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Abstract: Reaction of Co(NCS)2 with 4-(hydroxymethyl)pyridine (hmpy) leads to the
formation of six new coordination compounds with the composition [Co(NCS)2(hmpy))4] (1),
[Co(NCS)2(hmpy)4] ˆ H2O (1-H2O), [Co(NCS)2(hmpy)2(EtOH)2] (2), [Co(NCS)2(hmpy)2(H2O)2]
(3), [Co(NCS)2(hmpy)2]n¨4 H2O (4) and [Co(NCS)2(hmpy)2]n (5). They were characterized by single
crystal and powder X-ray diffraction experiments, thermal and elemental analysis, IR and magnetic
measurements. Compound 1 and 1-H2O form discrete complexes, in which the Co(II) cations are
octahedrally coordinated by two terminal thiocyanato anions and four 4-(hydroxymethyl)pyridine
ligands. Discrete complexes were also observed for compounds 2 and 3 where two of the hmpy
ligands were substituted by solvent, either water (3) or ethanol (2). In contrast, in compounds 4
and 5, the Co(II) cations are linked into chains by bridging 4-(hydroxymethyl)pyridine ligands. The
phase purity was checked with X-ray powder diffraction. Thermogravimetric measurements showed
that compound 3 transforms into 5 upon heating, whereas the back transformation occurs upon
resolvation. Magnetic measurements did not show any magnetic exchange via the hmpy ligand
for compound 5.

Keywords: coordination compounds; thiocyanate; crystal structures; thermal properties; magnetic
properties; Rietveld refinement

1. Introduction

The synthesis of new coordination polymers with desired physical properties is a major field in
coordination chemistry [1–4]. For this purpose, structure–property relationships are investigated
systematically and strategies for a rational construction of their crystal structures are required.
Compounds that consist of paramagnetic metal cations are of particular interest because they can
show different magnetic properties and thus it is not surprising that an increasing number of new
compounds were recently reported [5–14]. One group of these compounds are transition metal
thiocyanato coordination polymers, which show a variety of different coordination modes including
the terminal and the bridging coordination, with the latter being of special importance because
cooperative magnetic properties can be expected [15–34]. This is one reason why we are especially
interested in thio- and selenocyanato coordination polymers, in which the metal centers are connected
into chains by pairs of µ-1,3-bridging anionic ligands [35–47].

Metal thiocyanates with 4-(hydroxymethyl)pyridine (hmpy) are of particular interest as hmpy is
known to act as terminal ligand, coordinating mainly via the pyridine N atom to the metal centers.
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It is noted, that a few coordination compounds with this ligand were recently reported, which
showed only coordination by the pyridine N atom except for two different metal complexes [48–53].
In the case of a copper(II)dipiconilate-4-(hydroxymethyl)pyridine coordination compound, the Cu(II)
cations are linked by 4-(hydroxymethyl)pyridine ligands into chains, which was also observed in
Ni(NCS)2(4-(hydroxymethyl)pyridine)2 [53,54].

Co(II) thiocyanate coordination compounds are of general interest because whenever Co(II)
cations form polymeric chains with thiocyanato anions and are additionally coordinated by terminal
N-bonded co-ligands, a slow relaxation of the magnetization might be observed, which can
be traced back to the relaxation of single chains [44–47]. In this context, it is noted that for
[Cd(N3)2(4-(hydroxymethyl)pyridine)2]n a crystal structure is found that is close to that of our desired
compound [52]. In this compound, the Cd cations are linked by alternating µ-1,3 and µ-1,1 anionic azide
anions into chains and are additionally coordinated by only N-bonded 4-(hydroxymethyl)pyridine
ligands. However, a µ-1,1 coordination of the thiocyanate anions is very rare and therefore, for the
desired compound, if it exists, one would expect alternating chains of only µ-1,3 bridging anionic
ligands. Therefore, Co(NCS)2 was reacted in different molar ratios with 4-(hydroxymethyl)pyridine in
several solvents. Five different coordination complexes were obtained, which were characterized by
single crystal and X-ray powder diffraction (XRPD), thermal analysis, magnetic measurements and
IR spectroscopy.

