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Abstract: The study investigated the effect of the molecular weight of three difunctional poly(propylene
glycol) diacrylates on the temperature-dependent ionic conductivity of these monomers and their
blends with an eutectic nematic liquid crystal mixture (E7). The results revealed two distinct regions.
At low temperatures, ionic conduction can be described by the Vogel–Tamman–Fulcher (VTF) equation,
while at high temperatures, the conductivity data follow the prediction of the Arrhenius model. The
Arrhenius and VTF parameters and their corresponding activation energies were determined using
the least squares method. In addition, a conductivity analysis based on an ionic hopping model is
proposed. Estimates of ion concentrations and diffusion constants were calculated. It was found that
both the ionic concentration and the diffusion constant decrease with the increase in the molecular
weight of the monomers. The static dielectric permittivity decreases in the following order: TPGDA,
PPGDA540, and PPGDA900. This can be explained by the higher dipole moment of TPGDA, which is
caused by an enhanced volume density of carbonyl groups.

Keywords: poly(propylene glycol) diacrylate; liquid crystal; dielectric spectroscopy; ionic conductivity

1. Introduction

Polymer-dispersed liquid crystal (PDLC) films are composite materials composed of
micron-sized LC domains phase-separated by a polymer matrix [1–4]. These materials
are still undergoing intensive studies due to their intriguing properties and potential
applications, such as optical shutters, intelligent windows, information displays, and
holographic devices [1,2,5,6]. Several techniques with which to produce these materials
are available, including radiation-induced polymerization and crosslinking. This process
begins with the irradiation of a homogeneous mixture of low-molecular-weight LC and
reactive monomers. [4,7,8] As the polymer network grows, the thermodynamic miscibility
between the network and the LC decreases, resulting in phase separation and the formation
of randomly distributed LC domains within the polymer matrix.

Inorganic impurities (ions) present in the initial monomer/LC mixtures can have
adverse effects on the resulting PDLC materials. These effects include increased electri-
cal conductivity, which can lead to a loss of electro-optical or optical properties such as
long response time, persistence, and screen flickering [9,10]. Therefore, it is necessary to
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investigate the dielectric permittivity and electrical conductivity of the initial monomer/
LC materials.

Low-frequency dielectric properties have garnered significant attention due to the pro-
cess of charge carrier transport. Several authors [11–14] have studied ion transport diffusion
in liquids using dielectric theory. Raymond et al. [15] demonstrated that the properties of
organosiloxane liquids and polymers are highly dependent on conductivity in relation to hu-
midity. Several studies have investigated the ionic conduction of polymer electrolytes [16–18] to
develop multifunctional energy-producing composites, such as structural batteries. In partic-
ular, researchers have utilized poly(ethylene glycol) (PEG)-based materials [19–21] and have
demonstrated their high conductivity. Several authors [22–24] have studied ionic impurities in
organic materials, particularly in LCs, using Iwamoto’s hopping model [25] to describe their
conductivity behavior.

The purpose of this study is to investigate the dielectric permittivity and electrical
conductivity of a model system composed of difunctional acrylic monomers and blends of
these monomers with a eutectic nematic LC mixture composed of cyanobiphenyl deriva-
tives (commercially known as E7). Three acrylic polypropylene glycol diacrylate (PPGDA)
monomers were used, with reactive chains of different molecular weights between their
two acrylic end groups. These materials were chosen because they have already been
studied in the UMET laboratory and present interesting electro-optical, thermophysical,
and mechanical properties [26–28].

The study will investigate the effect of monomer chain length (i.e., molecular weight)
and the presence of ionic impurities on static permittivity and ionic conductivity over a
wide range of frequencies and temperatures. The electrical conductivity of the samples,
which are in the form of films sandwiched between two electrodes, will be analyzed
using the Iwamoto model. This model allows for the estimation of ion concentration and
diffusion constants. The conductivity data obtained from the investigated monomer and
monomer/E7 samples will be analyzed as a function of temperature using the Arrhenius
and Vogel–Tamman–Fulcher (VTF) models [29–33].

2. Materials and Methods
2.1. Materials

This study utilized three acrylic difunctional propylene glycol-based monomers with
identical chemical structures, differing only in their chain lengths, as determined by
their molecular weights: tripropylene glycol diacrylate (TPGDA) with Mn = 300 g/.mol,
polypropylene glycol diacrylate with Mn = 540 g/mol (PPGDA540), and polypropylene
glycol diacrylate with Mn = 900 g/mol (PPGDA900); Mn represents the number average of
the molecular weight, as given by the sales companies (Cray Valley and Sigma-Aldrich,
see below).

