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Abstract: A p-tertbutylcalix[4]arene derivative was synthesized from a reaction of the diisothiocyanate
p-tertbutylcalix[4]arene, obtaining crystals that were then characterized by mass spectroscopy,
Raman spectroscopy, and single-crystal X-ray diffraction. The molecule presents two acid
carbamothioic-n-ethoxy-methyl-ester substituent groups. Through crystallization of this compound,
it was also found that it includes a methanol molecule within the aromatic cavity. The inclusion of
the methanol molecule is due to favorable CH···π interactions.
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1. Introduction

Calix[n]arenes constitute a family of well-known cyclic compounds that are synthesized by the
base-catalyzed condensation of formaldehyde with para-substituted phenols, usually p-tert-butylphenol
(cyclocondensation). Calix[n]arenes adopt a basket-shaped conformation in the solid state with a ring
size that is dependent on the base that is used [1]. These macrocycles have been the subject of
a variety of studies because of their interesting and technologically useful properties [2–4]. Their
technological applications [5,6] include nanodevices with nanoparticles capable of detecting metal
cations, polyaromatic hydrocarbons, and pesticides. The potential uses of chiral calix[n]arenes for
enantioselective recognition [7], asymmetric catalysis [3], and as membrane carriers for the transport
of chiral amino acids [8] are particularly interesting.

Different chemical modifications of calix[n]arenes have been used as artificial receptors for cations,
anions, and neutral organic molecules. This is due to the interactions that occur between the hydrophilic
areas of calix[n]arenes (lower rim) and different species. These interactions are primarily hydrogen
bonds. Moreover, these compounds may host different molecules or ions within the hydrophobic
cavity due to the interactions generated by the aromatic fraction. Different types of guests, including
neutral molecules [9] such as acetonitrile [10], and various ions [11] such as the ammonium ion [12],
have been reported. The crystal structures of calix[n]arenes makes them attractive building blocks,
as they can easily be functionalized as required; for example, p-tert-butylcalix[4]arene is available
through the functionalization of the hydroxyl groups (lower rim) or the para positions of the phenyl
rings (upper rim). Additionally, intermolecular interactions lead to the formation of supramolecular
arrays in crystal packing [13].

This paper presents the characterization by single crystal X-ray diffraction, Raman spectroscopy,
and mass spectroscopy of the derivative 5,11,17,23-tetra-tert-butyl-25,27-di[acidcarbamothioic-n-
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ethoxy-methyl-ester]-26,28-dihydroxy calix[4]arene (compound 4), which crystallizes with a molecule
of methanol in its cavity. Calixarenes have been studied in our research group with regard to
their supramolecular chemistry and applications as extractants, transporters, optical sensors, and in
medical research [14].

Compound (4) was obtained by stepwise substitution of its precursor, p-tert-butylcalix[4]arene
(Scheme 1). The crystallographic analysis reveals the supramolecular array produced by the different
interactions of XH···π and inter- and intra-molecular hydrogen-bonds. The cone conformation of the
derivative remains.
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Scheme 1. Representative diagram of the synthesis of compound (4): (a) K2CO3, BrCH2CN, CH3CN,
reflux, 8 h; (b) LiAlH4, THF, N2, 4 h; (c) BaCO3 CH2Cl2 and thiophosgene, 24 h at RT; (d) hot
CHCl3/CH3OH at R.T.

2. Results and Discussion

2.1. Spectroscopic Characterization

The derivative 5,11,17,23-tetra-tert-butyl-25,27-di[acidcarbamothioic-n-ethoxy-methyl-ester]-
26,28-dihydroxy calix[4]arene (compound 4) was obtained through the reaction synthesis of
p-tert-butylcalix[4]arene (1). Scheme 1 shows the reaction steps (see Section 3.1. for sample preparation).

Compounds (3) and (4) were studied by Mass-Spectrometry Imaging. The spectrum, shown in
Figure 1, clearly exhibited one peak at m/z 883.48. This analysis established the molecular mass of (4)
which is consistent with the molecular formula determined by single-crystal diffraction (see Table 3).

