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Abstract: In this work, the synthesis and structure of an antimony complex with an aromatic, asym-
metric tridentate ligand without an Sb-C bond were studied. Ethoxy(2-salicylidenaminophenolato)
antimony(III) was studied with NMR, UV-Vis, and IR spectroscopy and the molecular structure was
determined by single crystal X-ray diffraction. The antimony atom is formally tetracoordinate in this
molecule. Coordinative unsaturation becomes visible in the solid-state structure where intermolecular
Sb. . .O interactions supplement the coordination sphere of the antimony atom to be hexacoordinated.
Quantum chemical calculations were performed in order to obtain a better understanding of the
bond properties in the antimony complex. These show a spherical distribution of the lone pair at
antimony and polar shared bonds from antimony to the heteroatoms of the tridentate ligand.

Keywords: antimony complexes; Schiff-base ligand; imines; crystal structure

1. Introduction

The chemistry and usages of antimony compounds are versatile, especially because of
the three stable oxidation states +1, +3 and, +5. Additionally, the many different structures
of the compounds and bond types between the antimony and the bonding partners are
important, whereby the properties of the antimony compounds, for example, the stability
of low valent oxidation states, can be adjusted [1].

Because of the different oxidation states of antimony and the possibility to easily
transform them into each other, the complexes are interesting for sensors, like fluorine
sensors [2–5]. Antimony compounds can be used as ligands in transition metal complexes
because of their good σ-donor and π-acceptor properties, analogous to phosphorous com-
pounds. Through oxidation or reduction of the antimony or the attachment of the analyte to
the antimony, the geometry of the transition metal center changes, which has an influence
on its color. For example, Jones et al. [5]. investigated the detection of fluoride ions in
aqueous solutions with palladium complexes.

There are many other successfully investigated ways to possibly apply these complexes
is catalysis [5–10]. The activation of small molecules with transition metal complexes
was investigated by Gericke [11]. He found that the complexation and activation of
nitrogen at antimony ruthenium complexes is possible. Antimony compounds without
transition metals are also catalytically active. The most common usage is the synthesis of
polyethyleneterephthalate with Sb2O3 as the catalyst [12]. Furthermore, the formation of
amides during the reaction of carbonic acids and amines with a Ph3SbO/P4S10 catalyst is
positively influenced [13].

Antimony as the central atom in complexes is also versatile, because it can act as both
a Lewis base and Lewis acid [14,15]. This property is more pronounced compared to the
lighter pnictogens because of the higher planarity compared to arsenic and phosphorus [16].
The coordination environment around the antimony center of compounds with tridentate
chelate ligands tends to be planar because of the higher differences in electronegativity
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between the central atoms and the atoms of the ligands, as well as the higher count of
electrons. The difference in electronegativity affects the influence of the orbitals and
electrostatic interactions. The count of electrons affects the Pauli repulsion. Another,
although smaller, influence is the tension of the ligands due to their deformation. High
tension forces the central atom out of the plane of the ligand system [14]. Through the
higher planarity, the LUMO has a lower energy and therefore both the Lewis acidity and
the trend for the formation of the oxidation state +1 increase [17]. Despite the versatility of
antimony complexes, the usage is low because of their toxicity [1].

To pronounce Lewis acid and Lewis base properties, the ligand system has a signif-
icant influence. Hence, electron-withdrawing ligands increase the Lewis acidity of the
antimony center [15]. As a flexible ligand system, Schiff bases can be used. Metal–Schiff-
base complexes are quite common, e.g., [18–24]. These complexes have many different
biomedical applications [25,26], as well as the use as catalysts (e.g., [10]), as sensors for
copper [27], for use in non-linear optics [28], and for the generation of polynuclear magnetic
complexes [29–31]. Despite these numerous examples of Schiff-base complexes, Schiff-base
complexes of antimony without halide or carbon ligands have rarely been investigated [32].

