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Abstract: Good model systems are required in order to understand crystal growth processes
because, in many cases, precise incorporation processes of atoms or molecules cannot be visualized
easily at the atomic or molecular level. Using a transmission-type optical microscope, we have
successfully observed in situ adsorption, desorption, surface diffusion, lattice defect formation, and
kink incorporation of particles on growth interfaces of colloidal crystals of polystyrene particles
in aqueous sodium polyacrylate solutions. Precise surface transportation and kink incorporation
processes of the particles into the colloidal crystals with attractive interactions were observed in situ
at the particle level. In particular, contrary to the conventional expectations, the diffusion of particles
along steps around a two-dimensional island of the growth interface was not the main route for
kink incorporation. This is probably due to the number of bonds between adsorbed particles and
particles in a crystal; the number exceeds the limit at which a particle easily exchanges its position to
the adjacent one along the step. We also found novel desorption processes of particles from steps to
terraces, attributing them to the assistance of attractive forces from additionally adsorbing particles
to the particles on the steps.

Keywords: colloidal crystal; polystyrene particle; sodium polyacrylate; attractive interaction; surface
diffusion; incorporation process

1. Introduction

Growth kinetics of colloidal crystals have attracted a great deal of attention as model crystallization
systems, since it has been expected that the incorporation processes of particles into crystals would
be easily observed in situ using optical microscopes at the particle level [1,2]. After some pioneering
experiments, extensive fundamental studies on colloidal crystals have been conducted so far [3–21].
On the other hand, the application of colloidal crystals as photonic bandgap (PBG) crystals has also
received much attention. After the first proposal of the concept of PBG crystals [22], many studies on
the application of colloidal crystals as PBG crystals have been examined [23–32]. Even most recently,
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both fundamental and application studies of colloidal crystals have been published actively and
continuously [33–55].

However, almost all systems reported so far have mainly utilized repulsive interactions between
particles for colloidal crystallization basically [1–18,20,21,25–40,42–44], whereas the growth of crystals
of atoms or molecules usually proceeds via attractive interactions. In such systems, in situ observation
of growth interfaces of colloidal crystals by optical microscopy is usually difficult because of high
particle concentrations. Although a few exceptions have shown the dynamic character of growth
interfaces of colloidal crystals at the particle level and claimed the existence of attractive interactions
between particles [56–58], these studies involved only in situ observation of cross sections of the
growth interfaces; there are no reports on the two-dimensional dynamics of particles on the growth
interfaces. Furthermore, particles in the crystals in those studies separated from each other; repulsive
interactions were still dominant.

If attractive interactions between particles can be utilized for colloidal crystallization, we can
achieve in situ observation of particle incorporation into crystals on the growing surface from a dilute
dispersion of particles at the particle level. However, van der Waals attraction between large particles
often causes irreversible coagulation, owing to a deep primary minimum of its potential curve of
the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory [59]; van der Waals attraction is too strong
to allow particles to reversibly attach to and detach from each other. Thus, we focus on depletion
interaction between large particles that are suspended in a dilute polymer electrolyte solution as the
second candidate [60]. The depletion interaction is also an attractive interaction, whereas a reversible
formation of crystalline aggregate has been reported by Kose and Hachisu [61]. Although those
authors showed clear microscopic images that indicate layer-by-layer stacking of two-dimensional
regular arrays of polystyrene particles at the particle level, they did not focus on the surface
dynamics of the particles. Although Toyotama et al. recently studied particle-level eutectic-formation
processes from binary and ternery mixtures of polystyrene particles in depletion-induced attractive
colloidal crystals [62], there are still a lot of unclarified elementary processes of crystal growth in this
depletion-induced colloidal crystallization system.

In this study, we first use an optical microscope to examine adsorption, desorption, and diffusion
of polystyrene particles on 2D regular arrays (crystals) of the particles in an aqueous sodium
polyacrylate solution that induces depletion interactions between particles. We then examine lattice
defect formation and incorporation processes of the particles into the crystals.

