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Abstract: Two new linear silver(I) nitrate coordination polymers with bitopic ligand 1,1,2,2-
tetra(pyrazol-1-yl)ethane were synthesized. Synthesized compounds were characterized by IR
spectroscopy, elemental analysis, powder X-ray diffraction and thermal analysis. Silver coordination
polymers demonstrated a yellow emission near 500 nm upon excitation at 360 nm. Crystal structures
of coordination polymers were determined and structural peculiarities are discussed. In both of the
structures, silver ions are connected via bridging ligand molecules to form polymeric chains with a
five-atomic environment. The coordination environment of the central atom corresponds to a distorted
trigonal bipyramid with two N atoms of different ligands in apical positions. The Ag–N bond
distances vary in a wide range of 2.31–2.62 Å, giving strongly distorted metallacycles. Thermolysis of
coordination polymers in reductive atmosphere (H2/He) leads to the formation of silver nanoparticles
with a narrow size distribution.

Keywords: silver; coordination polymer; bitopic ligand; pyrazole; crystal structure; thermal analysis;
luminescence; silver nanoparticles

1. Introduction

Silver is one of the metal ions most commonly used for the construction of coordination
polymers owing to its wide range of coordination numbers (2 to 7 [1]) and its ability to comply
with ligand geometry [2–5]. Silver coordination polymers are receiving much attention because
of their antimicrobial [6–9], anti-tumor [10] and luminescent properties [11]. Bitopic bis- and
tris(pyrazol-1-yl)methane ligands have been used for the preparation of coordination polymers of
various topologies [12–20]. However, the simplest possible bitopic ligand, -1,1,2,2-tetra(pyrazol-1-yl)
ethane (Pz4), has not been examined so far as a building block for silver coordination polymers.
Recently, we have prepared this ligand and have demonstrated its ability to form both discrete
complexes and coordination polymers with copper(II) ions [21,22]. Wang et al. reported the potential
antibacterial and antifungal activity of the Pz4 ligand [23]. Very recently, Dehury and coworkers
reported the synthesis and crystal structure of catalytically active binuclear palladium(II) complexes
with Pz4 and similar ligands [24], but no silver coordination compounds with Pz4 have been reported
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so far. Herein we report the first synthesis and structural characterization of two new linear silver-Pz4

coordination polymers.

2. Results and Discussion

2.1. Synthesis of Coordination Polymers

When the Pz4 ligand (Figure 1) reacted with silver nitrate in ethanol or dimethylformamide (DMF)
solutions, with coordination of the metal-to-ligand ratios close to 1:1, polymers 1 and 2 formed as
polycrystalline powders. Recrystallization of the precipitates from DMF gave single crystals suitable
for X-ray structure determination.
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Figure 1. Bitopic 1,1,2,2-tetra(pyrazol-1-yl)ethane ligand (Pz4).

An attempt to carry out the reaction in solvothermal conditions at temperatures above 100 ◦C
resulted in degradation of the Pz4 ligand to smaller fragments (mostly pyrazole). This can be ascribed
to the cleavage of C–C and C–N bonds catalyzed by Ag+ ions in solution; similar processes have
been observed before in other silver(I)–azole ligand systems [25]. When the metal-to-ligand ratio was
increased, the same products were formed instead of binuclear complexes, while the excess of silver
was precipitated as metal powder.

It is interesting to note that in contrast to many silver complexes, crystals of 1 and 2 are stable
towards light and atmosphere and could be stored for several weeks without any precautions.

The coordination polymers 1 and 2 were characterized by IR spectroscopy, thermal analysis,
single-crystal and powder X-ray diffraction methods.

The IR spectra of both compounds contain strong bands associated with ligands [26] and nitrate
ion vibrations [27] (Figure S1). The patterns of the stretching and bending vibration bands of nitrate ions
are somewhat different for compounds 1 and 2, indicative of a slightly different nitrate coordination
mode. Bands of indicative vibrations and geometric criteria for the nitrate ion coordination mode [28]
are given in Table 1. Geometric criteria obtained from single-crystal diffraction data (see Section 2.2)
indicate a unidentate coordination mode for both of the compounds, although for compound 1 the
criteria (l2-l1) and (A1-A2) are close to boundary values of 0.6 Å and 28◦ [28]. Separation between the
asymmetric stretching bands (∆ν3) is also greater for this compound, suggesting a nitrate coordination
mode intermediate between unidentate and anisobidentate.