Figure 2 shows the Raman spectra of the selected crystals of compounds (1), (3), and (4).
The spectra may be qualitatively analyzed in terms of the vibration modes of the related substituted
p-tert-butylcalix[4]arene. Vibrational modes of p-tert-butyl groups, hydroxyl groups, and aromatic
rings (~1600 to 500 cm−1) are observed in the spectra. However, significance differences in the C=N
stretching modes were observed (see inset of Figure 2). The absorption mode of the CN group in (1)
(at 2258.2 cm−1) shifted to 2105.6 cm−1 in (3). In addition to shifting, the shapes of the peaks also
changed (the CN group peak in 3 is broad). On the other hand, compound (4) did not show this
vibration mode, implying the absence of the CN group in its structure.
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Figure 1. (top) Positive ion ESI-MS of compound (3); 819.4217 (M + H+) (a) (MW819),  
(b) (MW836) X + NH4+ and (c) (MW 841) X + Na+ (bottom) Positive ion ESI-MS of compound (4); 
883.4757 (a) (MW883) M + H+, (b) (MW900) M + NH4+ and (c) M + Na+. 

Figure 1. (top) Positive ion ESI-MS of compound (3); 819.4217 (M + H+) (a) (MW819), (b) (MW836)
X + NH4

+ and (c) (MW 841) X + Na+ (bottom) Positive ion ESI-MS of compound (4); 883.4757
(a) (MW883) M + H+, (b) (MW900) M + NH4

+ and (c) M + Na+.
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Figure 2. Raman spectra of compounds (1), (3), and (4) in solid state. The insert shows the C=N 
stretching band. 

2.2. Crystal Structure 

The crystal structure of (4) was determined by single crystal X-ray diffraction. The asymmetric 
unit consists of the p-tert-butylcalix[4]arene derivative and one methanol solvent molecule. The 
molecular structure with the atom labels is shown in Figure 3. 

 
Figure 3. Crystal structure of compound (4). Some H-atoms has been omitted by clarity. 

The molecule presents two acidcarbamothioic-n-ethoxy-methyl-ester substituent groups at C25 
and C27 (of the aromatic rings). The torsion C17-C27-O3-C45 angle is 95.4(6)°.The orientation of 
another chain group substituent with respect to its aromatic ring [C1-C25-O1-C46] is 93.6(7)°. 
Compound (4) showed a terminal methoxy group and a carbonothioyl group. The C=S bond 
distances are 1.600(11) Å [S1-C49-O50 = 120.7(10)°] and 1.624(7) Å [S2-C51-N1 = 124.8(6)°]. These 
bonds and angles are highly similar to the C=S bond distance in the cyanoformamide organic 
compound [1.600(11) Å]. All other relevant structural parameters (bond distances and angles) are as 
expected and are in acceptable agreement with their analogs (see Table 1) [14].  

 

Figure 2. Raman spectra of compounds (1), (3), and (4) in solid state. The insert shows the C=N
stretching band.

2.2. Crystal Structure

The crystal structure of (4) was determined by single crystal X-ray diffraction. The asymmetric unit
consists of the p-tert-butylcalix[4]arene derivative and one methanol solvent molecule. The molecular
structure with the atom labels is shown in Figure 3.
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Figure 3. Crystal structure of compound (4). Some H-atoms has been omitted by clarity.

The molecule presents two acidcarbamothioic-n-ethoxy-methyl-ester substituent groups at C25
and C27 (of the aromatic rings). The torsion C17-C27-O3-C45 angle is 95.4(6)◦.The orientation of another
chain group substituent with respect to its aromatic ring [C1-C25-O1-C46] is 93.6(7)◦. Compound (4)
showed a terminal methoxy group and a carbonothioyl group. The C=S bond distances are 1.600(11) Å
[S1-C49-O50 = 120.7(10)◦] and 1.624(7) Å [S2-C51-N1 = 124.8(6)◦]. These bonds and angles are highly
similar to the C=S bond distance in the cyanoformamide organic compound [1.600(11) Å]. All other
relevant structural parameters (bond distances and angles) are as expected and are in acceptable
agreement with their analogs (see Table 1) [14].
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Table 1. Selected structural parameters (Å, ◦).

