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Abstract: The combined effects of an asymmetric (square or V-shaped) notch and uniaxial
strain are studied in a zigzag graphene nanoribbon (ZGNR) device using a generalized
tight-binding model. The spin-polarization and conductance-gap properties, calculated
within the Landauer–Büttiker formalism, were found to be tunable for uniaxial strain along
the ribbon-length and ribbon-width for an ideal ZGNR and square (V-shaped) notched
ZGNR systems. Uniaxial strain along the ribbon-width for strains≥10% initiated significant
notch-dependent reductions to the conduction-gap. For the V-shaped notch, such strains
also induced spin-dependent changes that result, at 20% strain, in a semi-conductive state
and metallic state for each respective spin-type, thus demonstrating possible quantum
mechanisms for spin-filtration.

Keywords: graphene nanoribbons; Hubbard model; spin-transport; itinerant magnetism;
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1. Introduction

The structure and chemical functionalization of the edges of graphene nanoribbons (GNRs) have a
pronounced effect on their properties, such as the band gap and electronic transport [1–12]. One example
of patterning in GNRs that has recently been studied is a notch [8,9,13–16]. Notches made on one edge
of a GNR (i.e., an asymmetric notch) have been shown, in theory, to break the spin-symmetry in zigzag
graphene nanoribbons (ZGNRs) and to give rise to spin-dependent transport [8,9,13,14]. Such effects
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may prove to be of interest for spintronics [8], with this form of patterning also being within the realm
of top-down patterning approaches [15–17].

In addition to patterning, uniaxial strain has also been used to control the properties of GNR and
bulk graphene devices [18–30]. Strain can intrinsically arise due to lattice mismatch between the
graphene device and the substrate onto which it is deposited [31–33], or can be directly applied (e.g.,
the application of uniaxial tensile strain on suspended graphene samples) [34,35]. Strain has also been
used to perturb the band gap [18–24] and transport properties [20,28] in a controllable fashion, with
theoretical and experimental evidence suggesting that strain can lead to metal–semiconductor transitions
in bulk graphene and nanographene [20,21].

In this work, the combined effects of an asymmetric notch and uniaxial strain on the magnetism and
coherent transport properties of ZGNR devices (Figure 1) will be explored. Such systems have been
previously studied using a simple (i.e., non-interacting) tight-binding (TB) model [28]. Here, we will
study these effects within the context of a generalized TB model that takes into account up to third
nearest-neighbor hopping and contains a mean-field Hubbard-U interaction term [13], thereby enabling
the study of the spin-dependent properties of these systems. We will investigate the tunability, as well as
the potential for spin-dependent transport and spin-filtering. Given that graphene can be stretched up to
12% elastically, and up to 20% [34,36] before failure, these results may be of interest for examining the
potential of patterned graphene nanosystems within the context of “flexible electronics” [37–39].

Figure 1. An unstrained ZGNR device (ribbon dimensions ∼40.6 nm × 13.5 nm) with an
asymmetric (a) square notch (∼14.8 nm × 8.53 nm); and (b) V-shaped notch (∼8.53 nm
depth, with lengths ∼14.8 nm at the widest, and ∼4.9 nm at the narrowest).

(a) (b)

2. Theoretical Method

A generalized tight-binding (TB) model with a Hubbard-U (on-site) Coulomb interaction term was
used to model the ZGNRs [13],

H = −
∑
ijσ

(tijc
†
iσcj,σ +H.c.) +

∑
i

Uniσni−σ. (1)

Here, c†iσ(cjσ) is the Fermion creation(destruction) operator, which creates(destroys) an electron with
spin σ = {↑, ↓} at site i(j), and niσ = 1 or 0 is the spin-dependent number operator, where ni−σ refers
to the number operator corresponding to the opposite spin, −σ. The hopping term tij is taken up to
third-nearest-neighbor and corresponds to the energy required for a spin to hop between sites i and j.
H.c. refers to the Hermitian conjugate. The parameter U denotes the strength of the local Coulomb
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interaction energy between opposite spins—the so-called Hubbard-U [40]—which has been linearized
using the mean-field approximation

niσni−σ = 〈niσ〉ni−σ + niσ〈ni−σ〉 − 〈niσ〉〈ni−σ〉 (2)

where 〈niσ〉 denotes the local spin-occupancy taken within the quantum average [13,41]. Thus,
Equation (1) can be decoupled into two spin-dependent Hamiltonians, which are then solved
self-consistently [41]. The local spin-polarization (pi) is determined from the local spin-occupancies,
such that

pi =
〈ni↑〉 − 〈ni↓〉
〈ni↑〉+ 〈ni↓〉

. (3)

The coherent transport properties of the ZGNRs have been calculated using the generalized TB model
(Equations (1) and (2)) applied within the Landauer–Büttiker formalism [42], and assuming that the
device has semi-infinite, ideal ZGNR leads. The spin-dependent conductance Gσ(E) at energy E is
obtained from the transmission function Tσ(E), such that