2. Results and Discussion

2.1. In Situ Observation of Growth Interface of Crystals

Growth surfaces of colloidal crystals were observed simply by using a 100ˆ oil immersion
objective (Figure 1). Not only the first layer of the crystals, but also the first three layers were easily
resolved at the particle level. Particles on a layer moved around from one specific lattice position
to another rather discretely, while those in bulk suspension moved continuously via normal bulk
Brownian motion at the same time (Video S1). Such “hopping” behaviors of particles between
adjacent lattice cites would provide more detailed information about activation processes of surface
diffusion, if we conduct higher-frame-rate observation using high-speed cameras as the future works.
Straight-shaped steps were also confirmed at the edges of a layer. From the viewpoint of periodic
bond chain (PBC) theory [63], the straightness of the steps would reflect the strength of attractive
interactions between particles along the steps. Furthermore, roughness of the steps is a direct measure
of roughening transitions of steps. In the present setup, we can solve these problems by real-time
and dynamical analyses of particle incorporation processes into the steps. We will also conduct these
measurements in the near future.
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Figure 1. An obtained colloidal crystal containing three layers of regular arrays of polystyrene 
particles. Individual particles are clearly resolved at the particle level. The focal plane in this picture 
is adjusted at the third layer. 

2.2. Equilibrium Conditions 

Equilibrium conditions (solubility, melting point, saturation pressure, and so on) are 
prerequisites for the quantitative analysis of crystallization kinetics. Thus, we first tried to find the 
equilibrium condition at which the growth and dissolution rates of crystals are equal. To determine 
the equilibrium conditions, we recorded the growth processes of crystals with time. At first, crystals 
nucleated, started to grow, and then grew layer-by-layer up to several thicknesses and sizes. Finally, 
the growth rates approached zero asymptotically; the system seemed to reach equilibrium. After that, 
however, the crystals started to dissolve, and in several days the crystals had disappeared completely 
and quite amazingly (Figure 2). Thus, we could not determine the equilibrium conditions in this 
system at the present stage. Although we considered Ostwald ripening and observed all parts of the 
growth cell repeatedly, we could not find any larger crystals, and all particles over the entire volume 
in the cell completely re-dispersed at the end of every experiment. In addition, no leaks of particles 
out of the growth cell were observed. Some other slow relaxation processes (interaction between 
water molecules and polyacrylic ions, for instance) would take several days. Although the 
mechanism of re-dispersion has not been clarified yet, crystallization processes in the early stages (at 
least on the first day under the conditions shown in Figure 2, for instance) seemed to be normal. Thus, 
in this study we focus on the dynamical behavior of particles on the growth interface of colloidal 
crystals with attractive interactions only in the early stages. Of course, we have to keep in mind that 
this “crystallization” process is examined under a dynamic and non-equilibrium environment at the 
present stage. 

 
(a) (b)

Figure 2. Re-dispersion of particles from grown crystals. (a) 1 day after sample preparation; (b) 6 days 
after sample preparation. In a day, crystals grow up to several layers as shown in (a) at 25 °C. 
However, 3 days after sample preparation, the crystals start to dissolve, and 6 days after, the crystals 
have disappeared completely. 

Figure 1. An obtained colloidal crystal containing three layers of regular arrays of polystyrene particles.
Individual particles are clearly resolved at the particle level. The focal plane in this picture is adjusted
at the third layer.