Table 1. Bands of nitrate asymmetric stretching (ν3) and in-plane bending (ν4) vibrations and geometric
coordination mode criteria.

Parameter Compound 1 Compound 2

ν3, cm−1 1390
1294

1393
1309

∆ν3, cm−1 96 84
ν4, cm−1 770 755
l2-l1, Å 1 0.699 0.932

A1-A2, ◦ 1 33.49 47.72
l3-l2, Å 1 0.006 −0.085

1 l1 = d(Ag–O1); l2 = d(Ag–O2); l3 = d(Ag–N1); A1 = θ(Ag–O1–N1); A2 = θ(Ag–O2–N1).
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2.2. Crystal Structures

According to the single-crystal XRD data, the complexes {[Ag(µ2-Pz4)(NO3)]DMF}n (1) and
[{Ag(µ2-Pz4)(NO3)}n] (2) are polymeric and contain one Ag+ and NO3

– units and two halves of the
Pz4 ligands in the independent part expanded by the inversion center. Crystallographic data for
compounds 1 and 2 are given in Table 2.

The crystal structure of 1 contains crystallization DMF molecules. In both of the crystal structures,
Ag+ ions are connected via bridging ligand molecules in a chelating manner to form linear polymeric
chains (Figure 2). The metal centers are surrounded by four nitrogen atoms of Pz4 and one oxygen
atom of NO3

– ions, giving a coordination number of five.

Table 2. Crystallographic data for compounds 1 and 2.

Parameter Compound 1 Compound 2

Empirical formula C17H21AgN10O4 C14H14AgN9O3
Formula weight 537.31 464.21
Crystal system Monoclinic Triclinic

Space group P21/n P-1
Unit cell dimensions a, Å 9.394(2) 7.8650(9)

b, Å 14.299(4) 8.8031(10)
c, Å 15.793(4) 13.2418(15)
α, ◦ 90 74.380(4)
β, ◦ 94.173(7) 76.990(3)
γ, ◦ 90 83.647(4)

Volume, Å3 2115.7(9) 859.07(17)
Z 4 2

Density (calcd.), g·cm−3 1.687 1.795
F(000) 1088 464

Abs. coefficient, mm-1 1.001 1.211
Crystal size, mm3 0.8 × 0.15 × 0.15 0.32 × 0.08 × 0.08

2θmax, ◦ 51.38 53.58

Index range
−11 ≤ h ≤11
−17 ≤ k ≤17
−19 ≤ l ≤11

−9 ≤ h ≤ 9
−10 ≤ k ≤ 8
−16 ≤ l ≤ 16

Reflections collected 14199 7730
Independent reflections 3967 [R(int) = 0.0215] 3239 [R(int) = 0.0549]

Completness to 2θ = 51.38, % 98.7 99.4
Reflections, I ≥ 2σ(I) 3786 2328

Parameters 291 250

Final R indices [I > 2σ(I)] R1 = 0.0665
wR2 = 0.1958

R1 = 0.0681
wR2 = 0.1577

R indices (all data) R1 = 0.0679
wR2 = 0.1962

R1 = 0.0924
wR2 = 0.1771

GoF 1.277 1.037
Residual electron density

(min/max, e/Å3) −0.931/2.534 −2.227/1.646

In accordance with τ5 criteria [29] (Table 3), the silver coordination environment corresponds
to a distorted trigonal bipyramid with two nitrogen atoms of different ligands in apical positions.
The Ag–N bond distances vary in a wide range of 2.31–2.62 Å, giving strongly distorted metallacycles
(Table 4), which is typical for Ag complexes in the five-atomic environment [30–32]. The bond distances
of Pz4 in the complexes are very close and are in accordance with those in known compounds with this
ligand [21,22]. At the same time, there are deformation possibilities of the ligand due to the rotation of
the heterocycles along the C1–Nmn (m = 1, 2; n = 2, 4) bond in different structures (Table 5). While the
torsion angles C1–C1’–Nmn–Nmn in copper(II) complexes fall within the 61◦–72◦ range, those in
silver(I) compounds are lying in the range of 50◦–58◦, which is in accordance with the increased ionic



Crystals 2016, 6, 138 4 of 12

radius of Ag+ as compared with Cu2+. The twisting mode of the ligand along the C1–C1’ bond is
permanent in all of the structures (the corresponding torsion angles Nmn–C1–C1’–Nmn fall within the
55◦–63◦ range).
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Figure 2. Thermal ellipsoid plots of complexes 1 (a) and 2 (b) showing 50% probability ellipsoids;
(c) Atom numbering for compounds 1 and 2 and rotational modes of the Pz4. Hydrogen atoms have
been omitted for clarity.