2. Results and Discussion

2.1. Synthetic Aspects

Co(NCS)2 mixed with 4-(hydroxymethyl)pyridine in different stoichiometric ratios in different
solvents (e.g., water, methanol, ethanol and acetonitrile) formed five different crystalline materials.
According to elemental and thermogravimetry (TG) analysis, the compositions of the compounds
are Co(NCS)2(hmpy)4 (1), Co(NCS)2(hmpy)4 ˆ H2O (1-H2O), Co(NCS)2-(hmpy)2(EtOH)2 (2),
Co(NCS)2(hmpy)2-(H2O)2 (3) and Co(NCS)2(hmpy)2 (5). Additionally, single crystals of a further
compound of composition Co(NCS)2(4-(hmpy))2¨4 H2O (4) were obtained.

2.2. Crystal Structures

2.2.1. Co(NCS)2(4-(hydroxymethyl)pyridine)4 (1) and Co(NCS)2(4-(hydroxymethyl)pyridine)4
ˆ H2O (1-H2O)

Compound 1 crystallizes in the orthorhombic space group P212121 with four formula units in
the unit cell (Table 1). The asymmetric unit consists of one cobalt cation, two thiocyanate anions and
four 4-(hydroxymethyl)pyridine ligands lying on general positions (Figure 1a and Figure S1 in the
Supplemental Material). The CoN6 octahedra are slightly distorted and the metal nitrogen distances
are in the range of 2.099(3) to 2.179(2) Å and the angles are in the range of 88.06(9) to 92.66(9)˝ and
from 176.27(9) to 178.42(10)˝ (Table S1 in the Supplementary Material). The discrete complexes are
connected by intermolecular O-H¨ ¨ ¨ S hydrogen bonds between the H atom of the hydroxyl group
and the thiocyanato S atom into layers that are parallel to the ab plane (Figure 1b and Table S2 in the
Supplementary Material).

For compound 1-H2O, no single crystals were obtained. The powder pattern of this compound is
similar to the one from the corresponding Ni compound, which was recently reported [53]. Rietveld
analysis of 1-H2O (see Experimental Section, Table 1 and Figure S2 in the Supplementary Material)
confirmed that both complexes are isostructural. 1-H2O crystallizes in the cubic space group Pn-3n
with six formula units in the unit cell. The crystal structure consists, similar to compound 1, of discrete
complexes, in which the Co(II) cations are coordinated by two N-bonded thiocyanate anions and
four 4-hydroxypyridine ligands in an octahedral fashion (Figure S3 in the Supplementary Material).
The crystal packing led to the formation of voids in which additional water is embedded. 1-H2O
contains roughly 2 water molecules per sum formula, determined from XRPD. The water shows
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a similar disorder as in the isostructural Ni-complex (two orientations, both on special positions,
threefold rotoinversion and three-fold axis, respectively). The presence of water was confirmed by
thermogravimetric analysis.

Table 1. Selected crystal data and details on the structure determinations for compounds 1, 2, 3 and 4.

Compound 1 2 3 4

Formula C26H28CoN6O4S2 C18H26CoN4O4S2 C14H18CoN4O4S2 C14H22CoN4O6S2

MW/g mol´1 611.59 485.48 429.37 465.40
crystal system orthorhombic monoclinic orthorhombic triclinic
space group P212121 C2/c Pbca P1

a/Å 11.5440(3) 9.0056(4) 12.3007(5) 7.3858(7)
b/Å 14.3213(3) 16.1092(7) 7.7432(5) 7.6952(6)
c/Å 17.6437(4) 16.3412(8) 19.3263(14) 9.4172(9)
β/˝ 90 95.446(4) 90 70.828(10)

V/Å3 2916.95(12) 2359.97(19) 1840.77(16) 491.53(8)
T/K 200(2) 200(2) 200(2) 200(2)

Z 4 4 4 1
Dcalc/mg¨ cm´3 1.393 1.366 1.549 1.572

µ/mm´1 0.773 0.933 1.1185 1.123
θmax/deg 1.83 to 27.96 2.53 to 27.51 2.11 to 27.94 2.35 to 27.91

measured refl. 31835 11473 13046 5125
unique refl. 6972 2700 2190 2277

Refl. (F0 > 4σ(F0)) 6397 2299 1808 1952
parameter 356 151 116 126

Rint 0.0525 0.0402 0.0441 0.0335
R1 (F0 > 4σ(F0)) 0.0343 0.0514 0.0473 0.0406
wR2 (all data) 0.0708 0.1217 0.1134 0.1115