2.2. Equilibrium Conditions

Equilibrium conditions (solubility, melting point, saturation pressure, and so on) are prerequisites
for the quantitative analysis of crystallization kinetics. Thus, we first tried to find the equilibrium
condition at which the growth and dissolution rates of crystals are equal. To determine the equilibrium
conditions, we recorded the growth processes of crystals with time. At first, crystals nucleated, started
to grow, and then grew layer-by-layer up to several thicknesses and sizes. Finally, the growth rates
approached zero asymptotically; the system seemed to reach equilibrium. After that, however, the
crystals started to dissolve, and in several days the crystals had disappeared completely and quite
amazingly (Figure 2). Thus, we could not determine the equilibrium conditions in this system at the
present stage. Although we considered Ostwald ripening and observed all parts of the growth cell
repeatedly, we could not find any larger crystals, and all particles over the entire volume in the cell
completely re-dispersed at the end of every experiment. In addition, no leaks of particles out of the
growth cell were observed. Some other slow relaxation processes (interaction between water molecules
and polyacrylic ions, for instance) would take several days. Although the mechanism of re-dispersion
has not been clarified yet, crystallization processes in the early stages (at least on the first day under
the conditions shown in Figure 2, for instance) seemed to be normal. Thus, in this study we focus
on the dynamical behavior of particles on the growth interface of colloidal crystals with attractive
interactions only in the early stages. Of course, we have to keep in mind that this “crystallization”
process is examined under a dynamic and non-equilibrium environment at the present stage.
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Figure 2. Re-dispersion of particles from grown crystals. (a) 1 day after sample preparation; (b) 6 days
after sample preparation. In a day, crystals grow up to several layers as shown in (a) at 25 ˝C. However,
3 days after sample preparation, the crystals start to dissolve, and 6 days after, the crystals have
disappeared completely.
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2.3. Surface Diffusion of Particles

The diffusion of particles on the growth interface of crystals was successfully observed as
described in Section 2.1. The surface diffusion coefficient Ds of particles was estimated using an
equation expressed as,

Ds “ xs
2{τ (1)

where xs is the mean displacement of an adsorbed particle and τ is the mean lifetime of an
adsorbed particle before being dissolved again into the surrounding solution [64]. Using 10 particles
which adsorbed, diffused on the growth interfaces, and desorbed again into the surrounding
solution, we directly measured xs and τ (Table 1). As a result, Ds of particles was calculated to be
(2 ˘ 1) ˆ 10´13 m2¨ s´1. This value is an order of magnitude smaller than the bulk diffusion coefficients
of polystyrene particles in aqueous polyelectrolyte solutions [65]. This is probably due to the activation
energy for surface diffusion; the activation barrier for surface diffusion is probably higher than that for
bulk diffusion in the solution. In addition, Video S1 shows that the speed of particle movements on a
growth interface is clearly lower than that in the bulk solution, for instance.

Table 1. xs and τ of 10 particles on growth interfaces.

Particle Number xs/ˆ10´6 m τ/s

1 1.0 6.83
2 1.6 6.12
3 0.5 4.62
4 1.0 6.09
5 0.9 5.48
6 1.7 12.00
7 1.3 10.51
8 0.8 9.16
9 1.7 10.35
10 1.2 8.37

2.4. Classification of Particle Incorporation Processes into Crystals

Particle incorporation processes were successfully observed at the particle level. Although solute
incorporation into a crystal is well known to be an important elementary process of crystallization,
to our knowledge there has been no direct and precise analysis of the process. First, we classified the
routes of particles to be finally incorporated into a crystal at a kink site, as schematically shown in
Figure 3.

Four routes are classified as follows.

‚ Kink incorporation processes via surface diffusion on lower layers
‚ Those via surface diffusion on upper layers
‚ Those via surface diffusion on lower layers and adsorption to the particle next to the kink site
‚ Those via direct incorporation from solution

Although, in general, another classification—that via diffusion along the steps—would be added
to this list, in the present study we did not observe kink incorporation via diffusion along the steps as
far as we know; particles desorbed from the steps before arriving at the kink sites. Only in the “special”
case of (c), particles incorporated into the kink site along the steps. Using 62 particles that were finally
incorporated into kink sites, the number distribution of the incorporation routes was confirmed and
are shown below as a bar graph (Figure 4).
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The borders between these layers are mono-particulate steps. Kinks on the steps indicate kink sites at 
which particles are finally incorporated into the crystal. Yellow circles represent the particles that are 
just incorporated into the crystal at the kink sites on the steps. (a) kink incorporation processes via 
surface diffusion on lower layers; (b) those via surface diffusion on upper layers; (c) those via surface 
diffusion on lower layers and adsorption to the particle at the edge of the kink site; (d) direct 
incorporation from the solution. Dashed and solid circles at both ends of arrows indicate particles at 
the previous and present positions, respectively. 

