Perovskite Quantum Dot/Zinc Oxide Composite Films for Enhanced Luminance
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Synthesis of Perovskite
2.2.1. Synthesis of Cs-Oleate Solution
2.2.2. Synthesis of Pristine and Passivated CsPbBr3 QDs
2.3. Method for Fabricating Films Using the Dispersion
3. Results and Discussion
3.1. Preparation of the CsPbBr3-ZnO Mixture Solutions
3.2. Photophysical Properties of the CsPbBr3-ZnO Mixture Films
3.3. Morphology of the CsPbBr3-ZnO Mixture Films
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H. Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, X.; Song, J.; Xiao, L.; Zeng, H.; Sun, H. All-Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics. Adv. Mater. 2015, 27, 7101–7108. [Google Scholar] [CrossRef]
- Hu, F.; Zhang, H.; Sun, C.; Yin, C.; Lv, B.; Zhang, C.; Yu, W.W.; Wang, X.; Zhang, Y.; Xiao, M. Superior Optical Properties of Perovskite Nanocrystals as Single Photon Emitters. ACS Nano 2015, 9, 12410–12416. [Google Scholar] [CrossRef] [PubMed]
- Kulbak, M.; Cahen, D.; Hodes, G. How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells. J. Phys. Chem. Lett. 2015, 6, 2452–2456. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Cho, H.; Heo, J.H.; Kim, T.S.; Myoung, N.S.; Lee, C.L.; Im, S.H.; Lee, T.W. Multicolored Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes. Adv. Mater. 2015, 27, 1248–1254. [Google Scholar] [CrossRef]
- Lin, C.C.; Yeh, S.Y.; Huang, W.L.; Xu, Y.X.; Huang, Y.S.; Yeh, T.H.; Tien, C.H.; Chen, L.C.; Tseng, Z.L. Using Thermally Crosslinkable Hole Transporting Layer to Improve Interface Characteristics for Perovskite CsPbBr3 Quantum-Dot Light-Emitting Diodes. Polymers 2020, 12, 2243. [Google Scholar] [CrossRef]
- Du, X.; Wu, G.; Cheng, J.; Dang, H.; Ma, K.; Zhang, Y.W.; Tan, P.F.; Chen, S. High-Quality CsPbBr3 Perovskite Nanocrystals for Quantum Dot Light-Emitting Diodes. RSC Adv. 2017, 7, 10391–10396. [Google Scholar] [CrossRef]
- Hua, J.; Deng, X.; Niu, C.; Huang, F.; Peng, Y.; Li, W.; Ku, Z.; Cheng, Y. bing A Pressure-Assisted Annealing Method for High Quality CsPbBr3 Film Deposited by Sequential Thermal Evaporation. RSC Adv. 2020, 10, 8905–8909. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, F.; Zhang, B.B.; Zha, G.; Jie, W. Ferroelastic Domains in a CsPbBr3 Single Crystal and Their Phase Transition Characteristics: An in Situ TEM Study. Cryst. Growth Des. 2020, 20, 4585–4592. [Google Scholar] [CrossRef]
- Wang, H.C.; Bao, Z.; Tsai, H.Y.; Tang, A.C.; Liu, R.S. Perovskite Quantum Dots and Their Application in Light-Emitting Diodes. Small 2018, 14, 1702433. [Google Scholar] [CrossRef]
- Xing, G.; Mathews, N.; Lim, S.S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C. Low-Temperature Solution-Processed Wavelength-Tunable Perovskites for Lasing. Nat. Mater. 2014, 13, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, L.; Wang, T.; Song, J.; Chen, J.; Xue, J.; Dong, Y.; Cai, B.; Shan, Q.; Han, B.; et al. 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control. Adv. Mater. 2017, 29, 1603885. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Guo, J.; Mao, Y.; Shan, C.; Tian, F.; Meng, B.; Wang, Z.; Zhang, T.; Kyaw, A.K.K.; Chen, S.; et al. Enhancing the Performance of Perovskite Light-Emitting Diodes via Synergistic Effect of Defect Passivation and Dielectric Screening. Nanomicro Lett. 2024, 16, 205. [Google Scholar] [CrossRef]