Samples were prepared by mixing X weight–percent (wt.-%) LC with (100–X) wt.-%
of the monomer. All products were used as received.

The TPGDA material was purchased from Cray Valley Company (Paris, France), and
the other monomers (PPGDA540 and PPGDA900) were purchased from Aldrich Chemical
Company (Saint-Quentin-Fallavier, France), while the eutectic nematic LC mixture E7 was
obtained from Merck Company (Tokyo, Japan).

2.2. Methods
2.2.1. Nuclear Magnetic Resonance Spectroscopy

To determine the chemical composition of the monomers and the number of rep-
etition units, we utilized the proton nuclear magnetic resonance technique (1H-NMR).
The materials were dissolved in deuterated solvent, specifically deuterated chloroform
(CDCl3) (10 mg/mL). The 1H-NMR spectra were recorded on a Bruker AC300 spectrometer
(Bruker, Billerica, MA, USA) operating at 300 MHz. The data are reported in ppm relative
to tetramethylsilane (TMS).
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2.2.2. Gel Permeation Chromatography

The monomers were dissolved in THF at a concentration of 3 mg/mL. The gel per-
meation chromatography (GPC) technique was used to measure the molar masses at
T = 25 ◦C. Waters apparatus, including a Waters 515 pump, a Waters 717 plus auto-sampler,
a differential refractometer Waters 410, and Stryragel columns HR3 and HR 3E (WatersTM,
Milford, MA, USA), was used for the measurement. The experiment lasted nearly 1 h with
a flow rate of 1 mL/min.

The GPC measurements yield distinct peaks based on the retention time of each
component. The molar mass of each monomer sample was determined by utilizing the
calibration curve polynomial.

2.2.3. Thermogravimetric Analysis

Thermogravimetric analysis (TGA) was performed using a Perkin Elmer Pyris 1
analyzer (Perkin-Elmer Company, Shelton, CT, USA) with a mass resolution of 1 µg on HT
platinum plates. The samples, with an average weight of 8 mg, were analyzed under a
nitrogen atmosphere with a flow rate of 20 mL/min. A heating ramp of 10 ◦C/min was
applied to the samples in the temperature range of 25 to 600 ◦C.

This analysis is informative because it provides data on the critical temperature (TC)
of the material at the beginning of the thermal degradation processes. TC is considered as
the upper temperature limit for DSC analysis.

2.2.4. Differential Scanning Calorimetry

The thermal properties of monomer and monomer/LC materials were determined
using the differential scanning calorimetry (DSC) technique (see, for example, in [34]). DSC
measurements were performed on a Seiko DSC 220C (Seiko Instruments Inc., Chiba, Japan)
equipped with a liquid nitrogen system for cooling experiments. The DSC cell was purged
with 50 mL/min of nitrogen. Heating and cooling rates of 10 ◦C/min and 30 ◦C/min,
respectively, were used in the temperature range from −120 ◦C to +100 ◦C. The program
begins by cooling the sample, followed by three cycles of heating and cooling to account
for any thermal events related to the sample’s preparation history. The results presented
in this work were obtained from the first heating ramps. At least three duplicate samples,
with the same composition and prepared independently, were used in each case to verify
the reproducibility of the results. The glass transition temperatures (Tg) were determined
by taking the midpoint of the transition range in the thermograms.

2.2.5. Dielectric Spectroscopy

The dielectric measurement spectroscopy was performed using the Concept 80 di-
electric spectrometer from Novocontrol® GmbH (Novocontrol Technologies Company,
Montabaur, Germany) (more details are given in [35]). The measurements were performed
in the frequency range of 0.1 Hz–1 MHz. The real and imaginary parts of the complex
dielectric constant (ε * = ε′ − jε′′ ) were calculated from the measured capacitance Cm and
conductance Gm at each frequency f:

ε′(f) =
Cm(f)

C0
(1)

ε′′ (f) =
Gm(f)
2πfC0

(2)

The capacitance of the empty cell C0 was measured prior to cell filling. The samples
were prepared as 50 µm thick films and placed between two polished brass electrodes
covered with a thin layer of gold (20 mm in diameter) (see Figure 1). They were then inserted
into a temperature-controlled sample cell designed for liquid samples. Temperature was
regulated using a nitrogen gas cryostat with a stability of better than 0.1 ◦C.
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Figure 1. (a) Synoptic diagram of dielectric measurement cell. (b) Photo of the open cell: (1) cell
closing plate, (2) spring, (3) upper electrode, (4) Teflon isolation, (5) seal rings, (6) lower electrode,
(7) cell carrier plate (reproduced from [36]).

