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Abstract: Two dimensional atomic crystals, like grapheme (G) and molybdenum disulfide (MoS2),
exhibit great interest in electronic and optoelectronic applications. The excellent physical properties,
such as transparency, semiconductivity, and flexibility, make them compatible with current organic
electronics. Here, we review recent progress in the understanding of the interfaces of van der Waals
(vdW) heterostructures between small organic molecules (pentacene, copper phthalocyanine (CuPc),
perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), and dioctylbenzothienobenzothiophene
(C8-BTBT)) and layered substrates (G, MoS2 and hexagonal boron nitride (h-BN)). The influences of
the underlying layered substrates on the molecular arrangement, electronic and vibrational properties
will be addressed.

Keywords: interface; self-assembly; growth behavior; vdW heterostructures; 2D organics; SPM;
OFET; capping layer

1. Introduction

Organic (opto-)electronics are attracting tremendous attention for their mechanical flexibility, light
weight, low cost, and available large scale production in organic light emitting diodes (OLEDs),
organic photovoltaics (OPVs), and organic field effect transistors (OFETs) [1–5]. The quality of
organic semiconductor thin films is one of the key components for a better device performance.
Figure 1a–d shows the molecular structures of four air-stable candidates for organic electronics,
pentacene, copper phthalocyanine (CuPc), perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA)
and dioctylbenzothienobenzothiophene (C8-BTBT), respectively. The anisotropic structures suggest
orientation-dependent electronic properties. For example, pentacene possesses a relatively higher
mobility in its b-c plane than a-b plane, as shown in Figure 1e [6,7]. Thus, various substrates,
metals [8–10], native oxide silica [11–14], and layered materials [6,7,15–18], have been chosen for
the growth of high quality thin films. In order to optimize the devices performance, it is essential to
clarify how the interactions between molecules and substrates affect the growth of organic thin films.

The two dimensional (2D) derivatives of layered materials, such as single- or few-layered
(SL, FL) molybdenum disulfide (MoS2), hexagonal boron nitride (h-BN), and graphene (G), whose
structures are schematically shown in Figure 1f and exhibiting an atomically flat surfaces without
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dangling bonds, are thought to be perfect candidates to fundamental researches and practical
applications. G has the advantages such as very high charge carrier mobility, good flexibility,
and transparency to be used as a transparent electrode substituting indium−tin oxide (ITO) [19,20].
h-BN is an insulating isomorph of G with covalent bonding boron and nitrogen atoms occupying the
inequivalent positions, possessing a low dielectric constant. MoS2 is composed by one layer of Mo
atoms stacked between two sulfide layers and used as channel materials in FETs because of its high
on/off ratio, low sub-threshold swing value, and good carrier mobility [21–24]. G, MoS2, and h-BN
are all chemically inert, avoiding bonding strongly when integrating with different dimensional
crystals at the interface and leading to 2D-2D and 0D-2D (organic molecules-2D) van der Waals (vdW)
heterostructures [25–27]. For example, MoS2-G vdW heterostructure shows that close to the Fermi level,
no significant charge transfer doping is detected from MoS2 to G [28,29]. Besides, organic molecules are
able to grow into well-ordered thin film with a high degree of crystallinity on 2D substrates and form
vdW heterostructures. Such vdW heterostructures possess potential applications in FET devices [30].
Moreover, the excellent physical properties, such as transparency and flexibility, make them compatible
with current organic (opto-)electronics.

This review consists of following six sections: I tuning the orientation of pentacene, II pentacene
on layered substrates, III CuPc on layered substrates, IV C8-BTBT on layered substrates, V PTCDA on
layered substrates, and VI conclusions.
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Figure 1. Molecular structures of pentacene (a), CuPc (b), PTCDA (c), C8-BTBT (d), respectively.
(e) The a-b and b-c planes of a pentacene single crystal, showing the anisotropy of small organic
molecules. (f) Schematics of three layered substrates, G, MoS2 and h-BN.
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2. Tuning the Orientation of Pentacene