Gσ(E) =
e2

h
Tσ(E) (4)

where e and h are the electron charge and Planck’s constant, respectively, and

Tσ(E) = Tr[ΓLσ(E)GRet
σ (E)ΓRσ(E)GAdv

σ (E)] (5)

where G
Ret/Adv
σ (E) are the retarded/advanced Green’s functions. The ΓL/Rσ(E) matrices are

calculated from
ΓL/Rσ(E) = [ΣRet

L/Rσ(E)− ΣAdv
L/Rσ(E)] (6)

where
Σ
Ret/Adv
L/Rσ (E) = V †L/Rg

Ret/Adv
L/Rσ (E)VL/R (7)

are the retarded/advanced self-energies. Here, VL/R denotes the coupling between the GNR device and
the Left(L)/Right(R) lead, and gRet/AdvL/Rσ (E) are the retarded/advanced surface Green’s functions for the
leads, which have been obtained using the decimation iteration method [43].

The parameters for the generalized TB model (Equation (1)) have been obtained by fitting to local
spin-density approximation (LSDA), density functional theory (DFT) results for hydrogen-passivated
GNRs, such that U = 2.0, and tij corresponds to t1 = 2.7, t2 = 0.20, and t3 = 0.18, for first,
second and third nearest-neighbor hopping, respectively (in units of eV) [13]. Used within the coherent
transport formalism, this model faithfully reproduces ab initio transport results [13,14] calculated using
TranSIESTA [44], which applies a non-equilibrium Green’s function formalism to the SIESTA DFT
method [45,46].

Uniaxial strain has been added to the device and the leads by perturbing the generalized TB model
via Harrison scaling [22,27,28,47], such that

t′ij = tij

(
r0
r

)2

(8)
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where tij and t′ij are the unstrained and strained hopping parameters connecting sites i and j, and r0 and
r are the unstrained and strained bond lengths respectively. The strain ε is calculated using

ε =
r − r0
r0

(9)

with uniaxial strain in the x-direction (εx) defined along the ribbon-length and uniaxial strain in the
y-direction (εy) defined along the ribbon-width. A Poisson ratio, P = 0.186, obtained from the DFT
calculations of Liu et al. [33] is also used, such that

εy = −Pεx. (10)

3. Results and Discussion

The calculated local spin-polarization (Equation 3) for an ideal ZGNR (Figure 2) demonstrates the
known theoretical prediction of an anti-ferromagnetic spin-structure (symmetric across the edges of the
ribbon) with a zero net spin-polarization [48]. The introduction of a square, or V-shaped, notch into this
system breaks the spin-symmetry, which is shown in the unstrained local spin-polarization results for the
square notch and V-shaped notched ZGNRs, respectively (Figure 3a,b).

Figure 2. (Color on-line). Pictorial representation of the local spin-polarization for an
ideal ZGNR device (unstrained). Yellow (black) corresponds to a net spin-up (down). The
magnitude of the spin-polarization (Equation 3) is indicated by the circle radius.

For the notched ZGNRs, a maximum strain of 20% in the x-direction is found to increase the local
spin-polarization, particularly across the edges of the device (Figure 3c,d). This increase in the local
spin-polarization can be understood from the lengthening of the x-component of the bonds, which results
in a net reduction in the spin-itinerancy, and thus increased Hubbard-U effects in the device region. In
notched ZGNRs that have a maximum 20% strain in the y-direction, however, the converse is true.
The compression in the x-direction, which occurs from the strain in the y, increases the spin-itinerancy
along the direction of the ribbon-length, therefore decreasing the local spin-polarization seen in both the
square and V-shaped notch systems (Figure 3e,f). The reduced spin-polarization, in general, arises from
a greater relative change in local occupancy for spin-up between the y-strained and unstrained notch
systems. For the V-shaped notch, this relative change in spin-up occupancy between the strained and
the unstrained systems was found to be three times greater than that for spin-down. Thus, the decrease
in local spin-polarization for the V-shaped notch is attributed to an increased itinerancy with respect to
spin-up. The decrease in the local spin-polarization is particularly apparent across the top and bottom
edges of the device, however, results in a trapping of spin on the edge-atoms at the bottom of the V-notch
region (Figure 3f).
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Figure 3. (Color on-line). Local spin-polarization for a zero-strained ZGNR device with a
(a) square notch, and (b) V-shaped notch. 20% (maximum) x-strained (c) square, and (d) V-
shaped notched ZGNRs, and 20% (maximum) y-strained (e) square notch, and (f) V-shaped
notched ZGNRs. Yellow (black) refers to spin-up (down), with the magnitude of the spin-
polarization (Equation 3) being indicated by the circle radius. N.b., the local spin-polarization
on the atoms that are directly coupled to the leads, is equal to that of an ideal (unstrained or
strained) ZGNR.

