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Abstract: In this study, a Pt@Co-Al LDH hybrid structure was fabricated by assembling the metal
precursor PtCl62− with the exfoliated LDH nanosheets followed by in situ reduction by NaBH4. The
morphology, composition and microstructure of the hybrid were characterized by FESEM, HRTEM,
XRD, XPS and BET techniques. Pt nanoparticles (NPs) with an average particle size of 3.1 nm were
successfully and uniformly loaded on the surface of LDH nanosheets. The catalytic activity of the
Pt@Co-Al LDH hybrid was tested for the reduction of 4-nitrophenol, which is one of the most frequent
pollutants in wastewater effluent from the pharmaceutical and textile industries. The hybrid displays
superior catalytic activity and stability in the reduction of 4-NP under environmental conditions
with NaBH4 as a reducing agent. The hybrid can be recovered in a simple way and still shows high
catalytic activity after five reuses.

Keywords: Co-Al LDH; platinum nanoparticles; 4-nitrophenol reduction; exfoliation/restacking;
heterogeneous catalysis

1. Introduction

Currently, water quality pollution is receiving increasing attention. Nitrophenol com-
pounds are considered as priority pollutants due to their biologically harmful properties
at low concentrations [1–3]. Among them, 4-nitrophenol is an indispensable substance in
the pharmaceutical and textile industries. Over-absorption by the human body can lead to
serious consequences such as neurological poisoning, which can seriously damage human
health [4,5]. For this reason, a lot of research has been carried out with the expectation
of its efficient removal from wastewater. In addition, 4-aminophenol (4-AP) is a crucial
chemical intermediary for the production of polymers, pigments, anticorrosive lubricants
and medicines [6]. The catalytic reduction of 4-NP to 4-AP is essential in view of the
hazardous effects of 4-NP on the human body and the demand for 4-AP in drug synthesis.
Thus, for the catalytic conversion of 4-NP to 4-AP under moderate conditions, it is highly
desirable to develop a highly effective and easily recoverable catalyst.

The great efficiency of metal nanoparticles, particularly noble metal NPs, as heteroge-
neous catalysts in various liquid-phase catalytic processes has generated a great deal of
interest in them [7–9]. To date, various noble metal NP catalysts have been widely used to
convert 4-NP to 4-AP, such as Pd, Pt, Au, Ag [10–16]. However, the small size of noble metal
NPs also leads to high surface energy, making them highly susceptible to agglomeration.
To address this problem, noble metal NPs are usually immobilized on specific carriers (such
as metal oxides and nitrides, molecular sieves, carbon materials and polymer matrices) to

Crystals 2024, 14, 284. https://doi.org/10.3390/cryst14030284 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst14030284
https://doi.org/10.3390/cryst14030284
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://doi.org/10.3390/cryst14030284
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst14030284?type=check_update&version=1


Crystals 2024, 14, 284 2 of 15

improve their stability and recyclability [17–20]. However, the uneven distribution of noble
metal nanoparticles or lack of strong host–guest interactions can still result in poor catalytic
activity and reduced stability. Consequently, the choice of an appropriate host material and
immobilization strategies is crucial for solving the aforementioned challenges [21–23].

For the past few years, layered double hydroxides (LDHs) have become highly sought
after as catalyst carriers due to their two-dimensional transition-metal-based nature. One
of the main advantages of LDHs is their adjustable composition, with the proportion of
metal ions and counter-anions being easily modifiable. Additionally, LDHs offer a tunable
structure, allowing for control of the number of layers and spacing between them. With a
large surface area, high anion-exchange capacity and the ability to be easily functionalized
with other materials [24–26], LDHs have become a popular choice for catalyst development.
There are various ways to achieve noble metal NP modification on a carrier surface. For
example, Zhang et al. anchored Au nanoclusters with sizes of 1.4 nm on carbonized natural
lotus leaf flakes by an impregnation technique. The AuNCs@C-lotus leaf showed good
catalytic reduction performance towards 4-NP [27]. Murayama et al. explored the effect of
different deposition methods on the loading of Au nanoparticles onto Nb2O5. By comparing
the catalytic oxidation performance of CO, it was found that Au/Nb2O5 synthesized by the
deposition reduction (DR) method exhibited optimal catalytic activity [28]. Liang et al. used
a sol–gel immobilization method to adjust the particle size of Pt NPs loaded on SBA-15. The
nanoparticles were found to exhibit optimal catalytic performance for decalin at a particle
size of 3.5 nm [29]. In the past decades, the exfoliation chemistry of LDHs has become a
research hotspot due to the unique structural features and fascinating physical, electronic
and chemical properties of ultrathin 2D LDH nanosheets [30]. Considering their high charge
density, the direct exfoliation of LDHs is quite difficult, and a two-step process is often
required: the introduction of anions with weak affinity to layers, followed by the exfoliation
step [31,32]. The exfoliated LDH nanosheets with electrostatically interacting surface
characteristics are deemed to be an excellent option for loading noble metal active species,
which facilitates a high degree of dispersion of noble metal NPs over the catalysts [33].