Figure 3. Schematic of the classification of particle incorporation processes into a kink site. Hexagons
indicate crystals. Gray and indigo parts show the first (lower) and second (upper) layers, respectively.
The borders between these layers are mono-particulate steps. Kinks on the steps indicate kink sites
at which particles are finally incorporated into the crystal. Yellow circles represent the particles that
are just incorporated into the crystal at the kink sites on the steps. (a) kink incorporation processes
via surface diffusion on lower layers; (b) those via surface diffusion on upper layers; (c) those via
surface diffusion on lower layers and adsorption to the particle at the edge of the kink site; (d) direct
incorporation from the solution. Dashed and solid circles at both ends of arrows indicate particles at
the previous and present positions, respectively.
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Figure 4. Number distribution of incorporation process routes. (a) to (d) indicate the same
classifications described in Figure 3. At the top of bars, schematics used in Figure 3 are placed.

These results indicate that surface diffusion processes (a) and (b) are major routes for kink
incorporation processes, although we have not fully confirmed whether (a) is more frequent than
(b) owing to Ehrlich-Schwoebel effects [66]. The difference would depend on the difference in the
area at this stage, since the order of magnitude of the size of the layers corresponds to that of xs in
this study. A second major process is via adsorption to the particle at the edge of the kink site (c).
Although a direct incorporation process from bulk solutions (d) is a minor one compared to the other
processes shown in Figure 4, the possibility of finally incorporating particles into a kink site using
this process is much greater than that of the diffusion process of particles along steps. These results
are probably attributable to the difference in the number of recovered bonds of adsorbed particles,
as shown in Figure 5. Dotted and solid circles represent the lower and upper layers, respectively.
A, E, and S particles in Figure 5 are those that are adsorbed and form respectively three, four, and
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five bonds with particles in a crystal. In the (a) and (b) processes, adsorbed particles are classified as
A particles. Therefore, the surface diffusion of A particles needs the activation energy to cut three
bonds of A particles and move to adjacent lattice points. In the (c) process, adsorbed particles are
classified as E particles. To move to the adjacent kink site, E particles should cut four bonds with
three particles of the lower layer and the edge particle at the kink site; this higher activation energy
for kink incorporation results in a clearly reduced probability that the (c) process will achieve kink
incorporation relative to the probability for the (a) or (b) processes.Crystals 2016, 6, 80 6 of 11 
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Figure 5. Schematic of adsorption conditions. A, E, and S particles are those that form respectively
three, four, and five bonds with particles in a crystal. Dotted and solid circles represent the lower and
upper layers, respectively.

Furthermore, S particles are adsorbed on steps and form five bonds; the probability that these
particles will arrive at the kink site via the diffusion along the steps probably becomes much lower
than the others.

2.5. Formation of Stacking Disorders

Formation processes of lattice defects were observed in situ at the particle level. Figure 6 shows the
formation of stacking disorders on the triangle lattice via two–dimensional nucleation and growth on
different lattice sites. Similar images of stacking disorders had been already observed in our previous
experiments, and we assumed that the stacking disorder was formed via two–dimensional nucleation
and growth of colloidal crystals on the wall of the growth container [35], whereas the image was an
ex-situ scanning-electron-microscope micrograph. Furthermore, the displacement of the boundary
between different stacking layers was observed. The movement of the boundary is mainly promoted
by the hopping of particles beyond the boundary between the different stacking layers. More detailed
observation on the formation of lattice defects are planned as a future work.