As a well-known gate dielectric, SiO2 is one of most usual substrates to study the properties
of thin films of small organic molecules, for example, pentacene. The AFM image in Figure 2a
shows the typical morphological features of ~3 ML (ML, monolayer, a full layer of molecules in the
standing-up configuration) pentacene thin films on SiO2 [12]. Such films are composed by dendritic
grains with flat surfaces and well-ordered crystalline structures in size of few micrometers, indicating
a kinetics-limited Volmer-Weber growth mode [31,32]. The corresponding inset shows the nucleation
and extension of pentacene in the first monolayer into dendritic grains, indicating presence of plenty
of grain boundaries in thicker films. The average step height of ~1.5 nm, close to the length of
one pentacene molecule, suggests that pentacene molecules always stand up on SiO2 (molecular
a-b plane parallel to the substrate surface) as shown in Figure 2d, which can be attributed to the
relatively weak interfacial interaction between pentacene and SiO2. Consequently, the charge carriers
in such pentacene thin films prefer to lateral transport along the overlapped π orbitals with high
mobilities up to 5 cm2/Vs [33]. However, the existed plenty of grain boundaries may scatter the charge
carriers and reduce the mobilities. Given that molecule-substrate and molecule-molecule interactions
predominantly determine the film structures, so as to enhance the device’s performance, an adequate
substrate is urgently required to ensure higher-crystalline pentacene thin films.
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Figure 2. Morphologies of pentacene thin films on different substrates. (a) AFM topography
image of fractal islands of pentacene on SiO2 at a coverage of ~3 ML. Inset: nucleation at
submonolayer coverage. (b) STM image of pentacene on Bi(001) at a coverage of slightly over 1 ML.
Inset: high-resolution STM image showing pentacene molecules in the first layer in a standing-up
configuration. (c) Twelve nanometer thick pentacene film on Highly Oriented Pyrolytic Graphite
(HOPG). (d–f) Schematic representations of the proposed molecular packing corresponding to image in
panel (a–c). Panel a reprinted with permission from [12]. Copyright 2004 American Chemical Society.
Panel b reprinted from [8] with the permission of AIP Publishing. Panels c, f reprinted with permission
from [6] as follows: Koch, N. Physical review letters, 96 (15), 156803, 2006. Copyright 2006, American
Physical Society.

STM image in Figure 2b shows that Bi(001) is covered by an ordered single layer pentacene
entirely and a second layer partially (with brighter contrast) [8]. The pentacene layer grows in a step
flow mode, like h-BN grown on Ru(0001) [34], which can effectively reduce the grain boundaries
and result the first layer pentacene in grains with a larger size exceeding 200 µm in diameter.
The inserted molecularly-resolved STM image shows aligned spots. Each of them corresponds to
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a single standing-up pentacene molecule, indicating the pentacene molecular a-b plane parallel to
Bi(001), as show in Figure 2e. Angle Resolved Photoemission Spectroscopy (ARPES) measurements
demonstrate a higher highest occupied molecular orbital (HOMO) dispersion and more delocalized
charge carriers than theoretical calculations along three high symmetrical directions (Γ−M, Γ− Y
and Γ− X), which means a larger overlap of π-orbitals and higher carrier mobilties [9]. The results
indicate the Bi(001) indeed improved the crystallinity of pentacene films and induced higher mobility.

HOPG is a famous inert substrate for surface science researches. The AFM image in Figure 2c
shows the morphology of ~12 nm thick pentacene films on HOPG, which is characterized by large
block-like ordered crystals with deep trenches [6]. On the contrary to above two cases, the long
axes of pentacene molecules are parallel to the substrate surface according to X-ray diffraction results.
Such a lying-down arrangement, as schematically shown in Figure 2f, can be attributed to the improved
interfacial π-π interactions due to the epitaxial growth of pentacene on HOPG. The rather weak
adsorption energy of the molecules on graphite enables a slight tilting of the molecules at the interface
and thus allows the formation of crystalline multilayer films by suppressing any strain due to lattice
mismatch between the molecular film and the substrate [35]. The films are possibly in orthorhombic
polymorph and possess fiber textures with (100) as the fiber long axis along the surface normal. Thus,
they have high enough crystallinity to show a HOMO-derived band dispersion of ~190 meV at room
temperature, which is absent for pentacene grown on SiO2 [6]. The results indicate that layered
substrates like HOPG and MoS2, moreover, their single- or few- layered derivatives like G and MoS2,
may improve the crystallinity of thin films of small organic molecules.