GOF 1.106 1.074 1.132 1.043
∆ρmax/min/e Å´3 0.276/´0.322 0.710/´0.803 0.475/´0.527 0.541/´0.555
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Figure 1. Crystal structure of 1 with view of the coordination sphere (a) and along the crystallographic
a axis with intermolecular hydrogen bonding shown as dashed lines (b). The ORTEP plot is shown in
Figure S1 in the Supplementary Material.
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2.2.2. Co(NCS)2(4-(hydroxymethyl)pyridine)2(EtOH)2 (2) and
Co(NCS)2(4-(hydroxymethyl)pyridine)2(H2O)2 (3)

Compounds 2 and 3 form simple solvate complexes, in which the Co(II) cations are coordinated by
two terminally bonded thiocyanate anions, two terminally bonded 4-(hydroxymethyl)pyridine ligands,
and two ethanol, respectively, water molecules with a slightly distorted octahedral coordination
geometry (Figure 2, Figures S4 and S5 in the Supplementary Material).
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coordination sphere of the Co(II) cations. ORTEP plots of 2 and 3 can be found in Figures S4 and S5 in
the Supplementary Material.

Compound 2 crystallizes in the monoclinic space group C2/c with four formula units in the unit
cell. The Co(II) cations are located on two-fold rotation axes, whereas complex 3 crystallizes in the
orthorhombic space group Pbca with Z = 4 and the cobalt cations located on inversion centers (Table 1).

Although compounds 2 and 3 show a six-fold coordination of the cations, the coordination is
different: In compound 2 the anionic ligands are trans coordinated, whereas the N-donor co-ligands
and the ethanol molecules are cis coordinated (Figure 2a). In contrast, in compound 3 all ligands are
trans coordinated, which is somewhat surprising because the ethanol molecules might occupy more
space than water molecules (Figure 3b). The cobalt nitrogen distances in compound 2 are in the range
of 2.078(3) to 2.158(2) Å while the cobalt oxygen distances are around 2.078(3) Å with angles ranging
from 86.26(12) to 91.90(10)˝ and from 175.51(9) to 176.8(10)˝ (Table S3 in the Supplementary Material).
For compound 3, the cobalt nitrogen distances are in the range of 2.085(3) Å to 2.180(3) Å and the
cobalt oxygen distances are 2.101(2) Å with bonding angles in the range of 86.80(10) to 91.20(10)˝ and
of 180 (Table S3 in the Supplementary Material).

In compound 2 the discrete complexes are connected by intermolecular O–H¨ ¨ ¨ S hydrogen
bonding between the H atom of the methanol group of the 4-(hydroxymethyl)pyridine ligand and
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the thiocyanato S atom of a neighbored complex into chains along the crystallographic b axis. These
chains are further connected into layers by intermolecular O–H¨ ¨ ¨ O hydrogen bonding between the
hydroxyl H atom of the ethanol molecules of one complex and the hydroxyl O atom of a neighboring
complex (Figure 3a and Table S4 in the Supplementary Material).
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the crystallographic b axis (b). Intermolecular hydrogen bonding is shown as dashed lines.

In compound 3, the complexes are connected by intermolecular O–H¨ ¨ ¨ O hydrogen bonding
between the methanol group of the 4-(hydroxymethyl)pyridine ligand and the water molecule into
chains, that are further linked into layers by additional intermolecular O–H¨ ¨ ¨ S hydrogen bonding
between the H atoms of the water molecules and the thiocyanate S atoms of neighbored complexes
(Figure 3: bottom and Table S4 in the Supplementary Material).

2.2.3. [Co(NCS)2(4-(hydroxymethyl)pyridine)2]n¨4 H2O (4)

Compound 4 crystallizes in the triclinic space group P1 with 1 formula unit in the unit cell (Table 1).
The Co(II) cation lies on a special position and is octahedrally coordinated by four µ-1,6 bridging
4-(hydroxymethyl)pyridine ligands and two terminally N bonded thiocyanate anions (Figure 4a and
Figure S6 in the Supplementary Material). The cobalt nitrogen distances are in the range of 2.078(2)
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to 2.1603(18) Å and the cobalt oxygen distances amount to 2.1412(15) Å with bonding angles in the
range of 88.18(7) to 91.82(7)˝ and 180˝ (Table S5 in the Supplementary Material). The crystal structure
consists of four water molecules per sum formula, located between the 1D polymers (Figure 4).