High Lewis acidity in combination with sterical demanding ligands can lead to coordi-
natively unsaturated compounds, e.g., [33,34]. This unsaturation results in the possibility of
an addition of molecules to saturate these compounds. This property is interesting for the
previously shown applications. The addition of a specific molecule can, for example, lead
to a sensor [2–5]. Since antimony has multiple stable oxidation states and can act as both a
Lewis base and Lewis acid, antimony complexes are also very interesting for investigations
in catalysis [16]. Additionally, coordinative undersaturation can facilitate the addition of a
substrate in the catalytic cycle [35].

Previous investigations mostly dealt with symmetric complexes with Sb-C bonds.
Complexes with asymmetric ligands or without an Sb-C bond are investigated rarely,
despite the results of Arduengo and Stewart of the tricoordinated hypervalent pnictogene
complexes without Pn-C bonds [36,37]. The existing investigations indicate interesting
properties and bond types; however, deep analyses have not yet taken place. To open
new application areas, the goal of this work was the synthesis and characterization of a
new antimony complex with an asymmetric tridentate Schiff-base ligand without an Sb-C
bond. The bonding situation in the synthesized complex was investigated with quantum
chemical calculations.

2. Materials and Methods
2.1. Calculations

For the quantum chemical optimization of the given structures and the calculation
of IR, UV/Vis, and Raman spectra the program ORCA [38] was used. The optimization
of the structures and the calculation of IR and Raman spectra were performed using the
method B97-3c [39]. UV/Vis calculations were conducted using the CPCM model [40] for
the solvent. IBO analysis was performed with the IBOview [41]. The calculation of the wave
function for the AIM analysis was conducted using the hybrid functional PBE0 [42,43] with
the basis set def2-TZVPP [44] first as geometry optimization and then with the NOECP
option to exclude any pseudopotential from the AIM analysis. The calculation of the
UV/Vis spectra was performed using the functional STEOM-DLPNO-CCSD [45] with the
basis set def2-TZVP/C [44] for the free ligand H2L, and for the complex LSb the functional
B3LYP [46–48] with the basis set DEF2-TZVP [44] was used.

2.2. Methods

The source and purification of the used chemicals can be found in the Supplemen-
tary Material.
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NMR spectra were measured with a BRUKER AVANCE III 500 MHz (frequencies: 1H:
500.13 MHz; 13C: 125.76 MHz) spectrometer or BRUKER Nanobay 400 MHz (frequencies:
1H: 400.13 MHz; 13C: 100.61 MHz) spectrometer in DMSO-d6 or CDCl3 with TMS as the
internal standard if not stated otherwise.

UV/Vis spectra were measured with a JASCO V-650 UV/Vis photometer in acetonitrile.
For measurement, a quartz capillary with a diameter of 1 mm was used. As reference,
another quartz capillary filled with acetonitrile from the same charge was used.

IR spectra were measured using a Nicolet 380 (Thermo Fisher, Waltham, MA, USA) at
room temperature. Therefore, the solid material was mortared together with dry KBr to
a tablet.

Raman spectra were measured using the FT-Raman spectrometer BRUKER RFS 100/S
with a Nd-YAG laser with a wavelength of 1064 nm and a nitrogen-cooled Ge detector.

Mass spectra were recorded using an Advision expressionCMS1L using ACPI as the
ionization method and a quadrupole as the detector.

Melting points were measured using variant B of the method described by M. Her-
big [49].

Dryness of the used solvents (ethanol and cyclopentyl methyl ether) was determined
using a Mettler Toledo C20 Coulometric KF Titrator.

Single crystal X-ray diffraction data of LSb were collected on a STOE IPDS-II im-
age plate diffractometer equipped with a low-temperature device with Mo-Kα radiation
(λ = 0.71073 Å) usingω and ϕ scans. Crystal data and details of structure refinement are
summarized in Table 1. Software for data collection was X-AREA, for cell refinement
X-AREA, and for data reduction X-RED [50]. Preliminary structure models were derived by
direct methods [51] and the structures were refined by full-matrix least-squares calculations
based on F2 for all reflections using SHELXL [52]. All hydrogen atoms were included in
the models in calculated positions and were refined as constrained to the bonded atoms.

Table 1. Crystal data and structure refinement parameters.