3. Pentacene on Layered Substrates

In terms of devices, G is an ideal electrode material due to its outstanding conductivity, flexibility,
and transparency. Conductive and transparent monolayer G can be used as a template to tune
pentacene molecular orientation from standing-up to lying-down in well-defined films [15,36].
The AFM image in Figure 3a shows that the morphology of 50 nm thick pentacene films on
CVD-G-covered and bare SiO2 has an abrupt change cross the boundary, which revealed remarkable
differences in growth and the modulation effect of substrates. Pentacene films on G (left-hand side)
show a highly ordered block-like crystals with deep trenches texture, similar to on HOPG, while on
SiO2 (right-hand side) are in typical polycrystalline grains [15]. They differ greatly in crystallinity, grain
size, and orientation. Both the angle-dependent near-edge X-ray absorption fine structure (NEXAFS)
and two-dimensional grazing incidence X-Ray diffraction (2D GIXRD) measurements corroborate that
pentacene molecules in the first layer are in a lying-down orientation, while slightly tilted relative
to the G plane in subsequent layers, as depicted in Figure 3d. It is ascribed to that the interfacial
π-π interaction is reduced when pentacene grows into several layers [15]. It is well adapted to the
cases of pentacene on G-covered glass [36] and perfluoropentacene on G-covered quartz [37]. It’s also
important to mention that polymer residues remaining on G surfaces induce a stand-up orientation of
pentacene [15]. The Fe film morphology was influenced by substrate surface defects [38]. Considering
this reason, there can be a distinct structure and orientation of pentacene film if the substrate surface
exhibits defects or becomes rough, because the template effect is no longer operative. In that case,
molecules adsorb in an upright orientation and continue to grow as (001) oriented films. Thus, it is
a crucial factor which avoids surface defects and roughness when utilizing template-guided molecular
film growth [35]. The particular interaction between G and small molecules [39] is used to govern both
the thin film morphology and electronic characteristics of pentacene films.

The AFM image in Figure 3b displays the morphology of 40 nm thick pentacene on SiO2

covered with/without mechanically exfoliated 2L MoS2 (blue/red dash block) [40]. On the MoS2 side,
pentacene, perhaps in a lying-down configuration (Figure 3e), is more compact and homogeneous but
in smaller grains. The abrupt change in the pentacene film grain size coincides with the boundary with
the underlying MoS2.
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The AFM image in Figure 3c shows the well-defined crystal facets of ~2 ML pentacene grown
on mechanically-exfoliated h-BN [7], indicating that pentacene is highly-crystalline and grows in
a layer-by-layer mode with obvious difference in the first three layers. The average thickness of the
wetting layer (WL), the first (1L), and the second conducting layer (2L) are 0.5, 1.14, and 1.58 nm,
respectively. The subsequent layers have the same height and molecular packing as 2L. The thickness of
WL approximates the length of pentacene molecule along b-axis (0.606 nm), and far less than that along
c-axis (1.601 nm) [12], which indicates the molecules adopt the lying-down configuration. In addition,
the thickness of 2L is consistent with the (001) plane spacing of thin film phase (1.45 nm). However,
1L is clearly in a new polymorph which slightly differs with 2L. The transitional height implies more
tilted molecular packing compared to 2L, as schematically illustrated in Figure 3f. The molecular
packing is very different with on G and MoS2.
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Figure 3. Epitaxial growth of pentacene molecular crystals on layered substrates. (a) AFM image of
~50 nm thick pentacene films over the sharp linear boundary between G-covered and bare SiO2.
(b) Forty nanometer pentacene films over the boundary between MoS2-covered and bare SiO2.
(c) Approximately two ML pentacene crystals with a flat-lying wetting layer on mechanically exfoliated
h-BN. (d–f) Schematic illustrations of the molecular packing of (a–c), respectively. (g–i) The transfer
characteristics of FETs based on the films in (a–c), respectively. Panel a,d,g reprinted with permission
from [15]. Copyright 2011 American Chemical Society. Panel b, h reprinted with permission from [40].
Copyright 2015 American Chemical Society. Panel c, f, i reprinted with permission from [7] as follows:
Zhang, Y. Physical review letters, 116 (1), 016602, 2016. Copyright 2016 American Physical Society.

Figure 3g–i shows the transfer characteristics of pentacene based OFETs with G, MoS2 and h-BN
as function layers, respectively. Figure 3g demonstrates transfer characteristics of lateral FETs using
monolayer G with/without PMMA residues (black/red curve) as electrodes. The devices with/without
PMMA residues show an average field-effect mobility of 1.2/0.4 cm2/Vs and a comparable current
on-off ratio of 108. The poorer field-effect mobility is due to the orientation of the pentacene long
axis parallel to the substrate plane on clean G. That is, the π conjugate direction is normal to electron
transport direction of planar FET devices.