2.6. Particle Desorption from Steps by Attractive Forces from the Other Particles on the Terrace

Novel desorption processes of a particle on a step of growth surfaces were found. Desorption
occurred by the adsorption of other particles to the desorbing particle, as if the adsorbed particles
peeled the desorbing particle off the step (Figure 7). Although no textbook on crystal growth has dealt
with such a phenomenon, this occurrence seems to be naturally acceptable if the attractive interaction
between particles is considered. Actually, not only this “peeling off” but also other cooperative
rearrangements of multiple particles around steps were also observed. They also seemed to be
due to the attractive interactions between particles and will be reported elsewhere. More detailed
observation of these cooperative desorption and rearrangement of particles would be useful to clarify
the elementary processes on dissolution processes of normal crystals deeply.
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Figure 6. Formation processes of stacking disorders. (a) Two-dimensional nucleation on the first
triangular layer (90 min. after the injection of a particle dispersion into a growth cell); (b) Growth of the
nucleated layers (120 min); (c) Complete occupation of the second layer and formation of the boundary
between two different stacks (200 min); (d) Displacement of the boundary accompanied by the growth
of the third layers (280 min). Scale bar represents 10 µm.
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glass (Matsunami Glass Industries, Osaka, Japan, micro-cover glass 18 × 18 mm), spaced with 
polystyrene strips (Evergreen Scale Models, 14″ dimensional strips; Item 102 0.28 × 1.0 × 350 mm), 
and sealed with a silicone adhesive (Konishi, Osaka, Japan, #46842) as schematically shown in  
Figure 8. To suppress vaporization of water from the dispersion during experiments, liquid paraffin 
was injected around the strips and filled into possible pores or hollows in thin solidified adhesive 
layers between spacers and glasses. 

Figure 7. The time course of a “peeling off” process caused by the additional adsorption of a particle
from bulk solution onto the other particle on a step. (a) A particle approaches a top layer; (b) The
particle adsorbs to the edge particle of the layer; (c) The edge particle is desorbing from the layer with
the adsorbed particle; (d) The particle pair is completely peeled off the top layer of particles.

3. Materials and Methods

3.1. Materials

Polystyrene particles (Thermo Fischer Scientific, Waltham, MA, USA, 5065A (diameter
d = 0.65 mm)) was used without further purification or modification. Sodium polyacrylate (Kishida
Chemical, Osaka, Japan, molecular weight Mw = 22,000~66,000) was used as the crystallizing
agent and without further purification. 0.6% (volume fraction φ = 0.006) polystyrene particles and
2.5 ˆ 10´4 g¨mL´1 sodium polyacrylate were dissolved into Milli-Q water (Millipore, resistivity is
larger than 18.2 MΩ¨ cm) just before the experiments were started.

3.2. Methods

An inverted microscope (Nikon, Tokyo, Japan, TE-2000U) was used with a 100ˆ oil immersion
objective (Nikon, CFI Plan Achromat 100ˆ oil). Crystal growth in particle dispersion was observed
using a handmade observation cell (Figure 7). The dispersion of particles is sandwiched between
a glass slide (Matsunami Glass Industries, Osaka, Japan, micro-slide glass S1126 76 ˆ 26 mm) and
cover glass (Matsunami Glass Industries, Osaka, Japan, micro-cover glass 18 ˆ 18 mm), spaced with
polystyrene strips (Evergreen Scale Models, 14” dimensional strips; Item 102 0.28 ˆ 1.0 ˆ 350 mm),
and sealed with a silicone adhesive (Konishi, Osaka, Japan, #46842) as schematically shown in Figure 8.
To suppress vaporization of water from the dispersion during experiments, liquid paraffin was injected
around the strips and filled into possible pores or hollows in thin solidified adhesive layers between
spacers and glasses.
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Figure 8. Schematic of an in situ observation cell. Settled particles on the cover glass formed crystals. 
Growth processes of the crystals were precisely observed using an oil immersion objective. A right 
inset figure shows the arrangement of spacers cut into four pieces (0.28 × 1.0 × 10 mm) on the glass 
slide. Thickness of the inner space is 0.28 mm. 

4. Conclusions 

As a good model system of general crystal growth processes, we have successfully observed in 
situ adsorption, desorption, surface diffusion, lattice defect formation, and kink incorporation of 
particles on growth interfaces of colloidal crystals of polystyrene particles in aqueous sodium 
polyacrylate solutions using a transmission-type optical microscope. Although no ground breaking 
results are observed, the results support current understanding of crystal growth essentially. 
Furthermore, some results show completely novel phenomena. The key findings obtained in this 
study are summarized as follows: 

(1) Using a simple optical microscope setup, we observed dynamical behaviors of two-dimensional 
diffusion of particles on the growth interface of colloidal crystals at the particle level. 

