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Abstract: The surface of molybdenum disulfide (MoS2) underwent oxygen plasma treatment to
enhance its machinability and mitigate the tearing effects commonly associated with mechanical
forces on 2D materials. This treatment led to the oxidation of the atoms on the top 1–3 layers of MoS2,
resulting in the formation of MoO3 on the surface. During mechanical scanning probe lithography
(m-SPL), only the surface oxide layer was uniformly removed, with material accumulation occurring
predominantly on one side of the machined area. The resolution of the machining process was
significantly enhanced via dynamic lithography while maintaining atomic-level smoothness in the
machined area. Importantly, these techniques only removed the surface oxide layer, preserving the
integrity of the underlying MoS2 surface, which was pivotal in avoiding damage to the original mate-
rial structure. This study provided valuable insights and practical guidance for the nanofabrication
of transition metal dichalcogenides (TMDCs) nanodevices, demonstrating a method to finely tune
the machining of these materials.

Keywords: atomic force microscopy; machinability; TMDCs; scanning probe lithography; oxygen
plasma

1. Introduction

In recent years, 2D transition metal dichalcogenides (TMDCs) have gained significant
attention for their use in nanoelectronics, optoelectronics, biosensing and other applications,
due to their excellent optical, electrical, and mechanical properties [1–4]. However, a
challenge in device fabrication involving these 2D materials is the difficulty in removing
photoresists or electron beam lithography resists. These residues impaired the performance
of the fabricated devices [5–7]. To address this, post-lithography methods like thermal
annealing, solvent rinsing or plasma cleaning were employed to remove resist residues,
enhance surface passivation, and improve metal–semiconductor contacts [8–10]. It remains
challenging to develop techniques that effectively prevent the accumulation of surface
residues on 2D material surfaces.

Within this context, scanning probe nanolithography (SPL) has emerged as a potent
and resist-free lithographic technique, providing precise nanoscale accuracy and direct
patterning capabilities on TMDCs [11–15]. Notably, mechanical scanning probe lithography
(m-SPL), the fundamental method of SPL, involved directly applying force to remove
material from a surface. A few defects were formed on molybdenum disulfide (MoS2)
surfaces under nano-scratching, especially around the edges of the nanogrooves [16].
Consequently, two distinctive types of cracks were observed on the MoS2 surfaces [17]:
semi-circular cracks at the fracture front and periodical zigzag cracks in the middle. The
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anisotropic nature of these cracks during their formation and propagation contributed to a
reduction in the quality of the nanofabrication process, posing challenges for the integrity
and performance of the resultant nanodevices. On the basis of ensuring nanofabrication
resolution, it is particularly important to further enhance the machinability of mechanical
scanning probe lithography.

The objective of this letter is to explore the machinability of MoS2 after oxygen plasma
treatment when subjected to mechanical scanning probe lithography. After the application
of an oxygen plasma treatment, a uniform oxide layer is formed on MoS2 flake. We will
employ atomic force microscopy (AFM) for nano-scratching and dynamic lithography on
these oxide-coated flakes. Our aim is to elucidate the characteristics of material removal,
thereby contributing valuable insights to nanofabrication techniques for TMDC surfaces.
This understanding is crucial for developing nanomachining processes tailored to these
materials for the advancement of nanoscale devices.

2. Materials and Methods
2.1. Oxygen Plasma Treatment

In this study, few-layer flakes of MoS2 (SPI supplies, West Chester, PA, USA) were
produced, which were mechanically exfoliated using adhesive tape and subsequently
transferred onto SiO2/Si substrates, as depicted in Figure 1a. For this transfer, commercially
available viscoelastic polydimethylsiloxane (PDMS) films (Gelfilm, Gel-Pak, Hayward, CA,
USA) were employed. After the preparation of few-layer MoS2 flakes, the flakes were
treated by oxygen plasma under a low-pressure plasma system (Tetra, Diener electronic
GmbH, Ebhausen, Germany), with an applied power of 200 W for a duration of 1 min, as
shown in Figure 1b.
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Figure 1. (a) Mechanical exfoliation of MoS2 flakes from bulk crystal. (b) MoS2 flakes treated by
oxygen plasma. (c) Mechanical scanning probe lithography on MoS2 flakes after oxygen plasma
treatment, including nano-scratching and dynamic lithography.