Table 3. Addison’s τ5 criteria for coordination centers in the complexes (1) and (2).

Parameter {[Ag(µ2-Pz4)(NO3)]DMF}n (1) [{Ag(µ2-Pz4)(NO3)}n] (2)

α (◦) 128.0 141.5
β (◦) 166.8 178.0

τ5 = (β – α)/60 0.64 0.61

Table 4. Selected bond distances (Å) for the complexes 1 and 2.

Parameter {[Ag(µ2-Pz4)(NO3)]DMF}n (1) [{Ag(µ2-Pz4)(NO3)}n] (2)

Ag–N12 2.41 2.30
Ag–N14 2.40 2.63
Ag–N22 2.54 2.49
Ag–N24 2.40 2.31
Ag–O1 2.58 2.60

Table 5. Torsion angles of ligand in copper(II) and silver(I) complexes with Pz4 ligand.

Parameter Nmn–C1–C1’–Nmn C1–C1’–Nmn–Nmn

{[Ag(µ2-Pz4)(NO3)]DMF}n (1) ±55.5; ±54.8 ±57.9; ±53.8; ±50.4; ±54.8
[{Ag(µ2-Pz4)(NO3)}n] (2) ±54.8; ±54.0 ±57.6; ±58.1; ±50.5; ±58.2

[Cu2(µ2-Pz4)(H2O)2(NO3)4] [21] −58.9; 56.1; −57.3; 55.4 60.8; −70.4; 69.1; −61.7
70.4; −61.5; 63.2; −67.0

[Cu2(µ2-Pz4)(H2O)6(NO3)4] [22] 52.6; −61.7 59.5; −74.9; 67.7; −61.0.
[Cu(Pz4)(NO3)2]n [22] ±56.0 ±72.2; ±61.5;

[{Cu(Pz4)(H2O)(NO3)2}2]n [22] ±55.3 ±70.0; ±72.5
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Although the overall geometries of the chains of the complexes are alike, there are some
quantitative differences. In 1, the polymeric chain is less undulated than in 2: deviations of
silver atoms from their least square lines (the chain lines) are 0.53 Å and 1.18 Å, correspondingly
(Figure 3). Nevertheless, the minimum Ag···Ag distances are close, being 7.15 and 7.09 Å, respectively.
The position of NO3

– ions with respect to the chains is also different: in 1, the angle between the chain
line and the normal line of the {NO3} plane is 72.0◦ and that in (2) is 18.6◦. The packing of chains
in 1 imitates the hexagonal packing of cylinders with each chain surrounded by two translational
equivalent ones in the a direction and four ones related to the 21 axes. The packing of chains in 2 is
closer to the tetragonal one (Figure 4) with each chain surrounded by four translational-related ones.
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The connectivity of the chains of the complexes 1 and 2 resembles that of known compound
[Cu(Pz4)(NO3)2]n [21,22], with the exception of the additional coordinated NO3

– ligand. Despite this,
their geometries are principally different in the mutual orientation of the neighboring ligands.
Silver complexes are approximately related with mirror symmetry, resulting in a U-shaped chain form,
whereas in the copper complex an approximate inversion and V-shape of the chain are observed [22].
Noticeably, the packing of chains in 1 is closer to [Cu((Pz4)(NO3)2]n rather than 2.
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2.3. Thermal and XRD Analyses