(a) (b)

(c) (d)

(e) (f)

The average spin-polarization per edge-atom (including the notch region) in the ideal and notched
systems for increasing uniaxial strain is shown in Figure 4. For uniaxial strain in the x-direction
(Figure 4a), an increase in the average spin-polarization per edge-atom occurs for both spin-types as
a function of the increasing strain, with similar trends seen in all systems. These trends support the
local spin-occupancy results at 20% x-strain (Figure 3c,d), which showed an increase in the local
spin-polarization, particularly across the edges of the device. For uniaxial strain in the y-direction
(Figure 4b), the average spin-polarization per edge-atom in the notched devices decreases as a function
of increasing strain, then starts to level off at high values of strain (>10%). This leveling off of the
average spin-polarization per edge-atom is not apparent for the V-shaped notch system due to the strain
in the y-direction, which works to physically close the notch, and hence continues to improve the overall
itinerancy in the device.
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Figure 4. (Color on-line). The effects of uniaxial strain in the (a) x-direction,
and (b) y-direction on the average spin-polarization (net spin-up & net spin-down) per
edge-atom (including the notch region) for an ideal, square notch and V-shaped notch ZGNR
system. The results for the ideal ribbon show similar trends to those reported in [23].
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The dependence of the device properties on strain can also be seen in the conductance-gap trends for
these systems. We define the conductance-gap as the zero-conductance region around the Fermi energy,
such that for a metallic (semi-conductive) system, the conductance-gap will be zero (non-zero). As the
uniaxial strain in the x-direction increases, an overall increase in the spin-dependent conductance-gap
occurs, which follows a similar increasing trend for all of the devices considered (Figure 5a). The
increasing conductance-gap as a function of increasing x-direction strain suggests that the spins become
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more localized, and that this is caused by reduced itinerancy and hence increasing effects of the
Hubbard-U . The independence of this result on the system-type demonstrates that the dominant factor in
changing the conduction-gap is the increase in Hubbard-U effects from the strain in the x-direction rather
than for any specific effect of the notch. This is in direct agreement with the average spin-polarization
per edge-atom results (Figure 4a), which, in general, showed an increase in the spin-polarization (hence
decrease in spin-itinerancy) as a function of the increasing strain in the x-direction.

Figure 5. (Color on-line). The effects of uniaxial strain in the (a) x-direction, and (b)
y-direction on the spin-dependent conduction-gap for the ideal, square notch and V-shaped
notch ZGNR systems. The results for the ideal ribbon show similar trends to the band gap
results reported in [23,24].
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Increasing the uniaxial strain in the y-direction, however, produces more complicated trends for the
spin-dependent conductance-gaps in these systems (Figure 5b). For the ideal ZGNR, a linear decrease in
the conductance-gap as a function of the increasing strain in the y-direction occurs, thus demonstrating
an inverse trend compared with the x-direction strain result in Figure 5a. In general, the inverse trends,
which result in a decrease in the spin-dependent conduction-gap as a function of increasing strain in
the y-direction, are apparent for all of the devices considered and are due to the compression in the
x-direction, which in turn leads to an improved spin-itinerancy. For the notched systems, there is a
similar trend for the spin-dependent conduction-gap as a function of increasing strain in the y-direction
at small values of uniaxial strain (up to ∼5%). At larger values of strain, however, a more distinct
lack of agreement occurs between these results. For the square-notch device, the spin-dependent
conductance-gap is independent of the spin-type, and, at high values of strain (>10%), shows no further
decrease, thus remaining constant. In this case, the conductance-gap has been limited by the shape
of the notch. For the V-shaped notch, however, a spin-polarized conduction-gap occurs leading to a
semi-conductive spin-down state and a metallic spin-up state at the maximum value of strain (20%).
The metallic spin-up state for the V-shaped notch is consistent with the greater relative change in local
occupancy for spin-up between the strained and unstrained systems, which was three times greater than
the relative change in local occupancy for spin-down. The closing of the V-shape notch as a function of
y-strain, which improves itinerancy, combined with the breaking of the spin-symmetry in this system,
therefore generates the observed spin-dependent properties. In general, the combined sensitivity of the
conduction-gap at high strain in the y-direction, which is system dependent, indicates possible quantum
mechanisms for engineering spin-dependent transport and spin-filtering in ZGNR devices.

4. Conclusions

The spin-polarization and conduction-gaps in ideal and asymmetric-notched ZGNRs show the
potential for tunability as a function of increasing uniaxial strain. For uniaxial strain along the x-direction
(i.e., along the length of the ribbon), there is a greater degree of spin-localization for all of the systems
studied. This increase in spin-localization occurs from a reduction in spin-itinerancy, hence increased
Hubbard-U effects due to larger atomic spacing along the ribbon-length. Such changes are also reflected
in the increase in the conduction-gap as a function of increasing strain in the x-direction with there being
little difference in the values obtained for each of the systems studied.

Uniaxial strain in the y-direction (i.e., along the ribbon-width) elicits system-dependent results, which
begin to be apparent for strains ≥10%. Strain in the y-direction results in a decrease in spin-polarization
due to increased spin-itinerancy that occurs in the x-direction through system compression. At 20%

strain in the y-direction, significant differences are seen in the spin-dependent conduction results with
respect to the system-type. A square-shaped notch is found to limit the conduction-gap commencing
at 10% strain. For the V-shaped notch there occurs a significant spin-dependent effect on the
conduction-gap at 20% strain in the y-direction, with a spin-up metallic state, and spin-down remaining
in a semi-conductive state. Such results may provide insight into quantum mechanisms for engineering
spin-filtering in ZGNR devices.
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