- Park, C.Y.; Choi, B. Enhanced Light Extraction from Bottom Emission OLEDs by High Refractive Index Nanoparticle Scattering Layer. Nanomaterials 2019, 9, 1241. [Google Scholar] [CrossRef]
- Kim, S.; Kang, S.; Baek, S.; Song, J.; Mun, N.E.; Kwon, H.; Kwon, H.G.; Pu, Y.J.; Lee, T.W.; Yoo, S.; et al. Highly Thin Film with Aerosol-Deposited Perovskite Quantum Dot/Metal Oxide Composite for Perfect Color Conversion and Luminance Enhancement. Chem. Eng. J. 2022, 441, 135991. [Google Scholar] [CrossRef]
- Das, A.; Basak, D. Efficacy of Ion Implantation in Zinc Oxide for Optoelectronic Applications: A Review. ACS Appl. Electron. Mater. 2021, 3, 3693–3714. [Google Scholar] [CrossRef]
- Ramelan, A.H.; Wahyuningsih, S.; Munawaroh, H.; Narayan, R. ZnO Wide Bandgap Semiconductors Preparation for Optoelectronic Devices. IOP Conf. Ser. Mater. Sci. Eng. 2017, 176, 012008. [Google Scholar] [CrossRef]
- Djuriić, A.B.; Ng, A.M.C.; Chen, X.Y. ZnO Nanostructures for Optoelectronics: Material Properties and Device Applications. Prog. Quantum Electron. 2010, 34, 191–259. [Google Scholar] [CrossRef]
- Pradel, K.C.; Ding, Y.; Wu, W.; Bando, Y.; Fukata, N.; Wang, Z.L. Optoelectronic Properties of Solution Grown ZnO N-p or p-n Core-Shell Nanowire Arrays. ACS Appl. Mater. Interfaces 2016, 8, 4287–4291. [Google Scholar] [CrossRef]
- Bhat, T.S.; Bhogale, S.B.; Patil, S.S.; Pisal, S.H.; Phaltane, S.A.; Patil, P.S. Synthesis and Characterization of Hexagonal Zinc Oxide Nanorods for Eosin-y Dye Sensitized Solar Cell. Mater. Today Proc. 2021, 43, 2800–2804. [Google Scholar] [CrossRef]
- Chavan, R.D.; Wolska-Pietkiewicz, M.; Prochowicz, D.; Jędrzejewska, M.; Tavakoli, M.M.; Yadav, P.; Hong, C.K.; Lewiński, J. Organic Ligand-Free ZnO Quantum Dots for Efficient and Stable Perovskite Solar Cells. Adv. Funct. Mater. 2022, 32, 2205909. [Google Scholar] [CrossRef]
- Jha, J.K.; Santos-Ortiz, R.; Du, J.; Shepherd, N.D. Semiconductor to Metal Transition in Degenerate ZnO: Al Films and the Impact on Its Carrier Scattering Mechanisms and Bandgap for OLED Applications. J. Mater. Sci. Mater. Electron. 2014, 25, 1492–1498. [Google Scholar] [CrossRef]
- Ding, M.; Guo, Z.; Zhou, L.; Fang, X.; Zhang, L.; Zeng, L.; Xie, L.; Zhao, H. One-Dimensional Zinc Oxide Nanomaterials for Application in High-Performance Advanced Optoelectronic Devices. Crystals 2018, 8, 223. [Google Scholar] [CrossRef]
- Wibowo, A.; Marsudi, M.A.; Amal, M.I.; Ananda, M.B.; Stephanie, R.; Ardy, H.; Diguna, L.J. ZnO Nanostructured Materials for Emerging Solar Cell Applications. RSC Adv. 2020, 10, 42838–42859. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Li, Z. Synthesis of ZnxCd1-xSe@ZnO Hollow Spheres in Different Sizes for Quantum Dots Sensitized Solar Cells Application. Nanomaterials 2019, 9, 132. [Google Scholar] [CrossRef]
- Luo, L.; Lv, G.; Li, B.; Hu, X.; Jin, L.; Wang, J.; Tang, Y. Formation of Aligned ZnO Nanotube Arrays by Chemical Etching and Coupling with CdSe for Photovoltaic Application. Thin Solid. Film. Film. 2010, 518, 5146–5152. [Google Scholar] [CrossRef]
- Rama Krishna, C.; Kang, M. Improving the Photovoltaic Conversion Efficiency of ZnO Based Dye Sensitized Solar Cells by Indium Doping. J. Alloys Compd. 2017, 692, 67–76. [Google Scholar] [CrossRef]