The thermal decomposition of complex 1 proceeds in two steps (Figure 5a). The first step is
associated with the loss of solvate molecules that corresponds to 0.4 DMF molecules. The second step
corresponds to the degradation of the polymer with the formation of silver nanoparticles and products
of ligand destruction at 350 ◦C. Further thermolysis up to 800 ◦C leads to almost total destruction
of these products, although silver nanoparticles still contain carbon traces. Thermal decomposition
of 2 (Figure 5b) proceeds in one step, which is identical to the step of desolvated complex 1. The only
difference is the smaller size of the silver nanoparticles formed.
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The influence of the atmosphere and final temperature of thermolysis on the crystallite size of the
products has been studied for complex 2 (Table 6). Thermolysis of 2 in a reductive atmosphere has
shown that parameters such as the annealing time and final temperature do not significantly influence
the crystallite size of formed Ag nanoparticles, while in a helium atmosphere such dependence exists.
TG curves in H2/He at 400 ◦C have shown that mass loss for 2 is a few percent lower than that
calculated for compound 2 (Figure 6). It indicates that the formation of amorphous carbon occurs in a
reductive atmosphere, which was confirmed by elemental analysis.

The formation of amorphous carbon obviously has a great influence on the stabilization of formed
silver nanoparticles and its crystallite size was always in the range of 9–21 nm. On the other hand,
the size distribution for nanoparticles formed in the helium atmosphere was wider and reached
12–53 nm (Table 6).

Table 6. Crystallite size of Ag nanoparticles: final products of [{Ag(µ2-Pz4)(NO3)}n](2) thermolysis
under different conditions.

Thermolysis Conditions
(T, Annealing Time)

Crystallite Size Range for Different Atmospheres (nm)

He H2/He (7.2%)

400 ◦C, 0 h 12–23 11–20
400 ◦C, 3 h - 9–20
400 ◦C, 10 h 17–30 10–20
600 ◦C, 0 h - 10–21
800 ◦C, 0 h 26–53 -
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The conformity of single crystals to synthesized bulk polycrystalline materials was established by
comparison of experimental diffraction patterns with patterns calculated from single-crystal diffraction
analysis data (Figure 7). The destruction of the polymer during 24 h synthesis was confirmed by
XRD analysis.
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experiment; (2) compound {Ag(NO3)(µ2-Pz4)}n; (3) products of {Ag(NO3)(µ2-Pz4)}n degradation
(solvothermal synthesis at ethanol solution during one day at 95 ◦C).

The XRD analyses of complex 1 and 2 conducted after several weeks have shown them to be
stable under regular conditions.

2.4. Solid-State Luminescence Studies

The emission properties of complex 2 were studied. In the solid state, the emission spectrum
of 2 exhibits a broad band with a maximum at 500 nm, resulting in a yellow emission (Figure 8a).



Crystals 2016, 6, 138 8 of 12

The spectrum is independent of the excitation wavelength in the region of 300–430 nm. Within this
region, the broad band is revealed in the excitation spectrum with a maximum at 360 nm (Figure 8b).
The data obtained motivate in-depth investigation of the photophysical properties of the Pz4 ligand
and its transition metal complexes, which will be further carried out and reported separately.Crystals 2016, 6, 138  8 of 11 
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3. Experimental Section

3.1. Materials and Methods

The starting reagents used for synthesis of coordination compounds-AgNO3 (chemical grade),
dimethyl formamide (analytical grade), ethanol solution (95%, analytical grade) were used as
received. Pz4 ligand (1,1,2,2-tetra(pyrazol-1-yl)ethane) was prepared as reported previously [33].
Elemental analyses were carried out on Eurovector EuroEA 3000 analyzer (Eurovector SPA,
Redavalle, Italy). Infrared (IR) spectra of solid samples as KBr pellets were recorded on a FT-801
spectrometer (4000–550 cm−1) (Kailas OU, Tallin, Estonia). Single crystals for crystal structure
determination of 1 and 2 were mounted in inert oil and transferred to the diffractometer.

Single-crystal XRD data for 1 were collected by a X8Apex Bruker-Nonius diffractometer
(Bruker Corporation, Billerica, MA, USA) equipped with a 4K CCD area detector at 150(2) K and
for 2 were collected by a Bruker Apex DUO diffractometer equipped with a 4KCCD area detector
at 298(2)K using the graphite-monochromated MoKα radiation (λ = 0.71073 Å) (Bruker Corporation,
Billerica, MA, USA). The φ- and ω-scan techniques were employed to measure intensities.
Absorption corrections were applied with the use of the SADABS program [34]. The crystal structures
were solved by direct methods and refined by full-matrix least squares techniques with the use of
the SHELXTL package [35]. Atomic thermal displacement parameters for non-hydrogen atoms were
refined anisotropically. The positions of hydrogen atoms were calculated corresponding to their
geometrical conditions and refined using the riding model.