The Co(II) cations are linked by pairs of the 4-(hydroxymethyl)pyridine ligands into chains
that elongate in the direction of the crystallographic a axis (Figure 4a). These chains are further
linked via hydrogen bonding to the solvate water molecules. Intermolecular O–H¨ ¨ ¨ S hydrogen
bonds are observed between H atoms from water molecules or from the hydroxyl group of the
4-(hydroxymethyl)pyridine ligand and the thiocyanate S atoms of neighboring chains (Figure 4b). The
water molecules are also linked to the hydroxyl group by intermolecular O–H¨ ¨ ¨ O hydrogen bonding
(Figure 4b and Table S6 in the Supplementary Material).
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2.2.4. [Co(NCS)2(4-(hydroxymethyl)pyridine)2]n (5)

No single crystals were obtained for compound 5. Its crystal structure was determined from
XRPD data by refining the recently reported, isostructural Ni-complex (see Experimental Section,
Table 1 and Figure S7 in the Supplementary Material) [53]. [Co(NCS)2(hmpy)2] crystallizes in the
monoclinic space group P21/c with four formula units in the unit cell and all atoms lying on general
positions. The Co(II) cations are coordinated by one terminal and two bridging thiocyanate anions
groups as well as one terminal and two bridging 4-(hydroxymethyl)pyridine ligands and show a
slightly distorted octahedral coordination geometry (Figure 5). Half of the thiocyanate anions are
connecting two neighboring cobalt ions, which are further connected by the ligand hmpy to form a zig
zag polymer along the [100] direction.
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Based on the crystal structure, X-ray powder patterns were calculated and compared with
the experimental pattern. Careful inspection of the measured powder pattern revealed that most
of the compounds were obtained as pure phase, except for some batches of compounds 2 and 4
(Figures S8–S13 in the Supplementary Material). In both cases, some additional, weak reflections
appeared in the measured pattern, indicating not further characterized impurities. This is not really
surprising because so many related compounds were obtained, so it is assumed that they exist in
equilibrium in solution. Moreover, compound 4 was found to be quite unstable and easily loses the
water molecules. This is also the case for the ethanol solvate 2 which loses some of the solvent even
at room-temperature.

2.3. IR Spectroscopy

All compounds were measured by IR-spectroscopy, to investigate if the coordination mode of the
anionic ligands can be determined from the value of the asymmetric CN stretching vibration. Usually
for compounds with terminally N-bonded thiocyanato anions a value below 2100 cm´1 is expected,
whereas for µ-1,3 bridging thiocyanato anions this vibration should be observed above 2100 cm´1 [38].
It is noted that for some compounds these regions overlap and a definite decision cannot be made.
This is especially the case for discrete complexes with terminally N-bonded anionic ligands, where the
metal centers are additionally coordinated by O-donor ligands like, e.g., water. In this case this value
is usually shifted to higher wavenumbers [30].

However, for compounds 1 and 1-H2O the value of the CN stretching vibration is observed at
2073 cm´1 and 2084/2095 cm´1 indicating an N-terminal coordination of the thiocyanato anions,
which is in agreement with the crystal structure (Figures S14 and S15 in the Supplementary Material).
For the solvate complexes 2 and 3, the CN stretching vibration is observed at 2090 and 2115 cm´1

and at 2098 and 2111 cm´1, which is at the border line between the values expected for terminal and
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bridging NCS ligands (Figures S16 and S17 in the Supplementary Material). However, as mentioned
above they are shifted to higher values, because in both compounds the Co(II) cations are additionally
coordinated by oxygen atoms from the hydroxyl group. For compound 4, the CN vibration occurs
at 2092 cm´1, which is reasonable because the cations are coordinated by terminal anions and only
N-bonded 4-(hydroxymethyl)pyridine ligands (Figure S18 in the Supplementary Material). Finally, for
compound 5, the CN vibrations are found at 2115, 2092 and 2098 cm´1, which again is consistent with
the results of the structure determination showing both terminal and bridging NCS ligands (Figure S19
in the Supplementary Material).

It is noted that all five compounds show very broad bands above 3000 cm´1, which belong to the
O-H stretching-vibration of the hmpy ligand.