In this study, uniformly distributed Pt NPs with sizes of 3.1 nm were successfully
supported on the surface of exfoliated Co-Al LDH nanosheets without using any stabilizing
agent. As shown in Scheme 1, the carbonate form of Co-Al LDH was first converted to
nitrate form through two consecutive ion-exchange steps. The LDH-NO3 was swollen
and exfoliated in formamide to obtain a Co-Al LDH nanosheet colloid. Then, the noble
metal precursor PtCl62− was assembled with the exfoliated Co-Al LDH nanosheets by
electrostatic interaction, followed by the in situ reduction by NaBH4. The Pt@Co-Al LDHs
were finally aggregated together with the addition of a concentrated alkaline solution. The
obtained hybrid Pt@Co-Al LDH exhibits excellent catalytic performance and reusability
during the conversion of 4-NP to 4-AP with NaBH4 as a reducing agent. The catalyst was
ready for the next use after a simple centrifugal separation and washing step. After five
consecutive uses, its catalytic activity still reached 94.8% of the initial catalytic activity.Crystals 2024, 14, x FOR PEER REVIEW 3 of 16 
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2. Experimental Section
2.1. Chemicals

CoCl2·6H2O, AlCl3·6H2O, urea, 4-nitrophenol, NaBH4, NaNO3 and NaCl were pur-
chased from Sinopharm Chemical Reagents Co., Ltd. (Shanghai, China). H2PtCl6·6H2O
was supplied by Shanghai Tengzhun Biotechnology Co., Ltd. (Shanghai, China). All
chemicals were of reagent grade and were used directly without further purification.

2.2. Preparation of Co-Al LDH

Co-Al LDH intercalated with carbonate (LDH-CO3) was synthesized by the urea
hydrolysis method [34,35]. First, 37.5 mL of an aqueous solution containing CoCl2·6H2O
(0.1 M), AlCl3·6H2O (0.05 M) and urea (0.35 M) was mixed and then transferred into a
Teflon-lined stainless-steel autoclave after stirring, under hydrothermal heating at 100 ◦C
for 24 h. The products were cooled at room temperature, collected by centrifugation and
washed several times using deionized water and ethanol to remove impurities, and the
final precipitate was dried under vacuum at 60 ◦C to obtain 0.6 g of a pink-colored powder.

2.3. Anion Exchange and Exfoliation of Co-Al LDH

LDH-CO3 (0.2 g) was dispersed into 200 mL of deionized water containing 1 M NaCl
and 3.3 mM HCl under a nitrogen atmosphere for 24 h. After thorough washing with water
and drying, 0.17 g of LDH-Cl was obtained. The as-prepared LDH-Cl was then treated
with 170 mL of NaNO3-HNO3 solution (1.5 M NaNO3 and 5 mM HNO3) to obtain 0.12 g
LDH-NO3. The anion-exchange product LDH-NO3 (0.1 g) was mixed with formamide
(100 mL) in a flask under nitrogen protection. The mixture was stirred under vigorous
magnetic stirring for two days. After centrifugation at 2000 rpm for 10 min, unexfoliated
particles were removed, leaving a pink translucent colloidal suspension of exfoliated Co-Al
LDH nanosheets (0.95 mg/mL).

2.4. Preparation of Pt@Co-Al LDH Hybrid

First, 1 mL of chloroplatinic acid (H2PtCl6, 5 mM) was added to 100 mL of the LDH
nanosheet colloidal suspension under a nitrogen atmosphere to load Pt NPs onto Co-
Al LDH nanosheets. Excess NaBH4 solution (molar ratio of NaBH4/H2PtCl6 = 10) was
dissolved in 10 mL of water and dropped into the solution. Flocculation was achieved by
adding 2 M KOH solution. The final product was washed several times with deionized
water and ethanol and then dried overnight at 60 ◦C under vacuum to obtain 75 mg of
Pt@Co-Al LDH. The Pt content in the hybrid was measured to be 3.2 wt% by XPS analysis.