Polycrystalline samples were studied in 2θ range 5◦–60◦ on a DRON RM4 powder diffractometer
equipped with a CuKα source (λ = 1.5418 Å) and graphite monochromator for the diffracted beam.
Indexing of the diffraction patterns was done using data for compounds reported in the JCPDS-ICDD
database [36] and WINFIT 1.2.1 [37] program, which allowed a calculation of the quantitative phase
composition, the lattice parameters, and the crystallite size.

Thermal stability of coordination polymers was studied in inert (He) and oxidative (O2/Ar, 20%)
atmospheres. Thermogravimetric measurements were carried out on a NETZSCH thermobalance TG
209 F1 Iris. Open Al2O3 crucibles were used (loads 5–10 mg, heating rate 10 K·min−1).
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Excitation and emission spectra of complex 2 in the solid state were recorded using Fluorolog-3
FL3-22 spectrophotometer (Horiba Jobin Yvon, Edison, NJ, USA). The spectra were corrected for the
wavelength-dependent sensitivity of the detection.

3.2. Synthesis of Compounds

3.2.1. Synthesis of {[Ag(µ2-Pz4)(NO3)]·DMF}n (1)

A suspension of 29.4 mg Pz4 (0.1 mmol) in 5 mL of EtOH was added to 17.0 mg of AgNO3

(0.1 mmol) in glass vial. The mixture was stirred in the dark for 24 h at room temperature. During the
first few hours of the synthesis initially undissolved needles of Pz4 disappear and colorless powder
forms. The formed powder was then dissolved in 4 mL of DMF and left at room temperature in the
dark. After three days colorless crystals formed at the bottom of the vial. They were filtered and washed
twice with 4 mL of DMF and then dried on air for a few hours in the dark. The yield was 24.0 mg
(45%). IR bands, cm−1: 1520 (Pz), 1390, 1294 (ν3), 1093 (ν1), 1051 (Pz), 770 (ν4). Elemental analysis:
found, %: C 35.5, H 3.2, N 26.8; calculated (AgC14H14N9O3·DMF), %: C 38.0, H 3.9, N 26.1.

3.2.2. Synthesis of [{Ag(µ2-Pz4)(NO3)}n] (2)

A suspension of 32.6 mg Pz4 (0.11 mmol) in 1 mL of DMF was added to 19.8 mg of AgNO3

(0.12 mmol) in glass vial. The mixture was stirred for 10 min at room temperature and then placed into
an oven at 95 ◦C. After 8 h of heating the vial was allowed to cool to room temperature in the dark.
After one day the crystals initially formed on the bottom increased in size. They were filtered and
washed twice with 1 mL of DMF and then dried on air. The yield is 39.5 mg (77%). IR bands, cm−1:
1521 (Pz), 1393, 1309 (NO3, ν3), 1093 (NO3, ν1), 1054 (Pz), 755 (NO3, ν4). Elemental analysis: found, %:
C 36.3, H 3.0, N 27.4; calculated (AgC14H14N9O3), %: C 36.2, H 3.0, N 27.2.

4. Conclusions

In summary, synthesis and structural peculiarities of two new linear light- and air-stable silver-Pz4

coordination polymers have been discussed. The investigation of the thermal properties of coordination
polymers 1 and 2 revealed them to be stable up to 230 ◦C both in inert and oxidative atmospheres.
The formation of silver nanoparticles with a narrow size distribution and the independence of particle
size from thermolysis conditions demonstrate the possibility of using silver-Pz4 coordination polymers
for the generation of carbon-coated silver nanoparticles.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/6/11/138/s1,
Figure S1: IR spectra of coordination polymers 1 and 2.
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Appendix A

Crystallographic data for the structural analysis have been deposited with the Cambridge
Crystallographic Data Centre, CCDC No. 1499779 for compound 1 and 1499780 for compound 2.
Copies of the data can be obtained free of charge from the Cambridge Crystallographic Data Centre,
12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-1223-336-033; e-mail:deposit@ccdc.cam.ac.uk).
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