Parameter Value

Formula C15H14NO3Sb

Mr 378.02

T (K) 153

λ (Å) 0.71073

Crystal system Monoclinic

Space group P21/c

a (Å) 10.8915(6)

b (Å) 16.5156(6)

c (Å) 7.7866(4)

α (◦) 90

β (◦) 104.932(4)

γ (◦) 90

V (Å3) 1353.35(12)

Z 4

ρcalc (g·cm−3) 1.855

µ (mm−1) 2.045

F(000) 744

θmax (◦) 27.647
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Table 1. Cont.

Parameter Value

Reflections collected/unique [Rint] 19,113/3130 [R(int) = 0.0209]

Completeness to θ = 25.242◦ 99.8%

Absorption correction Integration

Max. and min. transmission 0.8002 and 0.5865

Data/restraints/parameters 3130/0/183

GoF on F2 1.234

Final R indices [I > 2sigma(I)] R1 = 0.0231, wR2 = 0.0551

R indices (all data) R1 = 0.0257, wR2 = 0.0571

Extinction coefficient 0.0057(5)

Largest peak and hole (e·Å−3) 0.442 and −0.549

CCDC 2281213 contain the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge Crystallographic Data Center via
www.ccdc.cam.ac.uk/data_request/cif (accessed on 1 June 2023).

2.3. Materials
Ethoxy(2-salicylidenaminophenolato)antimony(III) (LSb)

In a 100 mL flask with a magnetic stirrer, 0.830 g (3.892 mmol) of H2L was solved in
20 mL ethanol at 30 ◦C. In a 20 mL syringe, 10 mL of dry ethanol and 1.022 g (3.978 mmol)
of Sb(OEt)3 were mixed and added to the solution of H2L. Thereby, an orange solid
precipitated. The suspension was stirred overnight and filtered, which gave an orange
solid and an orange solution. The solid was washed three times with 5 mL ethanol
each and dried in vacuum. The crude product was recrystallized from dry cyclopentyl-
methylether, which gave 0.889 g (2.352 mmol, 60.4%) of complex LSb. The obtained
crystals were suitable for X-ray diffraction. The purity was checked with Thin Layer
Chromatography (TLC) with a reversed stationary phase (C18) and acetonitrile as the
eluent and with powder XRD. The results of TLC were compared with intentionally hy-
drolyzed material to show the absence of hydrolyzed compounds in our batch product
(see Figure S7). All results are shown in the Supplementary Material. The IUPAC name of
the compound LSb is 11-ethoxy-10,12-dioxa-2-aza-11-stibatricyclo[11.4.0.04,9]heptadeca-
1(17),2,4,6,8,13,15-heptaene. We use throughout this publication the more descriptive name
Ethoxy(2-salicylidenaminophenolato)antimony(III).

mp. = 180–190 ◦C (decomp., multiple crystals).
1H NMR (500 MHz, DMSO): δ (ppm) = 9.15 (s, 1 H, H-7), 7.72 (dd, 1 H, 3J(H) = 8.20 Hz,

4J(H) = 1.40 Hz, H-5), 7.66 (dd, 1 H, 3J(H) = 7.88 Hz, 4J(H) = 1.78 Hz, H-9), 7.49 (ddd, 1 H,
3J(H) = 8.45 Hz, 3 J(H) = 7.00 Hz, 4J(H) = 1.85 Hz, H-11), 7.17 (ddd, 1 H, 3J(H) = 8.06 Hz,
3J(H) = 7.29 Hz, 4J(H) = 1.46 Hz, H-3), 6.80 (ddd, 1 H, 3J(H) = 7.75 Hz, 3J(H) = 7.05 Hz,
4J(H) = 1.05 Hz, H-10), 6.79 (d, 1 H, 3J(H) = 8.45 Hz, H-12), 3.57 (q, 2 H, 3J(H) = 6.99 Hz,
H-14), 0.81 (t, 3 H, 3J(H) = 6.93 Hz, H-15).

13C NMR (125 MHz, DMSO): δ (ppm) = 166.6 (C-7), 160.0 (C-13), 159.9 (C-1), 136.7
(C-11), 135.9 (C-9), 132.1 (C-8), 129.2 (C-3), 121.1 (C-12), 117.9 (C-6), 117.5 (C-2), 116.8 (C-5),
116.7 (C-10), 116.3 (C-4), 58.1 (C-14), 19.4 (C-15).