- Nenna, G.; De Girolamo Del Mauro, A.; Massera, E.; Bruno, A.; Fasolino, T.; Minarini, C. Optical Properties of Polystyrene-ZnO Nanocomposite Scattering Layer to Improve Light Extraction in Organic Light-Emitting Diode. J. Nanomater. 2012, 2012, 319398. [Google Scholar] [CrossRef]
- Kwon, H.; Park, S.; Kang, S.; Park, S.; Pu, Y.J.; Park, J. Three-Color White Electroluminescence Emission Using Perovskite Quantum Dots and Organic Emitters. Appl. Surf. Sci. 2022, 588, 152875. [Google Scholar] [CrossRef]
- Lee, G.; Lee, S.Y.; Park, S.; Jang, S.H.; Park, H.K.; Choi, I.; Park, J.; Choi, J. Highly Effective Surface Defect Passivation of Perovskite Quantum Dots for Excellent Optoelectronic Properties. J. Mater. Res. Technol. 2022, 18, 4145–4155. [Google Scholar] [CrossRef]
- Wolska-Pietkiewicz, M.; Jędrzejewska, M.; Tokarska, K.; Wielgórska, J.; Chudy, M.; Grzonka, J.; Lewiński, J. Towards Bio-Safe and Easily Redispersible Bare ZnO Quantum Dots Engineered via Organometallic Wet-Chemical Processing. Chem. Eng. J. 2023, 455, 140497. [Google Scholar] [CrossRef]
- Xing, J.; Yan, F.; Zhao, Y.; Chen, S.; Yu, H.; Zhang, Q.; Zeng, R.; Demir, H.V.; Sun, X.; Huan, A.; et al. High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphours Nanoparticles. ACS Nano 2016, 10, 6623–6630. [Google Scholar] [CrossRef] [PubMed]
CsPbBr3 and the Mixture | Sonication | Shaking | ||
---|---|---|---|---|
λabs (nm) | Absorption Intensity | λabs (nm) | Absorption Intensity | |
CsPbBr3 | 503 | 0.029 | 503 | 0.029 |
CsPbBr3-ZnO ratio (1:0.008) | 507 | 0.020 | 505 | 0.026 |
CsPbBr3-ZnO ratio (1:0.015) | 507 | 0.022 | 504 | 0.024 |
CsPbBr3-ZnO ratio (1:0.03) | 507 | 0.025 | 504 | 0.022 |
CsPbBr3-ZnO ratio (1:0.05) | 507 | 0.023 | 504 | 0.017 |
CsPbBr3 and the Mixture | Sonication | Shaking | ||
---|---|---|---|---|
λPL (nm) | PL Intensity | λPL (nm) | PL Intensity | |
CsPbBr3 | 515 | 598 | 515 | 598 |
CsPbBr3-ZnO ratio (1:0.008) | 515 | 504 | 514 | 648 |
CsPbBr3-ZnO ratio (1:0.015) | 516 | 468 | 517 | 720 |
CsPbBr3-ZnO ratio (1:0.03) | 514 | 458 | 515 | 632 |
CsPbBr3-ZnO ratio (1:0.05) | 515 | 268 | 515 | 576 |
CsPbBr3 and the Mixtures | Delayed Exciton Lifetime a (ns) |
---|---|
CsPbBr3 | 74.8 |
CsPbBr3-ZnO (1:0.008) | 74.5 |
CsPbBr3-ZnO (1:0.015) | 81.0 |
CsPbBr3-ZnO (1:0.03) | 74.3 |
CsPbBr3-ZnO (1:0.05) | 69.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khairnar, N.; Kwon, H.; Park, S.; Park, S.; Lee, H.; Park, J. Perovskite Quantum Dot/Zinc Oxide Composite Films for Enhanced Luminance. Crystals 2024, 14, 937. https://doi.org/10.3390/cryst14110937
Khairnar N, Kwon H, Park S, Park S, Lee H, Park J. Perovskite Quantum Dot/Zinc Oxide Composite Films for Enhanced Luminance. Crystals. 2024; 14(11):937. https://doi.org/10.3390/cryst14110937
Chicago/Turabian StyleKhairnar, Nikita, Hyukmin Kwon, Sunwoo Park, Sangwook Park, Hayoon Lee, and Jongwook Park. 2024. "Perovskite Quantum Dot/Zinc Oxide Composite Films for Enhanced Luminance" Crystals 14, no. 11: 937. https://doi.org/10.3390/cryst14110937
APA StyleKhairnar, N., Kwon, H., Park, S., Park, S., Lee, H., & Park, J. (2024). Perovskite Quantum Dot/Zinc Oxide Composite Films for Enhanced Luminance. Crystals, 14(11), 937. https://doi.org/10.3390/cryst14110937