3. Results and Discussion
3.1. Chemical and Structural Properties of Materials

The three materials studied belong to the PPGDA monomer family. The repeating unit
consists of a poly(propylene) glycol group. The monomer tripropyleneglycol diacrylate
(TPGDA) corresponds to n = 3, where n represents the number of repeating units. The
other two materials are commercially known as PPGDA540 and PPGDA900.

Figure 2a presents the 1H NMR spectrum obtained from PPGDA540. The spectrum
shows three peaks between 5.5 and 6.5 ppm, corresponding to the six acrylic protons
(a and b). Protons (d1 extreme) and (c1 extreme) appear between 1.5 and 2 ppm and
between 4.5 and 5.5 ppm, respectively. The other protons (c1 and d1) and the methyl
protons (e) are observed between 3 and 4 ppm and between 1 and 1.5 ppm, respectively.
The 1H-NMR spectra of the TPGDA and PPGDA900 monomers exhibit identical peaks
to those shown in Figure 2a. The spectral analysis shows that the TPGDA, PPGDA540,
and PPGDA900 monomers correspond to n = 3, 7, and 12, respectively, as determined by
calculating and comparing integration ratios.

The molecular weights and molecular weight distributions were determined using the
GPC method, in addition to the results obtained by 1H-NMR spectroscopy. This technique
can analyze materials of even lower molecular weight by using the appropriate column
material [37]. Figure 2b displays the chromatograms of the three monomers. The measured
values Mw of the average molecular weight of the three monomers are 460, 765, and
1120 daltons. Figure 2b shows that the monomers have a polydisperse character in terms of
their molecular weight distribution.

Figure 3a presents the TGA analysis results for TPGDA, PPGDA540, and PPGDA900.
The figure shows that the TPGDA monomer degrades faster than the other monomers. It
remains stable up to 140 ◦C, after which it degrades to 90% of its initial weight between
195 ◦C and 325 ◦C, followed by a second degradation. At 465 ◦C, the TPGDA monomer
is almost completely degraded (2% of the initial mass). The initial degradation may be
attributed to lower molar masses (see Figure 2b). The residual material (2%) observed
at 465 ◦C can be linked to the presence of inorganic impurities. It is worth noting that
the PPGDA540 monomer degrades at a slower rate than the TPGDA monomer. The
substance remains stable up to a temperature of 152 ◦C, after which it undergoes a weight
decrease until it loses 12% of its original weight at 313 ◦C. The material experiences rapid
degradation, with complete degradation occurring at 327 ◦C. The degradation of 12%
between 152 to 313 ◦C suggests the presence of inorganic impurities in the monomer,
although less than in TPGDA monomer. The PPGDA900 monomer is the most stable of the
three monomers, undergoing a slow decrease rather than a sudden drop. Its degradation
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begins at 221 ◦C and reaches total degradation at 443 ◦C. This monomer also contains
inorganic impurities (see Figure 3a).
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Figure 2. (a) 1H NMR spectrum of the monomer PPGDA540 (n = 7), (b) GPC chromatograms of
the monomers.

TGA limits the working temperature range for other analyses, such as DSC and
dielectric measurements. During this study, the maximum applied temperature did not
exceed 100 ◦C. Upon closer examination in Figure 3a (450 ◦C–600 ◦C), it is observed that
the concentration of inorganic impurities varies inversely with the molecular weight of
the monomers.