IR (KBr): ν (cm−1) = 511 (m), 590 (m), 608 (m), 740 (s), 762 (s), 836 (m), 1048 (m), 1125 (m),
1150 (m), 1263 (s), 1296 (s), 1382 (s), 1436 (s), 1468 (s), 1538 (s), 1584 (s), 1604 (s), 2972 (w).

UV/Vis: λ (nm) = 198 (ε = 42,030 cm2 mmol−1), 307 (ε = 7862 cm2 mmol−1), 441
(ε = 7916 cm2 mmol−1).

www.ccdc.cam.ac.uk/data_request/cif
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3. Results and Discussion

The investigated complex consists of a Schiff-base ligand derived from salicylaldehyde
and o-aminophenol. This ligand (H2L) was reacted with triethoxyantimony (Sb(OEt)3) [53]
to form the complex (LSb) under the release of two equivalents of ethanol (see Scheme 1).
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Figure 1. The 1H NMR spectra of the free ligand H2L (red) and the complex LSb (blue).
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The 1H NMR spectrum of LSb shows no signal for an OH moiety (at 9.73 and
13.79 ppm) and therefore suggests the formation of a complex. Furthermore, the sig-
nal for the CH moiety splits from one signal in the free ligand (at 8.97 ppm) to three signals
in the synthesized complex (at 9.15, 8.73, and 8.66 ppm). The signals at 0.81 and 3.57 ppm
indicate the presence of an ethoxy group. Integration of the 1H NMR spectra shows that
the ethoxy moiety fits to the larger signal for the CH group at 9.15 ppm. Therefore, more
than one species is present in solution.

The 13C NMR spectrum, shown in Figure 2, exhibits similar behavior. It shows
13 large signals and 26 smaller ones in the aromatic region between 115 and 170 ppm. For
better visualization, only the range between 115 and 138 ppm is shown in Figure 3. 

2 

 

 
   Figure 2. The 13C NMR spectra of the free ligand H2L (red) and the complex LSb (blue) in the range

of 115 and 138 ppm.

Thereby, two small signals are located near one large signal, similar to the signals for
the CH group in the 1H NMR spectrum. The 13C NMR spectrum also shows signals for an
ethoxy moiety at 18 and 56 ppm.

The 1D 1H and 13C NMR spectra thus indicate the formation of three similar complexes
in solution. The possibility of the formation of a dimer was investigated by measuring the
2D COSY and NOESY spectra of the product. The COSY spectrum shows coupling hydro-
gen atoms and was also used for the assignment of the signals to the corresponding atoms.
The NOESY spectrum shows spatially close hydrogen atoms (green) and interchanging
hydrogen atoms (blue). To exclude close atoms in the same molecule, the COSY (blue and
green) and NOESY (red) spectra were stacked. The resulting spectrum, shown in Figure 3,
does not show any other close hydrogen atoms that are not in the same molecule. These
results do not exclude any formation of dimers but any dimer with intermolecular close
hydrogen atoms. Other dimers or oligomers could be, for example, oxo-bridged dimers
with an Sb-O-Sb moiety. The formation of adducts with the solvent, in this case DMSO-d6,
is unlikely because no signals for the coordinating DMSO-d6 molecules showed up in the
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1D NMR spectra and no coupling of the DMSO-d6 signal with the complexes could be seen
in the 2D NMR spectra.
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Figure 3. Excerpt of the COSY and NOESY spectra of the complex LSb. The positive signals of the
NOESY spectra are blue, the negative green. The signals of the COSY spectra are red.

In light of the NMR data, we conclude with caution that the formation of dimers or
oligomers might occur in solution.