Bond Length Angles

C1-C2 1.374(8) C25-O1-C46 113.9(4)
S1-C49 1.600(11) C27-O3-C45 113.7(4)
S2-C51 1.624(7) C49-O50-C67 123.1(12)

O50-C49 1.434(17) C51-O52-C69 119.1(7)
O52-C51 1.335(10) C48-N1-C51 124.8(6)
O50-C67 1.32(2) C47-N2-C49 124.9(8)
O52-C69 1.430(12) S1-C49-O50 120.7(10)
N1-C48 1.441(10) S1-C49-N2 126.3(10)
N2-C47 1.411(11) O50-C49-N2 113.0(9)

In crystal packing, the calixarene molecules are linked by hydrogen bonds, weak intermolecular
contacts, and N-H···π and C-H···π interactions (Table 2). The packing structure contains
a C67-H67C···O50 intermolecular contact with a bond distance of 2.26(4) Å, with H-acceptor distances
that are less than the sum of the van der Waals radii. This intermolecular contact links two calixarenes,
leading to the formation of dimers. These intermolecular interactions generate a graph-set descriptor
D motif (see Figure 4) [15], which is an important influence on the orientation of calixarenes in
crystal packing.

Table 2. Hydrogen-bond and intermolecular interactions (Å, ◦).

D-X···A d(D-X) d(X···A) d(D···A) <(DXA)

C67-H67C···O50 i 0.97(4) 2.26(4) 3.222(2) 176(3)
N1-H1N···O4 ii 1.17(11) 2.06(10) 3.193(7) 161(8)
O2-H2···O3 ii 0.8200 1.93 2.746(6) 175.00
O4-H4···O1 ii 0.8200 1.96 2.778(6) 179.00

C67-H67A···S1 ii 0.9600 2.45 2.98(2) 115.00
C69-H69A···S2 ii 0.9600 2.46 2.983(11) 114.00

C1S-H1S1···Cg2 ii 0.9600 2.72 3.61(2) 73.0
N2-H2N···Cg4 iii 1.13(7) 2.17(7) 3.290(8) 79.0

Symmetry codes: (i) = 1 − x, −1 − y, 2 − z; (ii) = x, y, z; (iii) = 1 − x, −y, 2 − z.

The intramolecular hydrogen-bonds involved in O2–H2···O3 and O4–H2A···O1 generate two
graph-set descriptor S(8) motifs (Figure 5, Table 2) [15]. The intramolecular contact distances between
the phenolic and ethereal oxygen atoms O1···O2 is 2.971(7) Å [103.7(3)◦], and the distance for O1···O4
is 2.778(6) Å [109.1(3)◦]. This result shows that the derivative maintains the cone conformation.
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The intramolecular interactions involved in C69-H69A···S2 and C67-H67A···S1 generate graph-set
descriptor S(5) motifs (Figure 5, Table 2). The three-dimensional supramolecular network is
reinforced by C-H···π interactions [16]. The inclusion of the methanol molecule is due to favorable
C1S-H1S1···Cg2 interactions. The calixarene accommodates the methanol molecule between the
channels (Figure 6, Table 2). A similar inclusion compound has been observed in tetraethyl
p-tert-butylcalix[4]arene tetracarbonate in which one acetonitrile molecule lies within the cavity [10].
Additionally, N-H···π interactions generate N2-H2N···Cg4 intermolecular interactions that connect
the calixarenes (Figure 6, Table 2).
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3. Materials and Methods

3.1. Sample Preparation

The compound 25,27-bis(aminoethoxy)calix[4]arene (2) was chosen as the starting material.
It can be readily obtained in two steps from p-tert-butylcalix[4]arene (1), by the reaction with
bromoacetonitrile and the reduction of the cyano-group with LiAlH4 [2] (see Scheme 1).