Figure 3b presents DSC thermograms for the three monomers, which clearly show
glass transitions with different Tg values. The glass transition temperature of TPGDA,
PPGDA540, and PPGDA900 were found to be −85 ◦C, −74 ◦C and −70 ◦C, respectively.
The increase in Tg with the monomeric chain length is in good agreement with the classical
behavior of low-molecular-weight polymeric chains. The relationship between Tg and MW
can be described by the well-known Fox–Flory equation [38].
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3.2. Dielectric Characterization

As an example, Figure 4a,b present the results of dielectric measurements at room
temperature. Two contributions to the dielectric response [39–42] can be distinguished:
the first concerns the response of the dipolar moment (εd

*) and the second is linked to the
contribution of ionic impurities (conductivity) (εion

*). On the ln (ε′(f)) plot for TPGDA for
example (Figure 4a), two distinct behaviors are evident: at high frequencies (f > 1 kHz),
ε′ remains constant and measures the static dielectric constant of the monomer (dipolar
moment response), with a value of 7.4. At low frequencies, ε′ increases as f decreases due
to the accumulation of ionic charges near the electrodes. The contribution of ions can also
be observed on the ε′′ (f) plot, specifically in the linear range between 1 Hz and 10 kHz. It
is important to note that none of the three monomers exhibit a relaxation process in the
studied frequency range at room temperature. This includes the absence of the α relaxation
process due to the low Tg of these monomers in comparison to room temperature.
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Figure 4. Cont.
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Figure 4. (a) Low-frequency evolution of Ln(ε′(f)). (b) Low-frequency evolution of Ln(ε′(f)),
(c) Evolution of permittivities ε′ and ε′′ of TPGDA as a function of frequency: T = 24 ◦C,
1 Hz < f < 1 kHz, A = 2.487 × 10−7, B = 6.067 × 10−7, m = 2.319 × 10−1, σ = 2.247 × 10−6 S/m.
(d) Temperature evolution of the conductivity of the monomers. (e) Conductivity of the three
monomers. (f) Conductivity of PPGDA900 monomer/E7 mixtures.
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3.3. Conductivity

The dielectric spectra typically describe the ionic contribution using the
following formulas [39].

ε′ion =
A

(2πf)m+1

(
σ

ε0

)2
(3)

ε′′ ion =
σ

2πfε0
− B

(2πf)m+1

(
σ

ε0

)2
(4)

where σ represents the ionic conductivity, and A and B are constants that depend on the
interface between monomer and electrodes. They take into account the effects of electrode
polarization, ε0 is the dielectric permittivity of vacuum, and m is a real number between 0
and 1. Figure 4c shows the experimental plots of ln(ε′) and ln(ε′′) as a function of ln(2πf).
When the plot of ln(ε′′) versus ln(2πf) yields a linear relationship, and its slope is equal
to –1, the conductivity σ will only be ionic (see for example Figures 3.1a and 3.16a in
reference [30]). The data in Figure 4b and the top curve in Figure 4c, as representative
examples, exhibit slopes equal to −1, which is also the case for all other samples examined.
This indicates the absence of electrode polarization effects and other phenomena. As a
result, only the contribution of the ionic conductivity in σ is present. Equations (3) and (4)
were simultaneously applied in the fitting procedure of the experimental data, allowing
for the extraction of the different parameters A, B, m, and σ. On the right-hand side

of Equation (4), it was found that the weight of the right term (( B
(2πf)m+1

(
σ
ε0

)2
) is much

smaller than that of the left term ( σ
2πfε0

).
As a result, Figure 4d presents the Arrhenius plot of the monomers, displaying the

temperature-dependent evolution of the calculated ionic conductivity, which increases
with temperature. The curves of the three monomers exhibit a curve-like behavior below
a certain temperature, which becomes nearly linear above that temperature. The non-
linearity of the Arrhenius plot has been reported in several papers and indicates that
the ionic transport is correlated with the segmental motion of the polymer chain [40–42].
In this case, the results can be more effectively represented by using the VTF equation
(Equation (5)).

σ = σ1T−
1
2 exp

(
−Ev

k(T− T0)

)
(5)

where T is the absolute temperature; σ1, Ev and T0 are the fitting constants; k represents
the Boltzmann constant; and σ1 stands for a pre-exponential factor, which is related to
the number of charge carriers. Ev is the pseudo-activation energy, and T0 is the critical
temperature (ideal glass transition) at which the conductivity becomes zero [43]. Typically,
T0 is set to be 30 − 50 K below Tg. The Tg values were obtained from DSC measurements.