Because of the strong coloring of the product, it offered the investigation with UV/Vis
spectroscopy. For comparison, the spectra of the free ligand H2L and the complex LSb
were measured in dry acetonitrile. Furthermore, the spectra were calculated with quantum
chemical methods. The spectra can be found in Figure 4.
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1 

 

 

 

 
   Figure 4. UV/Vis spectra of the ligand H2L (top) and the complex LSb (bottom). Red lines show the

measured spectra, blue lines the calculated ones. The calculated spectra were scaled to fit the first
maxima of the measured spectra. The values at the y axis apply to the experimental data. Absorbance
maxima for the complex λ (nm) = 198 (ε = 42,030 cm2 mmol−1), 307 (ε = 7862 cm2 mmol−1), and 441
(ε = 7916 cm2 mmol−1); for the ligand λ (nm) = 198 (ε = 24,843 cm2 mmol−1), 267 (ε = 10,077 cm2

mmol−1), and 347 (ε = 10,556 cm2 mmol−1).

First, a good correlation between the calculated and measured spectra can be found.
The differences can be traced back to the optimization method, which optimizes the molecu-
lar structure in the gas phase. Furthermore, the absorption maxima of the complex LSb are
at higher wavelengths and have higher absorption coefficients compared to the free ligand
H2L. This indicates the formation of a complex, where the antimony center is involved
in the delocalized system. The recorded spectrum of the complex LSb shows three large
maxima at 198, 307, and 441 nm and one shoulder at about 240 nm. These signals indicate
the presence of a large delocalized π-electron system.

For further investigation of the substitution pattern of the aromatic systems and other
functional groups, IR spectra of the free ligand H2L and the complex LSb were recorded
and calculated using quantum chemical methods (see Figure 5).

The calculated and measured spectra are in good consistency with each other. In both
measured spectra the bands for aromatic CH vibrations at above 3000 cm−1 can be observed.
Furthermore, at the complex more aliphatic CH vibrations are evident for the complex than
for the free ligand, indicating the presence of an additional aliphatic component. The bands
at about 600 cm−1 indicate the Sb-O bonds, because they cannot be seen in the free ligand
and are in a similar range as Sb-O bonds known in literature [53]. The bands just below
800 cm−1, which can be seen in both spectra, indicate the presence of 1,2-disubstituated
benzene derivatives. The signal at about 1580 cm−1 shows the presence of a C=N group,
which is connected to an aromatic system.
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Figure 5. IR spectra of the ligand H2L (top) and the complex LSb (bottom). Red lines show the
measured spectra, blue lines the calculated ones. Wavelength of the calculated spectra are scaled
according to Katsyuba et al. [54]. The values at the y axis apply to the experimental data.

The Raman spectra of the free ligand and the complex, shown in Figure S4 in the
Supplementary Material, show the same results as the IR spectra, and thus are not dis-
cussed further.

The batch product was analyzed by powder XRD to investigate the phase purity
since the NMR shows some signals that cannot be assigned to the main product. For
comparison, a diffraction pattern generated from the single crystal structure analysis
(see Section 3.2) was used. Despite differences caused by the different measurement
temperatures, the batch product shows good agreement with the generated diffractogram.
Additional reflexes can be generated by oxo-bridge dimers and oligomers, discussed earlier.
When the compound is exposed to humid air for several hours, hydrolysis occurs and the
powder XRD pattern changes significantly. The diffractograms can be seen in Figure S8 in
the Supplementary Material.

3.2. Crystal Structure

The ORTEP view with an atom numbering scheme of the compound LSb is shown
in Figure 6 and selected bond lengths and angles are listed in Table 2. Compound LSb
crystallizes in the monoclinic space group P21/c. The asymmetric unit contains one
molecule of LSb. The chelate ligand is coordinated via the atoms O1, O2, and N1 to the
antimony atom. The 2-salicylidenaminophenolato ligand has two phenyl rings that are
connected by an aldimine group. This represents a system of conjugated double bonds
from which planarity can be expected. However, the coordination of the antimony atom
leads to a substantial torsion of the ligand anion. The torsion angle between the planes of
the phenyl groups C2–C7 and C8–C13 is 31.2(1)◦. The unit O1-N1-O2-Sb1 is planar and
forms torsion angles of 25.9(1)◦ with the plane of the phenyl ring C2-C7 and of 21.5(1)◦