We performed the transformation of (2) into the corresponding diisothiocyanate derivative (3)
with excellent yields using thiophosgene [17,18]. The reaction was conducted in a round-bottom flask
with 4.08 mmol of (2), 8.2 mmol of barium carbonate, and 20 mL of dichloromethane. The mixture
was stirred at room temperature in a closed system. Then, 4.1 mmol of thiophosgene was added to
the closed system, and the new mixture was stirred at room temperature for 24 h. After this reaction
period time, dichloromethane was added and the mixture was filtered; the filtrate was extracted with
water in a separating funnel. The organic phase was collected and dried with sodium sulfate, filtered,
and evaporated under vacuum [2]. The resulting yellowish solid was purified using a chromatographic
column with dichloromethane as the mobile phase.

5,11,17,23-tetra-tert-butyl-25,27-bis(cyanomethoxy)-26-28-dihydroxycalix[4]arene (1). White solid, yield
80%. Melting point: 265–267 ◦C. 1H-NMR (300 MHz, CDCl3, 25 ◦C), δ 7.12 (s, 4H, ArH), 6.73 (s, 4H,
ArH), 5.55 (s, 2H, ArOH), 4.81 (s, 4H, OCH2CN), 4.25 (d, 4H, J = 13.4 Hz, ArCH2Ar), 3.47 (d, 4H,
J = 13.4 Hz, ArCH2Ar), 1.33 (s, 18H, C(CH3)3), 0.88 (s, 18H, C(CH3)3).

5,11,17,23-tetra-tert-butyl-25,27-bis(aminoethoxy)-26-28-dihydroxycalix[4]arene (2). White solid, yield 65%.
Melting point: 222–224 ◦C. 1H-NMR (300 MHz, CDCl3, 25 ◦C), δ 7.04 (s, 4H, ArH), 6.98 (s, 4H, ArH),
4.35 (d, 4H, J = 12.9 Hz, ArCH2Ar), 4.07 (t, 4H, J = 4.7 Hz, OCH2CH2N), 3.39 (d, 4H, J = 12.9 Hz,
ArCH2Ar), 3.30 (t, 4H, J = 4.7 Hz, OCH2CH2N), 1.24 (s, 18H, C(CH3)3), 1.11 (s, 18H, C(CH3)3).

5,11,17,23-tetra-tert-butyl-25,27-bis(isothiocyanoethoxy)-26-28-dihydroxycalix[4]arene (3). White solid,
yield70%. Meltingpoint: 259–261◦C. 1H-NMR (300 MHz, CDCl3, 25 ◦C), δ 7.06 (s, 4H, ArH), 6.93 (s, 2H,
ArOH), 6.82 (s, 4H, ArH), 4.27 (d, 4H, J = 13.1 Hz, ArCH2Ar), 4.26–4.15 (m, 8H, OCH2CH2NCS), 3.39
(d, 4H, J = 13.1 Hz, ArCH2Ar), 1.29 (s, 18H, C(CH3)3), 0.97 (s, 18H, C(CH3)3).

Finally, single-crystals were obtained from a solution of (3) (0.6 mmol) in boiling chloroform
(0.5 mL) with hot methanol added dropwise (1 mL). This solution was left for one week, at which point
needle crystals were observed and dried. The product that was obtained corresponded to 5,11,17,23-
tetra-tert-butyl-25,27-di[acidcarbamothioic-n-ethoxy-methyl-ester]-26,28-dihydroxy calix[4]arene (4).
The reaction yield was very low. The mechanism of step (d) is similar to the one reported by
Katrtizky et al. [19].