2.5. Catalyst Characterization

The X-ray diffraction (XRD) (X ‘pert Pro, PANalytical BV, Almelo, The Netherlands)
spectra of the samples were collected with a scanning range between 5◦ and 70◦ and Cu
Kα radiation (λ = 1.54 A). A high-resolution scanning electron microscope (FESEM-7600F,
Japan Electronics Co., Ltd., Tokyo, Japan) and transmission electron microscope (JEOL
JEM-2100F, Japan Electronics Co., Ltd., Tokyo, Japan) combined with energy-dispersive
X-ray spectra (EDS-mapping) were used to analyze the morphologies of the samples. The
surface chemical state of the samples was analyzed by X-ray photoelectron spectroscopy
(XPS) (Thermo Scientific Escalab 250Xi, Thermo Fisher Scientific Inc., Waltham, MA, USA)
with Al-Kα radiation (hν = 1486.6 eV). The zeta potential of the samples was measured by
a Zetasizer Nano ZS90 (Malvern Instruments Ltd., Malvern, UK).

2.6. Evaluation of Catalytic Performance

To assess the catalytic performance of Pt@Co-Al LDH, the hydrogenation of 4-NP to
4-AP was carried out as a model reaction. During a typical experiment, 20 µL of Pt@Co-Al
LDH (3 mg mL−1) dispersion and 100 µL of freshly prepared NaBH4 (0.2 M) solution were
combined in a quartz cell. Then, 1 mL of 4-NP solution with an initial concentration of
0.1 mM was added to initiate the reduction reaction. The absorbance of the reactant (4-NP)
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and product (4-AP) was measured using an Evolution 220 UV-Vis Spectrophotometer at
specified time intervals within the wavelength range of 250–550 nm. In order to assess
the reusability of Pt@Co-Al LDH, the catalyst underwent a thorough rinsing process with
deionized water and ethanol, followed by drying under vacuum at 60 ◦C, before being
reused in a subsequent run. All experiments were repeated at least three times, and the
mean values were reported.

3. Results and Discussion
3.1. Characterization of Pt@Co-Al LDH Hybrid

The XRD analysis in Figure 1 reveals the crystal structures of the products. Co-Al
LDH-CO3 exhibits a series of reflections at 11.7◦, 23.5◦, 34.8◦, 39.2◦, 46.8◦, 59.7◦ and 60.9◦,
consistent with the (003), (006), (012), (015), (018), (110) and (113) crystal planes of the LDH-
CO3 phase [36,37], respectively. These peaks agree well with the published data (JCPDS No.
51-0045), and the high intensity of the diffraction peaks confirms the high crystallinity of
the Co-Al LDH-CO3 (Figure 1a). Because of the high affinity of CO3

2− ions to LDH layers,
an exchange into other anions is required before exfoliation [38]. The (00l) reflections of
Co-Al LDH-Cl were shifted to lower 2θ angles, and the basal spacing was increased from
7.5 to 7.8 Å (Figure 1b), demonstrating that decarbonation was successfully conducted
after the salt–acid treatment. After further exchange by NO3

− ions, the basal spacing was
increased to 8.9 Å (Figure 1c). The results are consistent with previous work [35,39].
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Figure 1. XRD patterns of (a) Co−Al LDH−CO3, (b) Co−Al LDH−Cl, (c) Co−Al LDH−NO3,
(d) Pt@Co−Al LDH.

Co-Al LDH-NO3 was treated with formamide, and the mixture formed a pink trans-
parent colloidal solution. Tyndall light scattering can be seen clearly (Figure S1), confirming
that the exfoliated LDH nanosheets form a homogeneous colloidal suspension with the
formamide solution. Zeta potential is an important indicator for assessing the stability of
colloidal suspension systems. The zeta potential of Co-Al LDH nanosheets was measured
to be 35.6 mV (Figure S2). The positive zeta potential of LDH particles is due to the special
electric double layer and structural positive charge on the LDH surface [40]. When the
noble metal precursor PtCl62− solution was added to the LDH colloid, the value of zeta
potential dropped to 31.4 mV, and no precipitation was observed in the system (Figure S3).
This indicates that the system still remains stable and confirms the assembly of PtCl62−

with LDH nanosheets via electrostatic forces [35]. The XRD spectra of Pt@Co-Al LDH
show three characteristic peaks at 11.7◦, 23.5◦ and 34.8◦, corresponding to the (003), (006)
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and (012) crystal planes of Co-Al LDH-CO3, respectively (Figure 1d). It can be concluded
that the crystal structure of LDH has been reconstructed. However, the decrease in the
intensity of its characteristic peaks and the broadening of the peaks indicate the decrease
in the crystallinity of the composite. The characteristic peaks attributed to Pt NPs are not
observed in the figure, which is caused by the low content and uniform distribution of Pt
elements [41].