with the plane of the phenyl ring C8-C18.
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There are a large number of comparable structures in the Cambridge Structural
Database which contain the 2-salicylidenaminophenolato ligand or a derivative thereof and
a tetracoordinate central atom [55,56]. It is worth considering the torsion angles between
the planes of the phenyl groups in these complexes. There are 92 transition metal complexes
with Ni, Cu, Pd, and Pt as divalent central ions. In these complexes, the mean value for the
angle between planes of phenyl groups is 6.9◦ (minimum angle of 0.5◦, maximum angle
of 27.5◦). Furthermore, there are 25 boron complexes with a minimum angle of 9.2◦, a
maximum angle of 31.2◦, and a mean value of 20.7◦. There exists one tin(II)-complex which
occurs to be a dimer in the solid-state structure (angle between planes of phenyl groups is
here 42.9◦) [57]. This variability in the angles shows the flexibility of the ligand system.

In addition to the tridentate ligand, there is also an ethoxy group bound to the anti-
mony atom. This leads formally to a tetracoordinate antimony atom. The bond angles at
antimony vary between 74.20(7)◦ (O2-Sb1-N1) and 91.48(7)◦ (O3-Sb1-O2) for neighboring
ligand atoms (Table 2). Only the bond angle O1-Sb1-O2 is larger, at 154.27(7)◦. Such bond
angles are unusual for a tetracoordinate complex and indicate coordinative unsaturation.
There are indeed intermolecular interactions from neighboring molecules to the antimony
atom (Figure 7). The symmetry equivalent molecules are generated by glide planes. The
interactions Sb1. . .O1A and Sb1. . .O2B make the antimony atoms hexacoordinate. This
explains the bond angles at antimony near 90◦. These intermolecular interactions lead to
ladder-type chains parallel to the crystallographic ac plane. These intermolecular interac-
tions show the unsaturated character of this complex. In the solid state, the antimony center
is saturated by the neighboring complexes, which cannot be assumed in the solution state.

At this point, it is worth looking at the atomic distances between antimony and the
neighboring atoms. Intramolecular Sb-O distances range from 1.9716(18) Å for Sb1-O3 to
2.1496(18) Å for Sb1-O2. This corresponds well with the sum of atomic radii of antimony
and oxygen of 2.07 Å [58]. The same holds for the distance of Sb1-N1 at 2.194(2) Å, which
corresponds quite well with the sum of covalent radii (2.11 Å) [55]. The imine bond length
N1-C1 [1.299(3) Å] in LSb is well comparable to the bond lengths in other complexes with
the same ligand type [22,59–62]. The intermolecular Sb. . .O distances are at 2.9344(18) Å
(Sb1-O2B) and 2.9834(18) Å (Sb1-O1A). These are below the sum of the Van der Waals radii
of 3.58 Å [63].
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Table 2. Atomic distances [Å] and angles [◦] for LSb.

Parameter Value

Sb1-O1 2.1402(17)

Sb1-O2 2.1496(18)

Sb1-O3 1.9716(18)

Sb1-N1 2.194(2)

N1-C1 1.299(3)

N1-C8 1.421(3)

Sb1...O1A i 2.9834(18)

Sb1...O2B ii 2.9344(18)

O2-Sb1-N1 74.20(7)

O1-Sb1-N1 80.56(7)

O3-Sb1-N1 84.04(7)

O3-Sb1-O1 90.84(7)

O3-Sb1-O2 91.48(7)

O1-Sb1-O2 154.27(7)

O1-Sb1...O1A i 137.46(8)

O1-Sb1...O2B ii 69.09(6)

O2-Sb1...O1A i 67.96(6)

O2-Sb1...O2B ii 99.39(6)

N1-Sb1. . .O2B ii 75.86(6)

O3-Sb1. . .O1A i 78.85(6)

O3-Sb1. . .O2B ii 153.44(7)

N1-Sb1. . .O1A i 137.71(6)

O1A i. . .Sb1. . .O2B ii 127.68(5)

Symmetry codes: i x, 0.5 − y, −0.5 + z; ii x, 0.5 − y, 0.5 + z.