T0 was calculated as T0 = Tg − 40 K. Figure 4e,f show the plot of Ln
(
σT

1
2

)
versus 1000

T−T0

for the three monomers and the PPGDA900/E7 mixtures as examples. The data indicate a
strong correlation between the VTF theory and the low-temperature data. However, in the
high-temperature region (I), the curve deviates from the VTF equation. The transition from
the VTF equation to the Arrhenius equation is clearly visible in this region. This behavior
is commonly observed in polymer electrolyte systems. The data in region (I) can be fitted
using the Arrhenius equation:

σ = σ0exp
(
−Ea

kT

)
(6)

where σ0 is the pre-exponential factor, and Ea stands for the activation energy of the ther-
mally activated process. The values obtained for the TPGDA monomer are
σ0 = 0.21 × 10−1S/m and Ea = 0.230 eV. The fitting parameters obtained from the
Arrhenius and VTF equations for the three monomers are shown in Table 1, and those for
the monomer/E7 mixtures are presented in Table 2.
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Table 1. Arrhenius and VTF equation fitting parameters of the monomers.

Monomer σ0(S/m)(×10−1) Ea (eV) σ1

(
S.K

1
2 .m

−1
)

(×10−2) Ev (eV) T0 (K)

TPGDA 0.21 0.230 6.46 0.095 148
PPGDA540 3.15 0.342 3.27 0.094 159
PPGDA900 1.30 0.348 0.91 0.090 163

Table 2. Arrhenius and VTF equation fitting parameters of the monomer/E7 mixtures.

Monomer/E7 Mixture σ0(S/m)(×10−1) Ea (eV) σ1

(
S.K

1
2 .m
−1
)(
×10−1) Ev (eV) T0 (K)

70wt%TPGDA–30wt%E7 3.33 0.291 5.10 0.104 157
50wt%TPGDA–50wt%E7 11.7 0.304 2.40 0.098 157
30wt%TPGDA–70wt%E7 13.3 0.311 11.70 0.109 157
70wt%PPGDA540–30wt%E7 5.90 0.319 2.24 0.101 162
50wt%PPGDA540–50wt%E7 2.25 0.291 1.15 0.094 163
30wt%PPGDA540–70wt%E7 2.62 0.262 8.95 0.113 163
70wt%PPGDA900–30wt%E7 15.6 0.355 2.22 0.107 162
50wt%PPGDA900–50wt%E7 31.9 0.350 17.4 0.118 166
30wt%PPGDA900–70wt%E7 21.1 0.334 9.60 0.116 165

To complete this section on conductivity, it is assumed that the ionic diffusion phenom-
ena can be described by Iwamoto’s non-linear model for ionic hopping [25]. Iwamoto’s
model considers the presence of a diffusion process and an electrostatic interaction between
ions, while also assuming the absence of a space-accumulating charge field at the electrodes.
The dielectric spectra are described by the following equations:

ε′ ≈
(

8q2L2

π4kTε0

)
× nion

(
1

1 + x2 +
1

81 + x2 +
1

625 + x2

)
+ εs (7)

ε′′ ≈
(

8q2L2

π4kTε0

)
× nion

(
x

1 + x2 +
x
9

81 + x2 +
x
25

625 + x2

)
(8)

where x =
(

2L2/πD
)

f, nion is the ionic concentration,q represents the electronic charge, D
stands for the diffusion constant, L is the cell thickness, and T corresponds to the environmental
temperature. Figure 4a,b present the experimental plots of ε′ and ε′′ as a function of frequency
for PPGDA monomers and PPGDA/E7 mixtures at room temperature (T = 24 ◦C). The fits
in the range of 1–1000 Hz show good agreement with Equations (7) and (8), allowing us to
extract different parameters such as nion and D. The spectra ε′ and ε′′ were fitted together
using Origin software. Tables 3 and 4 report the calculated values of D and nion.

Table 3. Static permittivity εs, diffusion constant D, and ionic concentration nion of the monomers at
T = 24 ◦C (50 µm thick samples).

Monomer εs nion

(
cm−3

)
(×1015) D(cm2/s) (×10−6)

TPGDA 7.41 2.77 3.19
PPGDA540 6.47 2.06 1.16
PPGDA900 6.25 0.83 0.45
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Table 4. Static permittivity εs, diffusion constant D, and ionic concentration nion for monomer/E7
mixtures at T = 24 ◦C (50 µm thick samples).