2.4. Thermoanalytical Measurements

To investigate the thermal properties of the compounds, measurements using simultaneously
differential thermoanalysis and thermogravimetry (DTA-TG) were performed. In this context it was
checked if a different, e.g., metastable modification of [Co(NCS)2(4-(hydroxymethyl)pyridine)2]n can
be obtained as recently reported for other ligands [22,24,30].

Compound 1 shows two very poorly resolved mass steps in the TG curve upon heating, which are
accompanied by endothermic signals in the DTA curve (Figure 6 and Figure S20 in the Supplementary
Material). The experimental mass loss of the first TG step (∆m(exp) = 39%) is in reasonable
agreement with the calculated mass loss assuming the loss of two 4-(hydroxymethyl)pyridine ligands
(∆m(calc) = 36%). The thermogravimetric curve of 1-H2O looks similar, except that a further mass
loss is observed at lower temperatures, which is associated with the removal of water molecules,
which are located in the crystal cavities (Figure 6 and Figure S20 in the Supplementary Material). In
order to check whether the water removal leads to compound 1, as it was recently reported for the
isostructural Ni-complex [53], the measurement was repeated and interrupted after the first mass loss.
XRPD investigations showed, that a phase of poor crystallinity was obtained, which could neither be
identified nor indexed.
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TG measurements of compound 2 and 3 showed a subsequent mass loss. The first step was
associated with a desolvation process (∆m(calc) = 19% for 2 and 8.4% for 3) (Figure 6 and Figure S21 in
the Supplementary Material). The calculated and measured ∆m for compound 4 deviates, which was
attributed to its instability and therefore partial desolvation upon storage (Figure 6 and Figure S22 in
the Supplementary Material).

To identify the intermediates, which were formed by removal of the 4-(hydroxymethyl)pyridine
ligand respectively water or ethanol, the TG measurements were repeated and stopped after the
corresponding steps and the isolated residues were investigated by XRPD (Figure 7).Crystals 2016, 6, 38 9 of 16 
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The residue of 1 is amorphous, observed by XRPDdata, while compounds 2, 3 and 4 transformed
into [Co(NCS)2(4-(hydroxymethyl)pyridine)2]n (5), which was obtained as a pure phase (Figure 7).
It is noted that after removal of all ligands in several cases good crystalline powders are observed that
consists of Co(NCS)2.

2.5. Resolvation

To investigate if compound 1 can be transformed into 1-H2O, a saturated solution of 1 with an
excess of solid was stirred in water and the residue was investigated by XRPD (Figure 8). Comparison
of the measured powder pattern proofed that 1 completely transforms into 1-H2O.
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In additional experiments, compound 5 was soaked either in water or ethanol and the compounds
were investigated by XRPD afterwards. Compound 5 can transform into the hydrated form 3, after
soaking in water for three days (Figure 9), whereas no transformation was observed after the treatment
in ethanol. No transformation of compound 5 takes place while kept in an aqueous or EtOH atmosphere
for several days.Crystals 2016, 6, 38 10 of 16 
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2.6. Magnetic Investigations

For compound 5, the temperature dependence of the susceptibility was measured at
HDC = 1000 Oe. The χM versus T curve shows a steady increase with decreasing temperature, which
indicates only paramagnetic behavior (Figure 10).
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The χMT value decreases on cooling, which is indicative for dominating antiferromagnetic
interactions (Figure 10). The analysis of the magnetic data according to the Curie–Weiss law results in
a negative Weiss constant of θ = ´18.85 K and is therefore in agreement with the antiferromagnetic
interactions. Calculations of the Curie constant yielded a value of 3.37 cm3¨ K¨ mol´1, from which an
experimental effective magnetic moment of 5.19 µB was calculated. This value is slightly higher than
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the theoretical value of 3.87 µB for Co2+ in a high spin configuration and this can be traced back to the
strong spin-orbit coupling for Co(II). AC measurements show a steady increase of the susceptibility
in χM

1 and no signal in χM
11 as expected for only paramagnetic behavior and this behavior is also

indicated by filed dependent magnetic measurements (Figures S23 and S24 in the Supplementary
Material). Therefore, this ligand does not mediate strong magnetic exchange, but it cannot be excluded
that some magnetic order is observed at very low temperatures.