A closer inspection of the coordination polyhedron of the antimony atom including
the contacts to the oxygen atoms O1A and O2B shows that a strongly distorted octahedral
coordination around antimony is present in the solid-state structure (Figure 8). This can be
seen, for instance, at the trans angles O1-Sb1-O2, N1-Sb1. . .O1A, and O3-Sb. . .O2B with
values between 137.71(6) and 154.27(7)◦, which are far away from 180◦. A quantitative
description of the distortion is possible using the parameters ζ, Σ, and Θ as defined by
Ketkaew et al. [64]. These parameters give values very close to or equal to zero for a perfect
octahedron, while in the present study the values are ζ = 2.25, Σ = 196.3, and Θ = 725.8.

There is one directly comparable antimony complex in the literature [19]. Therein, the
2-(salicylidenamino)phenolato ligand is bound to an SbMe3 unit. This is an antimony(V)-
complex with a hexacoordinate central atom. The Sb-O distances were found to be 2.06
and 2.07 Å, which are somewhat shorter than in LSb. The distance Sb-N was found to be
2.34 Å, which is substantially longer than in LSb.

Potential donor atoms of LSb like oxygen and nitrogen are all engaged in coordination
to the central antimony atom. Therefore, only one hydrogen bond is present in the solid-
state structure. This is the intermolecular hydrogen bond of C14-H14B...O1i (i x, 0.5 − y,
−0.5 + z) with a distance of 2.50 Å between H14B and O1. The distance of C14. . .O1i is
3.262(3) Å and the angle of C14-H14B. . .O1i is 133.5◦.
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3.3. Intrinsic Bond Orbital (IBO) Analysis

For further understanding of the bond situation in the complex, the IBOs [41] were
calculated. The analysis shows a pronounced s-character of the lone pair of the antimony
center (Figure 9a). Furthermore, the binding orbitals of the bonds between the heteroatoms
of the ligands and the antimony center could be shown (Figure 9b). Both the Sb-N and
Sb-O bonds show a covalent character, as expected from the molecular structure. It is
interesting to note that they are not fully located between the two bonding partners but are
slightly delocalized towards the neighbored carbon atoms. A similar behavior is shown
by a pair of free electrons at each of the oxygen atoms of the tridentate ligand, as shown
in Figure 9d. They are not fully located at the oxygen atoms, but delocalized between the
antimony center, the oxygen atom, and the neighboring carbon atom. The electron pairs of
the oxygen atom of the ethoxy moiety do not show such behavior. These results indicate
a delocalization of electron density over the antimony center, which would explain the
findings of the UV/Vis analyses. The electron system between the two phenyl rings in the
ligand backbone is broken, which is also confirmed by this analysis (see Figures S5 and S6
in the Supplementary Material). Lastly, the lowest unoccupied intrinsic binding orbital is
shown in Figure 9c in the bottom left. It is mainly localized at the antimony center, which
speaks for the possibility of a nucleophilic attack on the antimony atom.
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3.4. Atoms in Molecules (AIM) Analysis

For the AIM analysis, the electron density map and the Laplacian of the electron
density in the ONO plane are calculated and shown in Figure 10.
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Figure 10. Electron density map (a) and Laplacian of the electron density (b) of the complex LSb in
the O1-N-O2 plane. Bond critical points are shown in blue, ring critical points in orange. Full lines
indicate positive values, dashed lines indicate negative values. The values of the contour lines for
the electron density map (in e a0

−3) and for the Laplacian of the electron density map (in Eh e−1) are
0.001, 0.002, 0.004, 0.008, 0.02, 0.04, 0.08, 0.2, 0.4, 0.8, 2, 4, 8, 20, 40, 80, 200, 400, and 800.

It is recognizable that the electron density around the antimony center is nearly spher-
ical, indicating the s-character of the free electron pair. In the direction of the heteroatoms
of the tridentate ligand, a depletion of electron density can be seen. This indicates polar
shared bonds. This bond type is confirmed by the values of the bond critical points for the
electron density ρ(r), the Lagrangian kinetic energy G(r), the Laplacian of electron density
L(r), and the energy density H(r). These are shown in Table 3.