To exhibit the surface morphology of Co-Al LDH and Pt@Co-Al LDH, SEM and TEM
images are shown in Figure 2. Figure 2a shows Co-Al LDH shale-shaped crystals with
a lamellar structure that contains irregular edges, ranging in size from 1 to 4 µm. The
final hybrid Pt@Co-Al LDH also presents a sheet-like structure, but with much lower
crystallinity and smaller particle size. It is suggested that the sheets formed in the LDH host
material experienced a fracture caused by strong stirring during the exfoliation process.
The carbonyl group on formamide can form a hydrogen bond with the hydroxyl group
on Co-Al LDH, whereas the amino group is not able to bind tightly to the nitrate ion.
Under the solvation effect and vigorous stirring, Co-Al LDH is exfoliated into smaller
nanosheets [42,43]. In order to gain further insight, we performed HRTEM analysis on the
prepared hybrid. As shown in Figure 2c, the morphology of layer stacking can be observed
clearly. The Pt NPs with an average particle size of 3.1 nm are uniformly distributed on the
LDH nanosheets. In addition, we measured the d-spacing (inter-atomic spacing) of Pt NPs
to be 0.22 nm (Figure 2d), which is consistent with the plane of (111) [44,45].
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Figure 2. SEM images of (a) Co−Al LDH−CO3 and (b) Pt@Co−Al LDH; HRTEM images of
Pt@Co−Al LDH (c,d).

As shown in Figure 3, the STEM image coupled with the Pt element mapping fur-
ther demonstrates the homogeneous dispersion of Pt NPs on the Co-Al LDH nanosheets.
Meanwhile, three other elements (Co, Al and O) together constitute the LDH nanosheets.
Furthermore, as expected, the atomic ratio of Co and Al elements is 2:1 according to
EDX analysis.
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XPS analysis demonstrated the chemical states and surface composition of the samples,
and the results are shown in Figure 4 and Figure S4. The Co 2p high-resolution spectrum of
the Pt@Co-Al LDH (shown in Figure 4a) exhibits the presence of two spin-orbital twin peaks
at 781.8 and 797.7 eV attributed to Co3+ 2p3/2 and Co3+ 2p1/2, respectively. In addition,
two satellite peaks at 787.0 and 803.6 eV indicate the presence of high-spin bivalent Co2+ in
Co-Al LDH [36]. It can be found from Figure 4a that there is no obvious difference in the
cobalt valence state between Pt@Co-Al LDH and pure LDH. For the Pt 4f signal in Figure 4b,
the presented 4f7/2 and 4f5/2 peaks are found at 70.6 and 74.7 eV, respectively, and agree
well with the values of the zerovalent Pt in the metallic state [2,46,47]. In addition, XPS
analysis revealed that the weight percentage of Pt in the complex is 3.2%.
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As plotted in Figure 5, the N2 adsorption–desorption isotherms of Pt@Co-Al LDH
display a type IV isotherm shape with a narrow hysteresis loop (H3-type) in the P/P0 range
of 0.6–1.0, demonstrating the presence of mesoporous structures. The pore size analysis
curve of Pt@Co-Al LDH further reveals that the majority of pore diameters lie in the range
of 2–4 nm. Table 1 summarizes the additional structural characteristics of pure LDH and the
hybrid. The BET surface area of Co-Al LDH was determined to be 8 m2 g−1. By contrast,
the hybrid has an over four times larger BET surface area (35 m2 g−1). Furthermore,
the pore volume of Pt@Co-Al LDH is much higher than that of pure LDH. This can be
ascribed to the house-of-cards structure of the hybrid originated from the aggregation of the
LDH nanosheets during the restacking process. Similar phenomena have been repeatedly
observed in previous works [48–50]. The larger specific surface area and higher porosity
not only favor the mass transfer of reactants, but also expose a large number of Pt active
sites on the LDH nanosheets during the reduction process.
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Table 1. The structural characteristics of Co-Al LDH and Pt@Co-Al LDH.

Material S/m2 g−1 A/nm P/cm3 g−1

Co-Al LDH 8 6.1 0.04
Pt@Co-Al LDH 35 4.5 0.15

S—specific surface area, A—average pore diameter, P—pore volume.