3. Experimental Section

3.1. General

4-(hydroxymethyl)pyridine and Co(NCS)2 were obtained from Alfa Aesar (Ward Hill, MA,
USA). All chemicals and solvents were used without further purification. Crystalline powders of all
compounds were prepared by stirring the reactants in the respective solvents at room temperature.
The residues were filtered and washed with appropriate solvents and dried in air. The purity of all
compounds was checked by XRPD and elemental analysis.

3.2. Synthesis of Compound 1

Single crystals suitable for single crystal X-ray diffraction were prepared by the reaction of
Co(NCS)2 (26.3 mg, 0.15 mmol) and 4-(hydroxymethyl)pyridine (65.5 mg, 0.60 mmol) in 1.5 mL
acetonitrile at room temperature for 1 d. A crystalline powder was synthesized by stirring Co(NCS)2

(87.6 mg, 0.50 mmol) and 4-(hydroxymethyl)pyridine (218.6 mg, 2.0 mmol) in 1.5 mL acetonitrile for
2 d. Yield: 75% elemental analysis calc. (%) for C26H28CoN6O4S2: C 51.06, H 4.61, N 13.74; S 10.49;
found C 50.4, H 4.49, N 13.25, S 9.90. IR (ATR): νmax = 3410 (b), 3056 (w), 2884(w), 2806 (w), 2082 (s),
1613 (s), 1562 (m), 1504 (s), 1561 (m), 1453 (w), 1420 (s), 1337 (m), 1221 (s), 1100 (m), 1046 (s), 1016 (s),
804 (s), 726 (m), 603 (m), 486 (m).

3.3. Synthesis of Compound 1-H2O

A crystalline powder was synthesized by stirring Co(NCS)2 (87.6 mg, 0.50 mmol) and
4-(hydroxymethyl)pyridine (272.8 mg, 2.50 mmol) at room temperature in 3 mL water for 1 d. Yield:
82% elemental analysis calc. (%) for C26H30CoN6O5S2: C 49.60, H 4.80, N 13.35; S 10.19; found C
48.57, H 4.87, N 12.69, S 9.67. IR (ATR): νmax = 3405 (b), 3065 (w), 2865(w), 2805 (w), 2071 (s), 1613 (s),
1561 (m), 1503 (w), 1451 (w), 1422 (s), 1337 (m), 1221 (s), 1099 (m), 1049 (s), 1016 (s), 805 (s), 724 (m),
603 (m), 482 (s).

3.4. Synthesis of Compound 2

Single crystals suitable for single crystal X-ray diffraction were prepared by the reaction of
Co(NCS)2 (26.3 mg, 0.15 mmol) 4-(hydroxymethyl)pyridine (32.7 mg, 0.30 mmol) at room temperature
in 1.5 mL ethanol. A crystalline powder was synthesized by stirring Co(NCS)2 (175.1 mg, 1.00 mmol)
and 4-(hydroxymethyl)pyridine (109 mg, 1.00 mmol) at room temperature in 3 mL ethanol for 1 d.
Yield: 62% elemental analysis calcd (%) for C18H26CoN4O4S2: C 44.53, H 5.40, N 11.54; S 13.21; found C
38.25, H 3.26, N 12.70, S 16.58. IR (ATR): νmax = 3250 (b), 3075 (w), 2980 (w), 2885(w), 2090 (s), 1613 (s),
1559 (m), 1506 (w), 1420 (s), 1375 (m), 1320 (w), 1221 (m), 1092 (m), 1046 (m), 1018 (s), 984 (m), 882 (w),
798 (s), 720 (w), 666 (s), 604 (s), 481 (s).

3.5. Synthesis of Compound 3

Single crystals suitable for single crystal X-ray diffraction were prepared by the reaction of
Co(NCS)2 (26.3 mg, 0.15 mmol) 4-(hydroxymethyl)pyridine (65.5 mg, 0.60 mmol) at room temperature
in 1.5 mL water. A crystalline powder was synthesized by stirring Co(NCS)2 (175.1 mg, 1.00 mmol) and
4-(hydroxymethyl)pyridine (109 mg, 1.00 mmol) at room temperature in 1 mL water for 5 d. Yield: 72%
elemental analysis calcd (%) for C14H18CoN4O4S2: C 39.16, H 4.23, N 13.05; S 14.94; found C 39.03, H
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4.16, N 13.62, S 14.77. IR (ATR): νmax = 3314 (b), 2889(w), 2862 (w), 2111 (s), 2098 (s), 1647 (m), 1614 (m),
1562 (m), 1503 (w), 1450 (w), 1422 (s), 1389 (w), 1358 (w), 1361 (w), 1225 (m), 1103 (m), 1036 (s), 1016 (s),
981 (m), 807 (s), 610 (s), 466 (s).