Table 3. Parameters for the electron density ρ(r), the Lagrangian kinetic energy G(r), the Laplacian
of electron density L(r), and the energy density H(r) for the determination of the bond types of LSb
according to the criteria defined by Macchi et al. [65].

Bond H(r) [Eh a0−3] G(r)/ρ(r) [Eh e−1] L(r) [e a0−5] ρ(r) [e a0−3] Bond Type

Sb-O1 −0.017 1.400 −0.655 0.129 Polar shared bond

Sb-O2 −0.032 1.252 −0.647 0.155 Polar shared bond

Sb-O3 −0.064 1.334 −0.883 0.213 Polar shared bond

Sb-N −0.014 1.159 −0.505 0.121 Polar shared bond

Eh = Hartree energy, a0 = Bohr radius, e = elementary charge.

4. Conclusions

In this work, a new antimony complex with an asymmetric tridentate Schiff-base
ligand was synthesized. The molecular structure in solution and as a solid was charac-
terized using various analytical methods. NMR measurements indicate the presence of
three similar species in solution, which are probably oxo-bridged dimers and oligomers.
The batch product is pure LSb, as it was demonstrated with TLC. The IR, Raman, and
UV/Vis measurements show the presence of the π-electron system of the ligand and the
disubstituted nature of the both phenyl rings. All spectra are in good consistency with the
calculated spectra. Additionally, they show the presence of a C=N-group. The single crystal
structure analysis reveals the molecular structure of LSb. In the solid state, the antimony
atom is coordinatively saturated by the oxygen atoms of the neighboring complexes, similar
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to what was described in [53]. The molecular structure shows the elongation of the Sb-O
bonds between the antimony center and the oxygen atoms of the tridentate ligand. The
Sb-N bond is only slightly larger than the sum of covalent radii and a lot shorter than Van
der Waals radii, indicating a covalent bond. This observation was confirmed by quantum
chemical calculations. The calculation of the IBOs show the covalent character of the Sb-N
and Sb-O bonds, whereas the AIM analysis confirms the polar covalent character through
the properties of the bond critical points. Furthermore, the s-character of the lone pair
of the antimony center was demonstrated by the IBO analysis. These analyses also show
that in each case one lone pair of the oxygen atoms of the tridentate ligand is slightly
delocalized over the antimony center, the oxygen atom, and the neighbored carbon atom,
which indicates a large, delocalized electron system. In the solid state, the antimony center
is hexacoordinated through intermolecular contacts. In solution, this behavior cannot be
assumed, and therefore the complex should have an unsaturated character.

In further work, we will try to crystallize oxo-bridged dimers of LSb and investigate
the reactivity of LSb and similar compounds in the view of their unsaturated character,
which makes them interesting, e.g., for applications in catalysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst13091300/s1, Table S1: Used chemicals under specification
of the manufacturer, purity, and type of purification. Figure S1: The 1H (top) and 13C (bottom)
NMR spectra of the compound Sb(OEt)3. Figure S2: The 1H (top) and 13C (bottom) NMR spectra of
the compound H2L. Figure S3: The 1H (top) and 13C (bottom) NMR spectra of the compound LSb.
Figure S4: Raman spectra of the ligand H2L (top) and the complex LSb (bottom). Red lines show the
measured spectra, blue lines the calculated ones. Wavelengths of the calculated spectra are scaled
according to Katsyuba et al. [51]. The values at the y axis apply to the experimental data. Figure S5:
Intrinsic bond orbitals of the aromatic orbitals of the compound LSb. Figure S6: Intrinsic bond orbital
of the C=N π-bond of the compound LSb. Figure S7: TLC plates. Left with the complex LSb and
right with the complex after hydrolysis in acetonitrile (with drops of water). The complex is pure,
as can be seen on the left TLC plate. No migration of the hydrolysis product occurs, as can be seen
on the right TLC plate. Figure S8: XRD analysis of the pure complex LSb from storing under Ar
atmosphere, the diffractogram generated from single crystal structure, and the powder of LSb after
one night in humid air. Differences between the pure LSb and the calculated diffractogram originate
from temperature differences. Section S7: Synthesis of Sb(OEt)3 and H2L.
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