Monomer/E7 Mixture εs nion(cm−3) (×1013) D (cm2/s) (×10−6)

70wt%TPGDA–30wt%E7 9.10 0.74 7.11
50wt%TPGDA–50wt%E7 10.30 1.99 7.80
30wt%TPGDA–70wt%E7 10.00 1.49 0.13
70wt%PPGDA540–30wt%E7 8.60 0.70 4.38
50wt%PPGDA540–50wt%E7 9.00 1.40 4.40
30wt%PPGDA540–70wt%E7 10.20 1.22 5.38
70wt%PPGDA900–30wt%E7 8.43 0.39 3.45
50wt%PPGDA900–50wt%E7 9.56 1.03 8.22
30wt%PPGDA900–70wt%E7 11.25 0.70 8.41

Figure 5 displays the relationship between the ionic concentration nion and the diffu-
sion constant D, as a function of the molecular weight of the monomers at 24 ◦C. The
plots show that as the molecular weight increases, both the ionic concentration and
diffusion constant decrease. The decrease in the mobility of the monomer chain with
higher molecular weight is likely responsible for the latter effect. The findings align
with the thermal diffusion behavior observed in the binary aqueous solutions studied by
Kishikawa et al. [44]. The relationship between D and the mobility (electrophoretic mobil-
ity) η is given by D = (kT/q)η. It can be inferred that the movement of the chain facilitates
ionic migration towards the electrodes. The concentration of impurities in the monomers
may be linked to the residues observed on the TGA analysis (inset of Figure 3a).
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Figure 6 displays the variation of ionic concentrations (nion) in the monomer/LC
mixtures as a function of the E7 concentration for the three PPGDA compounds. The
decrease in the concentration of impurity observed when adding E7 to the three monomers
can be attributed to the significantly lower ionic concentration of the pure LC compared to
that of the monomers.
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4. Conclusions

This report investigates some of the thermophysical and dielectric responses of PPGDA
monomers as a function of their molecular weight, as well as PPGDA mixed with ne-
matic LCs E7. The molecular weights of the three monomers, TPGDA, PPGDA540, and
PPGDA900, were determined using 1H-NMR analysis and found to be 350, 520, and
870 g.mol−1, respectively. These data represent average values, as the GPC analysis re-
vealed some polydispersity effects on the molecular weights. The TGA analysis indicated
that all monomers are thermally stable up to 100 ◦C. The residues at the end of each ex-
periment (at 600 ◦C) are likely to be of inorganic nature. DSC analysis of the monomers
showed increasing Tg values as the molecular weight increased.

The static dielectric permittivity increases in the following order: PPGDA900, PPGDA540,
and TPGDA. This can be explained by the higher dipole moment of TPGDA, which is caused
by an enhanced volume density of carbonyl groups [7,8].

The electrical conductivity of the PPGDA and PPGDA/E7 blends was modeled using
the Arrhenius and VTF models, both of which are applicable in describing the effects
of conductivity in acrylic systems. The concentrations of ionic impurities and diffusion
constants were estimated using the ionic hopping model. This approach shows that the
ionic impurities and diffusion constants are inversely proportional to the molecular weight
of PPGDA.

The investigation concludes that all monomer/LC blends contain ionic impurities,
which can result in significant electrical conductivities. This may have a negative impact
on the electro-optical properties of the resulting PDLC materials. The data presented in
Figure 6 demonstrate a significant difference in ion concentrations between pure monomers
and monomer/E7 blends. Consequently, the monomers have a much higher ionic content
than E7. Therefore, it is essential to perform thorough purification procedures on the
monomers to remove any ions before using them in PDLC materials.
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Nomenclature

Cm Capacitance (F)
Ea Activation energy (eV)
Ev Pseudo-activation energy (eV)
f Frequency (Hz)
Gm Conductance (S)
k Boltzmann constant (k = 8.617× 10−5eV.K−1)
Mw Molecular weight (g.mol−1)
q Electronic charge (q = 1.602× 10−19C)
Tg Glass transition temperature (K)
ε′(f) Relative permittivity spectrum
ε′′ (f) Loss factor spectrum
ε0 Permittivity of free space (ε0 = 885× 10−14F.m−1)
σ Conductivity (S.m−1)
σ1 Pre-exponential factor (S.K1/2.m−1)
TPGDA Tri(propylene glycol) diacrylate (n = 3, CAS Number: 42978-66-5)
PPGDA540 Poly(propylene glycol) diacrylate (n = 7, CAS Number: 52496-08-9)
PPGDA900 Poly(propylene glycol) diacrylate (n = 12, CAS Number: 52496-08-9)
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