3.6. Synthesis of Compound 4

Single crystals suitable for single crystal X-ray diffraction were prepared by the reaction of
Co(NCS)2 (26.3 mg, 0.15 mmol) and 4-(hydroxymethyl)pyridine (37.7 mg, 0.30 mmol) in 1.5 mL water
at 105 ˝C in a closed glass culture tube. A crystalline powder was synthesized by stirring Co(NCS)2

(26.3 mg, 0.15 mmol) and 4-(hydroxymethyl)pyridine (32.7 mg, 0.30 mmol) at room temperature
in 1.5 mL water for 3 d. Yield: 80% elemental analysis calcd (%) for C14H22CoN4O6S2: C 36.13, H 4.76,
N 12.04; S 13.78; found C 35.93, H 4.00, N 11.73, S 13.72. IR (ATR): νmax = 3507 (b), 3445 (b), 3353 (b),
3144 (b), 2976 (w), 2937 (w), 2842 (w), 2092 (s), 1615 (m), 1564 (m), 1446 (w), 1422 (s), 1371 (w), 1221 (m),
1107 (w), 1069 (w), 1007 (s), 855 (s), 808 (s), 744 (w), 608 (s), 512 (s).

3.7. Synthesis of Compound 5

A crystalline powder was synthesized by stirring Co(NCS)2 (87.6 mg, 0.50 mmol) and
4-(hydroxymethyl)pyridine (109.1 mg, 1.00 mmol) in 3.0 mL water for 5 d. Yield: 74% elemental
analysis calcd (%) for C14H14CoN4O2S2: C 42.75, H 3.59, N 14.24; S 16.30; found C 42.00, H 3.46,
N 14.35, S 15.04. IR (ATR): νmax = 3426 (b), 3235 (b), 2886 (w), 2115 (s), 2098 (s), 2092 (s), 1615 (m),
1561 (w), 1504 (w), 1422 (s), 1391 (m), 1369 (m), 1324 (w), 1225 (m), 1198 (m), 1100 (w), 1039 (m),
1016 (s), 970 (m), 849 (s), 801 (s), 723 (w), 607 (s), 507 (m).

3.8. Elemental Analysis

CHNS analysis was performed using a EURO EA elemental analyzer, fabricated by EURO
VECTOR Instruments and Software.

3.9. IR Spectroscopy

The IR spectra were measured using an ATI Mattson Genesis Series FTIR Spectrometer, control
software: WINFIRST, from ATI Mattson (Midland, ON, Canada).

3.10. Differential Thermal Analysis and Thermogravimetry

The heating-rate dependent DTA-TG measurements were performed in a nitrogen atmosphere
(purity: 5.0) in Al2O3 crucibles using a STA-409CD instrument from Netzsch (Exton, PA, USA). All
measurements were performed with a flow rate of 75 mL¨ min´1 and were corrected for buoyancy and
current effects. The instrument was calibrated using standard reference materials.

3.11. Single-Crystal Structure Analysis

Single-crystal data collections were performed on an imaging plate diffraction system: Stoe IPDS-1
for 4 as well as Stoe IPDS-2 for 2, 3 with MoKα radiation. The structures were solved with Direct
Methods using SHELXS-97 and structure refinements were performed using least-squares methods
against F2 using SHELXL-2013. [55] Numerical absorption corrections were applied using X-RED and
X-SHAPE of the program package X-Area. All non-hydrogen atoms were refined with anisotropic
thermal displacement parameters. All hydrogen atoms were positioned with idealized geometry and
were refined isotropic with an Uiso(H) = ´1.2 Ueq(C) (1.5 for methyl H atoms) of the corresponding
parent atom using a riding model. The hydroxyl hydrogen atoms were located in the difference Fourier
map, their bond lengths were set to ideal values and finally they were refined using a riding model.
The disorder of the ethyl group in compound 2 was modeled using a split model. CCDC 1455775 (1),
CCDC 1455776 (1-H2O), CCDC 1455777 (2), CCDC 1455778 (3), CCDC 1455779 (4) and CCDC 1455780
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(5) contain the supplementary crystallographic data for this paper. These data can be obtained free of
charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html.