2.2. Mechanical Scanning Probe Lithography

The scanning probe lithography experiments were conducted using a commercial AFM
system (Dimension Icon, Bruker Corporation, Billerica, MA, USA). The equipped Nanoman
module in the AFM system is utilized for the scratching process in this study. Figure 1c
illustrates the schematic of the lithography processes. To carry out the nanomachining
on MoS2 flakes, a silicon tip (MPP-11120, Bruker Corporation, Billerica, MA, USA) with
a nominal spring constant of 40 N/m was utilized. During the nano-scratching process
in contact mode, the cantilever deformation was regulated by the voltage of the laser
on the photodetector (Vsetpoint), influencing the applied normal load. In tapping mode,
the driven amplitude Vr (reading voltage) was obtained by actuating the cantilever at its
resonant frequency. For dynamic lithography, the cantilever of the AFM tip was driven to
Vw (writing voltage). The driven amplitude ratio Vw/Vr was maintained in the range of
5–25 under dynamic lithography. The direction of m-SPL was perpendicular to the long
axis of the cantilever. Post-nanogroove fabrication, a new silicon tip was used to assess the
morphology of the generated nanogroove under tapping mode. The scan rate was set at
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1 Hz with each scan line comprising 256 pixels. The resulting AFM images were processed
using Nanoscope Analysis 1.90 software (Version) provided by Bruker Company.

3. Results and Discussion
3.1. MoS2 Nanosheets under Oxygen Plasma Treatment

The optical microscope was initially used to locate the position of the flakes, followed
by precise positioning using the AFM tip. After the preparation of few-layer MoS2 flakes
through mechanical exfoliation, one flake surface was analyzed, as illustrated in Figure 2a.
Subsequently, the surface was treated with oxygen plasma, resulting in the oxidized surface
depicted in Figure 2b. An essential step in this process was measuring identical flakes
along the same cross-sections. By comparing AFM images before and after oxygen plasma
treatment, as shown in Figure 2a,b, it is indicated that the surface height of MoS2 flakers
increased in the range from 4 to 5 nm, according to cross-sections of the pristine flakes of
the surface with plasma treatment in Figure 2d, which confirms that the oxidation layer
formed was MoO3 [18,19]. To measure the thickness of the oxidation layer, the produced
oxidation was soluble in water, as indicated in Figure 2c. The resulting flake was about
1–2 nm thinner than the pristine flake, based on the heights of the flake after immersion in
water for 30 s, as shown in Figure 2d. The same processes were performed on 19 flakes,
and it was found that after being treated in oxygen plasma, 1 to 3 layers of MoS2 were
oxidized based on statistics data in Figure 2e, corresponding to the Raman spectroscopy
analysis [20]. The oxygen plasma treatment process produced reactive particles, which
resulted in thinning the surface through physical bombardment. Note that the oxygen
plasma treatment process produced an oxidation phenomenon in this study. The surface,
after the oxygen plasma treatment, was relatively flat, which is suitable for mechanical
scanning probe lithography.
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Figure 2. AFM images of a MoS2 flake: (a) pristine flake obtained from mechanical exfoliation,
(b) after oxygen plasma treatment and (c) after immersion in water for 30 s. (d) Cross-sections of the
flakes in (a–c) marked in white. (e) Removal layers of MoS2 flakes treated with oxygen plasma and
DI water.