Figure 3h displays the transfer characteristics of a MoS2 FET (blue), a pentacene FET (red),
and a type II p-n heterojunction based on pentacene/MoS2 (green), respectively [40]. The gate-tunable
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asymmetric antiambipolar transfer characteristic of pentacene/MoS2 heterojuntion is different than
the symmetric one with a MoS2−WSe2 p-n heterojunctions [41,42], suggesting harnessing to achieve
simultaneous phase [43] and amplitude [44] shift-keying for wireless telecommunication technologies.
In addition, this heterojunction exhibits a photovoltaic effect but poor power conversion efficiencies of
~0.004% @ 625 nm, Performance of FET devices is unsatisfied because of a low on/off ratio and mobility.
It seems that the reduced carrier diffusion length results from charge carrier scattering and trapping
due to smaller grain size. Hence, the crystalline of pentacene on MoS2 continue to be a primary issue
for application.

Figure 3i shows the temperature dependent transfer characteristics of a 2L pentacene/h-BN based
FET [7]. The extracted field effect mobility is about 3 and 5.2 cm2/Vs at room- and low-temperature
(110 K), respectively, far surpassing devices based on pentacene polycrystalline thin films at similar
temperatures. On the contrary to the bandlike transport of 2L devices, the WL devices exhibit no
conduction due to the absence of intralayer π-π stacking, and the 1L devices display characteristic of
2D hopping transport mode. In 2L, a sufficient extended density of states along a-b plane caused by
the π orbital laterally-overlapping leads to bandlike transport for planar FETs. In 1L, a more tilted
molecular orientation results in disconnected bonding and localization in both directions. The strong
modulation demonstrates that h-BN is an excellent candidate for an insert layer which enables the
conversion of molecules’ arrangement by vdW interactions.

4. CuPc on Layered Substrates

The modulation of layered substrates on the growth of CuPc are also interesting. Figure 4a,b
show the AFM topography images CuPc on glass covered with/without CVD-grown G [45]. On bare
glass, elongated CuPc grains, 94 ± 34 nm long and 35 ± 6 nm wide, are observed with a root mean
squared film roughness of 2.0 nm, and similar to previous AFM observations of standing up oriented
CuPc [46,47].Round CuPc grains are observed on a few layers of G (FLG) with a greater roughness of
4.2 nm. The 2D-GIXRD pattern in Figure 4d for CuPc on bare glass only shows one single sharp peak
concentrated on the meridian (qxy = 0), implying that CuPc molecules are oriented perpendicularly
to the surface of the glass substrate, similarly on Si [48]. On the contrary, the pattern in Figure 4e
shows multiple new diffraction points for CuPc on FLG-covered glass. Furthermore, it is not dispersed
much, indicating that CuPc molecules are well oriented on G-covered glass [49]. Thus, CuPc adopts
a near face-on orientation with the molecular plane tilted on average 9◦ with respect to the substrate.
The continued appearance of the (100) reflection along the meridian indicates that there are still some
crystallites adopt the edge-on configuration in the film [48]. Conductive atomic force microscopy
(C-AFM) measurements show that at a single-grain level CuPc on (G covered) PEDOT:PSS/ITO
presents a hole mobility of (1.9 ± 0.2) × 10−3 ((1.6 ± 0.2) × 10−2) cm2/Vs. G-templated CuPc thin
films exhibit an order of magnitude higher out-of plane hole mobility relative to untemplated thin
films. Whether the G coating affects the charge injection requires further research.

The AFM image in Figure 4c presents the 1D nanorod-like structure of 4.8 nm thick CuPc on bulk
MoS2(0001) [50]. The corresponding 2D-GIXRD pattern in Figure 4f proves a good crystallization, as well
as a standing-up orientation. It should be noted that this study was carried out in ambient conditions.
In situ LEED patterns illustrate that CuPc molecules assemble into large domains at a thickness of
4.8 nm with the molecular plane (quasi-)parallel to the MoS2(0001) substrate [51]. Thus, MoS2 may
have different effect on CuPc growth compared with G. Furthermore, photodetectors based on the
vdW heterostructure of 2 nm-thick p-type CuPc/5L n-type MoS2 presents the highest performance
with a photoresponsivity of ~1.98 A/W, a detectivity of ~6.11 × 1010 Jones, and an external quantum
efficiency of ~12.57%, due to the transfer of photo-generated charge carrier form CuPc to MoS2 and the
CuPc layer thickness-dependent interlayer recombination processes across the CuPc/MoS2 interface [52].
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surface characterization. Figure 5a demonstrates the spatially-averaged Raman spectra for a 50 nm thick
pentacene film on glass covered with/without a monolayer of G [36]. The band at 1596 (1533) cm−1
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For pentacene on G (center), R = 5.6, while on glass (upper) R = 0.22. Thus, the pentacene molecules
are lying almost flat on the G surface, consistent with precious results [15,54].