3.2. Catalytic Performance of Pt@Co-Al LDH Hybrid

The catalytic reduction activity and kinetics of the obtained catalyst for the reduction
from 4-NP to 4-AP were first investigated under environmental conditions using UV-Vis
analysis. After the addition of NaBH4, the light yellow solution immediately turned
bright yellow, indicating the formation of the 4-nitrophenolate ion (4-NP−) in an alkaline
environment (Figure 6a). When using Pt@Co-Al LDH as a catalyst, the absorbance for
4-NP at 400 nm decreased quickly, while the absorbance for 4-AP at 300 nm increased at
the same time (Figure 6b). The solution completely faded to colorless within only 3 min,
evidencing the complete conversion from 4-NP to 4-AP by Pt@Co-Al LDH [2,18,51,52].
When the catalyst was removed or replaced with pure Co-Al LDH, the absorbance at
400 nm remained the same even after 24 h. This indicates that the system requires a catalyst
to proceed and that pure Co-Al LDH has no catalytic effect (Figure 6d). This confirms that
the supported Pt NPs are the key to the high catalytic activity of Pt@Co-Al LDH [53].
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The kinetics of the reduction reaction were evaluated by measuring the changes in
the absorbance at 400 nm using UV-Vis absorption spectra during reaction time. Owing
to the excess amount of NaBH4, its consumption can be considered negligible, and the
reduction can be presumed to follow the pseudo-first-order kinetic model. Accordingly,
the rate constant (kapp) can be obtained by the plot of ln(Ct/C0) vs. reaction time [27,51,54].

ln
Ct

C0
= ln

At

A0
= −kappt

where C0 is the initial 4-NP concentration, Ct is the 4-NP concentration at time t, A0 is the
initial integral absorbance and At is the integral absorbance at time t. The rate constant
kapp of Pt@Co-Al LDH hybrid can be calculated to be 16.1 × 10−3 s−1, and its specific rate
constant k’ can be calculated from the ratio of kapp to catalyst mass as 268.3 s−1 g−1. In
Table 2, the catalytic activity of Pt@Co-Al LDH is compared with that of other reported
Pt-loaded catalysts. The higher kapp value of our catalyst reflects its superior catalytic
performance in the reduction of 4-NP. As revealed in the TEM analysis, the excellent
catalytic activity of the Pt@Co-Al LDH is related to the presence of small, highly dispersed
Pt NPs on the surface, which provide a large number of active sites for effective contact
with the reactants and fast interfacial electron transfer between Pt NPs and 4-NP.
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Table 2. Comparison of the catalytic performance of Pt@Co-Al LDH with other reported Pt-loaded
catalysts for 4-NP reduction.

Catalyst Reaction Conditions
(4-NP, NaBH4, Cat.)

kapp × 103

(s−1)
Time (min) Ref.

Pt NPs@C-PZS 0.1 mM, 5 mM, 0.2 mg 4.6 16 [55]
Pt/MMZ 0.03 mM, 0.016 mM, 2 mg 5.35 14 [56]

Pt/meso-CeO2 0.1 mM, 5 mM, 0.3 mg 6.0 8 [57]
Fe2O3-Pt@DSL-Pt 0.1 mM, 41 mM, 0.5 mg 6.32 10 [58]

PtNi/MoS2 0.1 mM, 80 mM, 1 mg 9.2 5 [59]
Co-doped CuO NPs 0.06 mM, 4 mM, 1 mg 43.8 3.5 [60]

Pt@Co-Al LDH 0.1 mM, 20 mM, 0.06 mg 16.1 3 This work

In addition, the effects of catalyst dosage and NaBH4 concentration on the reduction
of 4-NP were studied (Figure 7). All the reactions followed the pseudo-first-order kinetic
model. Increasing the catalyst dosage from 0.03 to 0.12 mg reduced the time required for
the complete conversion due to the increase in active sites. And the conversion of 4-NP is
significantly increased with increasing NaBH4 concentration because BH4

− ions obtained
from dissociation initiate the reduction reaction.
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dosages (a) and NaBH4 concentrations (b).