(2) First day of the experiment, crystals grew normally, and the growth rates approached zero 
asymptotically; the system seemed to reach equilibrium. After that, however, the crystals started 
to dissolve, and in several days the crystals had disappeared completely and quite amazingly. 
The mechanism of re-dispersion is unclear at the present moment. Thus, we only use the results 
at the early stages of the experiment in the first day. 

(3) Surface diffusion coefficients were directly evaluated using the mean displacement of an 
adsorbed particle  and the mean lifetime of an adsorbed particle before being dissolved again 
into the surrounding solution . The average coefficient was an order of magnitude smaller than 
that of bulk diffusion. This is probably due to the high activation barrier for  
surface diffusion; the activation barrier for surface diffusion is probably higher than that for bulk 
diffusion in the solution. 

(4) Kink incorporation processes were precisely examined. Contrary to the expectation, the process 
via diffusion along steps were not observed essentially. This is probably attributable to the 
difference in the number of recovered bonds of adsorbed particles; particles adsorbed on steps 
recovered the largest number of bonds, and thus, the particles hardly cut the bonds to move 
along the steps. 

(5) Formation of stacking disorders proceeded via two-dimensional nucleation of particle layers at 
the different lattice sites and growth. The displacement of the boundary between different 
stacking layers was also observed. The displacement is mainly promoted by the hopping of 
particles beyond the boundary between the different stacking layers. 

(6) Desorption of particles from a step by the adsorption of other particles to the desorbing particle was 
observed for the first time, as if the adsorbed particles peeled the desorbing particle off the step. 
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Figure 8. Schematic of an in situ observation cell. Settled particles on the cover glass formed crystals.
Growth processes of the crystals were precisely observed using an oil immersion objective. A right
inset figure shows the arrangement of spacers cut into four pieces (0.28 ˆ 1.0 ˆ 10 mm) on the glass
slide. Thickness of the inner space is 0.28 mm.

4. Conclusions

As a good model system of general crystal growth processes, we have successfully observed in situ
adsorption, desorption, surface diffusion, lattice defect formation, and kink incorporation of particles
on growth interfaces of colloidal crystals of polystyrene particles in aqueous sodium polyacrylate
solutions using a transmission-type optical microscope. Although no ground breaking results are
observed, the results support current understanding of crystal growth essentially. Furthermore, some
results show completely novel phenomena. The key findings obtained in this study are summarized
as follows:

(1) Using a simple optical microscope setup, we observed dynamical behaviors of two-dimensional
diffusion of particles on the growth interface of colloidal crystals at the particle level.

(2) First day of the experiment, crystals grew normally, and the growth rates approached zero
asymptotically; the system seemed to reach equilibrium. After that, however, the crystals started
to dissolve, and in several days the crystals had disappeared completely and quite amazingly.
The mechanism of re-dispersion is unclear at the present moment. Thus, we only use the results
at the early stages of the experiment in the first day.

(3) Surface diffusion coefficients were directly evaluated using the mean displacement of an
adsorbed particle xs and the mean lifetime of an adsorbed particle before being dissolved
again into the surrounding solution τ. The average coefficient was an order of magnitude
smaller than that of bulk diffusion. This is probably due to the high activation barrier for
surface diffusion; the activation barrier for surface diffusion is probably higher than that for
bulk diffusion in the solution.

(4) Kink incorporation processes were precisely examined. Contrary to the expectation, the process
via diffusion along steps were not observed essentially. This is probably attributable to the
difference in the number of recovered bonds of adsorbed particles; particles adsorbed on steps
recovered the largest number of bonds, and thus, the particles hardly cut the bonds to move
along the steps.

(5) Formation of stacking disorders proceeded via two-dimensional nucleation of particle layers
at the different lattice sites and growth. The displacement of the boundary between different
stacking layers was also observed. The displacement is mainly promoted by the hopping of
particles beyond the boundary between the different stacking layers.

(6) Desorption of particles from a step by the adsorption of other particles to the desorbing particle
was observed for the first time, as if the adsorbed particles peeled the desorbing particle off
the step.

Supplementary Materials: The following is available online at www.mdpi.com/2073-4352/6/7/80/s1,
Video S1: Brownian motion of particles around growing crystals.
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