Figure 5b shows the Raman enhancement effect of 2D layered materials, such as G, h-BN, and MoS2

on CuPc [55]. Compared to the low intensity of Raman signals for CuPc on blank SiO2/Si substrate,
shown by the black curve in Figure 5b, 1531, 1450 and 1340 cm−1 vibrational modes can be explicitly
observed for CuPc on G, h-BN, and MoS2 substrates. The enhancement factors of CuPc on G (blue line)
and h-BN (red line) are stronger than on MoS2 (green line). Insulated h-BN with a strong B–N bond
is favorable to strong dipole-dipole coupling and G with a nonpolar C–C bond is a benefit to the
occurrence of charge transfer. Thus, a remarkable Raman scattering enhancement requires strong
molecule-substrate coupling and, thus, effective charge transfer between them.
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5. C8-BTBT on Layered Substrates

C8-BTBT can epitaxially grow on exfoliated G and MoS2 with precisely controlled thickness down
to a monolayer into 2D molecular crystals for OFETs [56,57]. The AFM image in Figure 6a shows
that C8-BTBT molecules prefer to grow on G than on SiO2 accompanied with a layer-by-layer manner
and atomic smoothness due to the high diffusion coefficient. According to the measured thickness
of the first two layers of 0.6 and 1.7 nm, a schematic illustration of the C8-BTBT molecular packing
is shown in the inset in Figure 6d, similar to above-mentioned case of pentacene on h-BN. Figure 6b
displays the AFM image of three layers C8-BTBT grown on MoS2 [57]. Interestingly, the average
thickness of the first C8-BTBT layer on MoS2 is ~1.4 nm, suggesting no WL and the different effect of
MoS2 on organic molecule growth to G. This is attributed to reduced interfacial interactions between
C8-BTBT layer and MoS2 due to that MoS2 [58,59] is natively not a π-conjugated system and the
lattice constants are rather different from G. A higher density of nucleation sites on MoS2, especially
at the edges, is attributed to the high density of sulfur vacancies in the mechanically-exfoliated
monolayer MoS2 [60,61]. The frequent and purposeful interruption and ambient exposure for AFM
characterization does not distinctly affect the film growth, implying that the crystals are of pristine
quality and stable in the ambient environment. Figure 6c shows the transfer characteristic of a 1L
C8-BTBT/h-BN-based planar OFET at room temperature [56]. The calculated field-effect mobility
reaches up to 10 cm2/Vs, much higher than previously reported values for monolayer OFETs [62–66].
The most significant part of these results is that growing C8-BTBT molecule on layered substrates does
not drastically alert the charge transport characteristic, signifying organic semiconductor crystal can
be regarded as quasi-freestanding with minimal disturbance from the substrate.

