the study that the composites’ tensile strength is increased
when compared to the LM5 aluminum alloy. The impact of zirconium dioxide on the
elongation percentage is depicted in Figure 11. According to the results, the material’s
elongation diminishes when zirconium dioxide is added in weight percentages. Through
adding zirconium dioxide, the LM5 elongates 3.24%, loses its ductility, and turns brittle.
Elongation of LM5 + 3% ZrO2 is observed to be 2.43%; however, this value is decreased
to 2.3% and 2.21% for the compositions of LM5 + 6 wt% of ZrO2 and LM5 + 9% ZrO2,
respectively. UTS, strain, and elongation for the manufactured composite are smaller for the
9% reinforcement than for the 6% ZrO2 due to the brittleness of the latter. At 6% ZrO2, the
greatest ultimate tensile strength is seen. Cluster formations have yet to be observed with
9% reinforcement, which is expected to result in lower mechanical qualities, particularly
tensile strength, compared to 6% reinforcement.
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6.6. Compression Strength

The LM5 alloy has a compressive strength of 273 MPa. The ZrO2 particles, according
to the results, significantly enhance the compression strength of the AMCs. The AMC rein-
forced with 3% ZrO2 has a 277 MPa compressive strength, whereas the alloy with 6% ZrO2
has a 296 MPa compressive strength. The stress was further decreased to 278 MPa for the
mixture of LM5 + 9 wt% ZrO2. The experimental findings show that the composites’ com-
pression strength is greater than the LM5 aluminum alloy. The impact of zirconium dioxide
on the compression strength and compression % is depicted in Figures 12 and 13. Results
indicate that increasing the wt% of ZrO2 boosts the AMCs’ compression strength [48].
Through adding zirconium dioxide, the LM5, whose compression is 35.9%, loses its ductil-
ity and turns brittle instead of ductile. The compression of LM5 + 3% ZrO2 is observed to be
40.32%; this value increases to 45.32% for LM5 + 6 wt% ZrO2 and subsequently decreases
to 36.3% for LM5 + 9 wt% ZrO2. At 6% ZrO2, the greatest compressive strength is seen.
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6.7. Impact Strength

An Izod impact test is used to gauge the produced composite’s toughness.
Figure 14 demonstrates that the AMCs’ toughness increases with an increased wt% of
ZrO2 reinforcement.
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Figure 14. Impact strength of fabricated composites AMCs.

In 6% ZrO2, the impact strength of plain LM5 increases to 12 Joules from 7 Joules.
The strong link that forms between the matrix and the reinforcing ZrO2 may be the cause
of the impact energy increases with reinforcement. Additionally, the reinforcing particle
agglomeration feature that creates mesh, a fragile area in the composites, may cause a
drop in impact strength over and above six percent reinforcement [49,50]. Nevertheless,
the impact strength of all the manufactured AMCs is considerably higher than the impact
strength of LM5 aluminum alloy.
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7. Conclusions

The stir casting process produced composite metal matrix materials with uniformly
dispersed ZrO2 particles and increased ZrO2 particle weight, increasing density slightly
while enhancing micro and macro hardness. The impact strength, compression, and tensile
strength of MMCs were significantly improved through increasing the weight of ZrO2
particles by up to 6% in the LM5 matrix and decreasing the reinforcement by 9% due to
agglomeration. The transition of materials from ductile to brittle reduces the composites’
elongation ability, because it has increased mechanical qualities like hardness as well as
tensile, compression, and impact strength.

(i) The optical micrograph and SEM of the AMCs show a uniform distribution of rein-
forcement particles in the matrix. EDAX shows the presence of constituents.

(ii) The LM5/9%ZrO2 AMC has the highest density value of 2.83 g/cm3. The LM5/3%ZrO2
AMC has a porosity of 2.55%.

(iii) The LM5/9% ZrO2 AMC has the highest micro hardness value of 78 VHN and macro
hardness of 72 HRE.

(iv) The LM5/6% ZrO2 AMC has the highest tensile strength of 220 MPa, highest compres-
sive strength of 296 MPa, and hardest toughness of 12 J.

(v) The LM5/6% ZrO2 AMCs may be used for many structural applications due to their
excellent mechanical properties.
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