3.2. Comparation between Nano-Scratching and Dynamic Lithography

Following the oxygen plasma treatment on the MoS2 surface, nano-scratching was
conducted in AFM contact mode with the voltage bias from 1 to 3 V. As shown in Figure 3a,
it was found that the nanogrooves were processed under the mechanical load, and the
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removed surface materials were accumulated around the nanogrooves. The fabrication
results indicated that the process led to plastic deformation without causing any cracks. The
width and depth of the nanogrooves were measured to be about 55 nm and 0.88 ± 0.17 nm,
respectively. And the machined depth remained consistent even as the mechanical load
increased. This process effectively removed the oxide layer, exposing the original MoS2
flake. An additional shallower groove surrounding the main grooves may have resulted
from a defect in the AFM tip. To further enhance the resolution of m-SPL, a dynamic
lithography technique was employed. As depicted in Figure 3b, the nanogrooves were
produced when the driven amplitude ratio varied from 5 to 25. The cyclic extrusion of
the tip not only removed the oxide layer but also led to the formation of material pileups.
The machined depth was around 1.30 ± 0.47 nm, and it remained stable across different
driven amplitude settings. The month width was roughly 23 nm, showcasing the capability
of dynamic lithography in achieving high-resolution nanofabrication on TMDCs surfaces.
Therefore, the application of the oxidation treatment enhanced the machinability of the
MoS2 surface, effectively preventing the formation of uncontrolled cracks [17] due to
mechanical stress. And the tearing of the 2D surface [21] was prevented during dynamic
lithography. The treated surface also exhibited isotropic properties, as discussed in [20],
enhancing the overall quality and consistency of the nanofabrication process. In the future,
it is worth further investigating methods to eliminate material pileups.
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MoS2 flake with oxygen plasma treatment under (a) nano-scratching and (b) dynamic lithography.

3.3. Characterization on Nanofabrication Quality of Dynamic Lithography

Dynamic lithography was utilized for high-resolution nanomachining. The nanofab-
rication quality should be further assessed. Figure 4 displays the surface morphologies
and the corresponding cross-sections of the machined areas via dynamic lithography at the
driven amplitude ratio of 10, 15 and 20. The results showed uniform material removal from
the surface, with minimal material debris remaining at the edges. Most of the removed
material accumulated at the end of the tip trace. The machined depth varied from 0.96 to
2.21 nm, corresponding to approximately 1 to 3 layers of MoS2 thickness. Additionally,
Figure 4 includes phase images of the machined areas, which could be employed to explore
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the influence on the mechanical properties of 2D materials at the nanoscale through contact
stiffness measurements [22]. To verify that the observed phase contrast was not due to
topographic changes, the phase measurements were taken in both forward and backward
scanning directions. The consistency in these measurements across both directions con-
firmed the material contrast, indicating successful removal of the surface oxidation layer
and exposure of the pristine MoS2 surface. The surface roughness of both the machined
area and the original surface was quantified, as shown in Table 1. It was observed that the
surface roughness of the machined area was marginally higher than that of the original
surface. Nevertheless, the resulting surface was atomically flat, demonstrating that the
dynamic lithography technique yielded high-quality surface nanomachining.
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Figure 4. AFM images and the corresponding cross-sections of fabrication results marked in white
under dynamic lithography with the driven amplitude ratio Vw/Vr of (a) 10, (b) 15 and (c) 20.

Table 1. Roughness of unmachined surface and machined surface after dynamic lithography with
varied driven amplitude ratio.

Vw/Vr Unmachined Surface Ra (nm) Machined Surface Ra (nm)

10 0.13 0.17
15 0.20 0.31
20 0.19 0.21

4. Conclusions

This study has investigated the material removal capabilities of MoS2 after oxygen
plasma treatment under mechanical scanning probe lithography. Oxygen plasma treatment
enhanced the MoS2 surface’s machinability. Under this condition, the surface material
could be precisely removed using techniques like nano-scratching and dynamic lithography.
Notably, dynamic lithography demonstrated superior machining resolution and maintained
surface integrity more effectively. The surface oxide layer was selectively removed by
nanomachining, exposing the untouched MoS2 surface without causing any damage.
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This resulted in a machined surface with atomic-level smoothness for the fabrication of
subsequent nanodevices.
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22. Vasić, B.; Matković, A.; Gajić, R. Phase imaging and nanoscale energy dissipation of supported graphene using amplitude
modulation atomic force microscopy. Nanotechnology 2017, 28, 465708. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1021/acsanm.0c00406
https://doi.org/10.1016/j.apsusc.2020.148231
https://doi.org/10.1088/0957-4484/24/1/015303
https://doi.org/10.1088/1361-6528/aa8e3b

	Introduction 
	Materials and Methods 
	Oxygen Plasma Treatment 
	Mechanical Scanning Probe Lithography 

	Results and Discussion 
	MoS2 Nanosheets under Oxygen Plasma Treatment 
	Comparation between Nano-Scratching and Dynamic Lithography 
	Characterization on Nanofabrication Quality of Dynamic Lithography 

	Conclusions 
	References