Figure 6d shows the calculated binding energy (BE) of a single C8-BTBT with different substrates,
which depends highly on the underlying substrate. Such a BE gradient creates temperature windows
for C8-BTBT thermodynamically stable on the corresponding substrates, resulting in self-limited
organic molecule beam epitaxy (SLOMBE) [67]. Thus, highly precise, controllable, self-limited
epitaxy of layered monocrystalline organic semiconductors (C8-BTBT) and related heterojunctions
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(C8-BTBT/PTCDA) can be obtained on exfoliated G by controlling the substrate temperature. Figure 6e
shows the AFM topography image of a heterojunction of bilayer (WL+1L) C8-BTBT/1L PTCDA/G,
indicating the C8-BTBT was uniformly grown on PTCDA in a self-limited manner. The photodetector
based on such a p-n junction displays a photoresponsivity of ~0.37 mA/W @ 514 nm laser, where the
organic films are ~15 nm thick to minimize the direct tunneling effects. Thus, by harnessing the vdW
interactions at the interfaces, highly controllable, SL epitaxy of layered organic semiconductors and
heterojunctions are achievable for future devices.
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in Figure 7a, monolayer PTCDA in a herringbone arrangement follows EG continuously over bi- and 
tri- SiC bilayer steps. This confirms the possibility to grow a pinhole-free PTCDA monolayer on EG. 
Synchrotron-based PES investigation reveals weak charge transfer and weak interactions between 
PTCDA and EG [68]. It is important for the functionalization of the EG surface using PTCDA 
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Figure 6. C8-BTBT on layered substrates. AFM image of C8-BTBT on G (a) and MoS2 (b). (c) Transfer
characteristic of 1L C8-BTBT/h-BN based planar OFET at room temperature. Black and blue lines
are drawn in linear and log scales, respectively. Inset shows the optical microscopy image of the
device. (d) Blue dots: calculated binding energies of a single C8-BTBT molecule on G, IL/G, 1L/IL/G,
and 2L/1L/IL/G. Red dash line: C8-BTBT−C8-BTBT interaction. Inset shows the molecular structure
of C8-BTBT and molecular packing of different C8-BTBT layers on G. (e) AFM images of SLOMBE of
bilayer C8-BTBT on PTCDA. (f) Output characteristics of the p-n junction (>15 nm) under the dark
conditions (black) and under the 0.67 µW laser illumination. Inset shows schematic layout of the device.
Panel a, c reprinted with permission from [56], copyright 2014, Nature Publishing Group. Panel b
reprinted from [57], with the permission of AIP Publishing. Panel d, e, f adapted with permission
from [67], copyright 2016 American Chemical Society.

6. PTCDA on Layered Substrates

PTCDA usually forms an in-plane herringbone structure because of intermolecular hydrogen
bonding. EG is continuously over SiC step edges due to its bottom-up growth mechanism [68]. Thus,
the EG-covered SiC step edges would not hamper the carpet-like PTCDA growth. As demonstrated in
Figure 7a, monolayer PTCDA in a herringbone arrangement follows EG continuously over bi- and
tri- SiC bilayer steps. This confirms the possibility to grow a pinhole-free PTCDA monolayer on EG.
Synchrotron-based PES investigation reveals weak charge transfer and weak interactions between
PTCDA and EG [68]. It is important for the functionalization of the EG surface using PTCDA
derivatives to enhance the adhesion of a gate dielectric layer on EG, facilitating the growth of defect-free
ultrathin dielectric layers in G-based electronic devices.

Such a self-assembled PTCDA layer can also be used as a buffer layer to protect the topological
surface states (TSSs) of Bi2Se3, which exhibits a Dirac cone-like dispersion similar to G [69].
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Fe deposition on bare Bi2Se3 results in resonance states at Fe adatoms due to Coulomb scattering
between the Fe adatoms and the TSSs, and the shift of the Dirac point (DP) energy position downward
by ~80 meV (doping effect) due to charge transfer from the Fe adatoms to the Bi2Se3 surface. On the
contrary, Fe deposition on one ML PTCDA covered Bi2Se3 results in neither resonance states nor
doping effect, as shown in Figure 7b, because of the charge transfer from the Fe adatom to PTCDA
molecules and concentration of the Coulomb charge. Thus, organic molecules are promising as spacers
in the future TI devices to prevent undesirable doping and scattering effects at the interfaces.

The highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO)
gaps of small organic molecules are dependent on the electronic screening effects from the substrate.
It is measured to be 3.73, 3.49, and 3.10 eV for PTCDA on SL WSe2/graphite (semiconducting), graphite
(semimetallic), and Au(111) (metallic), respectively, as demonstrated in the scanning tunnelling
spectroscopy (STS) results in Figure 7c, although the lattice parameters for these herringbone
arrangements are very similar for the different substrates [70].Thus, the semiconducting 2D transition
metal dichalcogenides (TMDs) layers can participate actively in hybrid organic−inorganic devices
with tailored structures and properties.
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7. Conclusions

2D layered-material templated growth is a newly developed method for fabricating high-quality
organic semiconductor thin films with controllable morphologies, interface properties, molecular
orientations, and electronic structures. G, MoS2, and h-BN show obviously different effects on the
growth of pentacene, CuPc, and C8-BTBT, indicating slight differences in the interfacial interactions.
PTCDA can be used as protecting layer due to its inherent intermolecular H-bonding. Large-scale
high-quality 2D layered materials are required for future thinner organic (opto-) electronics like OLEDs,
OPVs and OFETs.
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