Thermodynamic analysis of the catalytic system was performed by varying the re-
action temperature from 15 to 45 ◦C. The results show that the catalytic reduction rate
strongly depends on the reaction temperature (shown in Figure 8). The time required for
complete conversion of 4-NP at 15 ◦C was 6 min, which decreased to 75 s as the temperature
was increased to 45 ◦C. The efficiency of the reaction increases due to enhanced interaction
between reactants and the decomposition of NaBH4 at higher temperatures [61,62]. The
Arrhenius equation is commonly used to determine the activation energy of a catalytic
process. The equation is as follows:

ln kapp= − Ea

RT
+ ln A

where A is the Arrhenius constant, Ea is the activation energy and R is the gas constant
(8.314 J K−1 mol−1). The activation energy of the catalytic reduction of 4-NP by Pt@Co-Al
LDH can be determined to be 36.63 kJ mol−1 from the slope of the plot of ln kapp vs. 1/T
(Figure S5).
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According to the experimental results and previous literature [63–65], a rational mech-
anism of the reduction process of 4-NP to 4-AP catalyzed by Pt-decorated LDH is proposed
(Scheme 2). Firstly, the reactants including 4-NP− and BH4

− ions are adsorbed onto the
alkaline catalyst surface. The BH4

− ions dissociate and contact the active site Pt NPs to
form Pt–hydride bonds. Then, nitro groups in 4-NP− ions interact with hydride ions to
generate a Pt complex. Finally, 4-NP transforms to 4-AP by different hydro-deoxygenation
steps. The product is detached from the catalyst, making the active site available for the
next catalytic cycle to proceed. The synergetic effect between LDH and Pt NPs contributes
to the excellent catalytic activity of Pt@Co-Al LDH hybrids. In addition, highly dispersed Pt
NPs enhance the reaction rate by increasing the rate of electron transfer between BH4

− and
4-NP. And LDH nanosheets facilitate the adsorption of the oppositely charged reactants,
and the relatively high porosity formed by the stacking of exfoliated LDH nanosheets
favors the mass transfer process in the catalytic process.

For heterogeneous catalysts, the recycling performance is extremely important for
further industrialization. In this study, Pt@Co-Al LDH was recycled and reused five times.
As shown in Figure 9, the degradation rate was 99.1% in the first cycle. The activity of the
catalyst remained at a high level (94.8%) even after five cycles, confirming the high stability
of 2D LDH substrates for the catalytic reduction application. Also, in order to further
confirm the stability of Pt@Co-Al LDH structure, we characterized the recovered catalyst
by XRD, TEM and XPS analysis, as shown in Figures S6–S9. The original and recovered
catalysts showed no significant changes in the crystal structure and morphology. And Pt
NPs were still uniformly dispersed on Co-Al LDH nanosheets after successive cycles. The
Pt content in the recycled catalyst was determined to be 3.1 wt%, which was slightly lower
than that in the initial catalyst (3.2 wt%), indicating that the Pt leaching was negligible.
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4. Conclusions

In summary, a novel catalyst Pt@Co-Al LDH was synthesized via the exfoliation/
restacking route. The metal precursor PtCl62− ions were assembled onto the surface of
LDH nanosheets by electrostatic interaction and then underwent in situ reduction by
NaBH4. Various analyses including XRD, SEM, TEM and XPS indicated the successful
synthesis of Pt@Co-Al LDH hybrid. Pt NPs were uniformly dispersed on Co-Al LDH
nanosheets, and the average particle size was 3.1 nm. The Pt@Co-Al LDH hybrid exhibits



Crystals 2024, 14, 284 12 of 15

superior catalytic activity towards the catalytic reduction of 4-NP to 4-AP at ambient
conditions. The reaction rate constant kapp reaches 16.1 × 10−3 s−1. The Pt@Co-Al LDH
hybrid demonstrates excellent stability and recyclability. There is no noticeable decline in
its catalytic performance after five consecutive uses.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cryst14030284/s1. Figure S1. Tyndall phenomenon of
LDH nanosheet colloidal dispersion. Figure S2. Zeta potential of Co-Al LDH nanosheets. Figure
S3. Zeta potential of PtCl62–@Co-Al LDH nanosheets. Figure S4. XPS survey spectra of Co-Al LDH
and Pt@Co-Al LDH. Figure S5. Arrhenius plot for catalytic reduction of 4-NP in the presence of
Pt@Co-Al LDH. Figure S6. XRD patterns of the original and recycled Pt@Co-Al LDH catalyst. Figure
S7. HRTEM image of the recycled Pt@Co-Al LDH. Figure S8. XPS survey spectrum of the recycled
Pt@Co-Al LDH. Figure S9. The high-resolution XPS spectra of (a) Co 2p, (b) Al 2p and Pt 4f for the
recycled Pt@Co-Al LDH.
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