3.12. X-Ray Powder Diffraction

The measurements were performed using: (1) a PANalytical X’Pert Pro MPD Reflection Powder
Diffraction System with CuKα1 radiation (λ =1.540598 Å) equipped with a PIXcel semiconductor
detector from PANanlytical; (2) a Stoe Transmission Powder Diffraction System (STADI P) with CuKa1

radiation (λ = 1.540598 Å) equipped with a MYTHEN 1K1 detector and a Johannson-type Ge(111)
monochromator from STOE & CIE; and (3) a Stoe Stadi-P machine (Mo Kaα radiation, λ = 0.7093
Å), equipped with a MYTHEN 1K dector and a Johannson-type Ge(111) monochromator in Debye
Scherrer mode. Rietveld refinements [56] of 1-H2O and 5 were performed using TOPAS 5.0. [57].
Structure determination of compounds 1-H2O and 5 was performed by Rietveld refinements of the
corresponding isostructural Ni-complexes (Table 2). The profile function was described in both cases
with the fundamental parameter approach [55], while the background was modelled by Chebychev
polynomials of 12th and 11th order. The Rietveld refinement for compound 5 was carried out using
a rigid body model for describing the ligand hmpy, whereas the individual bond lengths of the
thiocyanate group were restrained. For both compound 1-H2O and 5, hydrogen atoms were fixed at
geometric calculated positions and an overall isotropic thermal displacement parameter was used for
all atoms.

Table 2. Selected crystal data and details of the Rietveld refinements for compounds 1-H2O and 5.

Compound 1-H2O 5

formula C26H31.4CoN6O5.7S2 C14H14CoN4O2S2
MW/g mol´1 641.83 393.35
Crystal system cubic monoclinic

Space group Pn3n:2 P21/c
a/Å 16.7494(6) 10.7088(6)
b/Å 16.7494(6) 20.2164(11)
c/Å 16.7494(6) 7.9016(4)
α/˝ 90 90
β/˝ 90 107.181(3)
γ/˝ 90 90

V/Å3 4698.9(5) 1634.32(15)
T/K 293 (2) 293 (2)

Z 6 4
Dcalc/mg¨ cm´3 1.355 1.599

µ/mm´1 0.7468 1.35197
λ/Å 0.7093 0.7093

θmax/deg 2.00 to 49.80 2 to 49.80
Rwp/% a 5.54 4.84
Rp/% a 4.33 3.66

Rexp/% a 1.76 1.67
RBragg/% a 4.01 2.89

Note: a as defined in TOPAS [56].

3.13. Magnetic Measurements

All magnetic measurements were performed using a PPMS (Physical Property Measurement
System) from Quantum Design, which was equipped with a 9 Tesla magnet. The data were corrected
for core diamagnetism.
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4. Conclusions

In the present contribution, investigations on new cobalt(II) thiocyanato coordination compounds
with 4-(hydroxymethyl)pyridine as ligand are reported, with the major goal to prepare a 1D compound
in which the Co(II) cations are linked by the anionic ligands into chains. Even if several new compounds
were discovered and analyzed with single crystal and powder X-ray diffraction, thermal and elemental
analysis, magnetic and IR measurements, most of them consist of simple discrete complexes that are
coordinated in part by additional solvent molecules. One of these compounds (5) exhibits a composition
that corresponds to that, expected for the desired compound but unfortunately, its crystal structure
consists of only Co(NCS)2 dimers that are linked into chains by the 4-(hydroxymethyl)pyridine ligand.
Some of these compounds can be thermally decomposed, which either leads to amorphous products
or to the formation of 5. There is no indication for the formation of a further modification with the
desired structural features, even if a similar structure is known for the corresponding azido compound
with Cd(II) as cation.

Supplementary Materials: The supplementary materials are available online at www.mdpi.com/2073-4352/
6/4/38/s1. IR spectra, DTA-TG curves, experimental and calculated X-ray powder patterns as well as tables with
selected bond lengths and angles.
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