3.2. Single Crystal X-ray Diffraction

H atoms of the N1 and N2 were found in difference Fourier maps and refined freely. All other
H atoms were positioned geometrically and treated as riding atoms, with C-H = 0.97–0.93 Å and
O-H = 0.82 Å (Hydroxyl). Displacement factors were taken as Uiso(H) = 1.2Ueq (C), Uiso(H) = 1.5Ueq (C),
and Uiso(H) = 1.5Ueq (O). The crystal data, data collection, and refinement are summarized in
Table 3. Data collection: Bruker SMART (BRUKER 1996, Madison, WI, USA); cell refinement: Bruker
SAINTPLUS V6.02 (BRUKER 1997); data reduction: Bruker SHELXTL V6.10 (BRUKER 2000); program
used to solve the structure: SHELXS97 (Sheldrick, 1990, Madison, WI, USA); program used to refine the
structure: SHELXL97 (Sheldrick, 1997, Stuttgart, Germany) [20,21]. Molecular graphics: DIAMOND
(Brandenburg, 1999, Bonn, Germany); software used to prepare the material for publication: PLATON
(Spek, 2003, Utrecht, The Netherlands) [22,23]. Complete crystallographic data have been deposited
with the Cambridge Crystallographic Data Centre, CCDC 1469895. These data can be obtained free of
charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
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Table 3. Crystal data and structure refinement parameters.

Empirical Formula C52H70N2O6S2, CH4O

Formula weight 915.31
Crystal size (mm3) 0.4 × 0.3 × 0.09

Crystal system, Space group Triclinic, P-1
a (Å) 12.571(3)
b (Å) 14.759(3)
c (Å) 16.835(3)
α (◦) 67.08(3)
β (◦) 68.96(3)
γ (◦) 78.37(3)

Volume (Å3) 2678.1(12)
Z 2

Temperature 298 K
ρ calculated/g·cm−3 1.135

µmm−1 0.148
hkl range −13/14, −17/17,−20/20
θ range (◦) 3.5–25.0

Reflections collected 35842
Unique reflections (Rint) 9405 [0.111]

Observed data (I > 2σ (I)) 9405
R [(F2 > 2σ (F2)) 0.1124

wR(F2) 0.2077
S = GooF 1.34

Parameters 603
∆ρmax, ∆ρmin 0.77 e Å−3, −0.70 e Å−3

3.3. Raman and Mass Spectroscopy

The Raman spectra in selected crystals were recorded in the frequency range between 150
and 3500 cm−1 using a micro-Raman Renishaw system 1000 (Barueri, SP, Brazil) equipped with
a Leica-DMLM microscope (Barueri, SP, Brazil). The spectra data were collected at room temperature
with a laser line of 633 nm and a laser power of 1 mW. The spectra of the samples are uniform
throughout the scanned region of single crystals.

The ESI-MS experiments were performed on a Mass spectrometer LC/MSD-TOF (2006) Agilent
Technologies (Santa Clara, CA, USA) with capillary voltage positive of 4 KV, fragmentor of 215 V,
gas temperature 325 ◦C with double nebulizer. The sample is introduced into the source through
a pumping system Agilent 1100 HPLC (Waldbronn, Germany) using a flow rate of 200 microliter/min
of H2O:CH3CN 1:1.

4. Conclusions

A new p-tert-butylcalix[4]arene derivative has been obtained and characterized by Raman
spectroscopy, ESI-MS, and single-crystal X-ray diffraction. The results showed an inclusion compound.
Supramolecular arrays produced by different intra and intermolecular interactions, such as hydrogen
bonds and (C,N)-H···π interactions, were revealed. Raman analysis and mass spectroscopy confirmed
the solved structure based on the obtained molecular weight and the absence of precursor signals
on the carbamothioic derivative. The inclusion of a solvent molecule confirms the supramolecular
nature of the derivative calix[4]arenes. This work demonstrates the possibility of the inclusion of
a compound that is anchored in the cavity of calix[4]arene derivatives, which is crucial for their
applications in pharmacology.
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