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Abstract: The lanthanum deficiency manganites La0.8−x�xCa0.2MnO3 (x = 0, 0.1 and 0.2), where �
is a lanthanum vacancy, were prepared using the classic ceramic methods with different thermal
treatments (1373 K and 973 K). The structural, magnetic, and magnetocaloric properties of these
compounds were studied as a function of annealing temperature. It was noted that the annealing
temperature did not affect the crystal structure of our samples (orthorhombic structure with Pnma
space group). Nevertheless, a change in the variation of the unit cell volume V, the average
bond length dMn–O, and the average bond angles θMn–O–Mn were observed. Magnetization versus
temperature study has shown that all samples exhibited a magnetic transition from ferromagnetic
(FM) to paramagnetic (PM) phase with increasing temperature. However, it can be clearly seen that
the annealing at 973 K induced an increase of the magnetization. In addition, the magnetocaloric
effect (MCE) as well as the relative cooling power (RCP) were estimated. As an important result,
the values of MCE and RCP in our Lanthanum-deficiency manganites are reported to be near to those
found in gadolinium, considered as magnetocaloric reference material.
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1. Introduction

Magnetic refrigeration technique is one of the most promising techniques in cooling technology
due to the efficient and environmentally safe cooling applications, which have encouraged the
experimental and the theoretical studies in this direction. Obtaining low-cost and high-performance
magnetocaloric materials is not an easy target because of the related drawbacks. For instance, Gd
shows a large magnetocaloric effect (MCE) in room temperature range [1], yet it is a costly element
which tends to oxidation. Recent research seeks to balance the needs for technical applications by
obtaining high magnetocaloric performance with fewer disadvantages by exploring several kinds of
magnetic materials treated in different conditions.

In recent times, mixed valence manganites with the general formula La1−xAxMnO3, where A is a
divalent element (A = Ca, Sr, Ba, . . . ), have roused plenty of research thanks to their important electrical
and magnetic properties, such as the colossal magnetoresistance (CMR) [2–8] and the magnetocaloric
effect (MCE) [9–14]. That is why the parameter necessary for selecting magnetic refrigerants is based on
the cooling power per unit volume and the relative cooling power (RCP). This parameter is a measure
of the amount of heat transfer between the cold and hot sinks in a refrigeration cycle, estimating the
range of operating temperature.
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To ameliorate this parameter, wide-ranging research has been conducted, hence the development
of many synthetic methods of producing these materials, such as solid state reaction, sol–gel,
coprecipitation, high-energy ball-milling, polyol process, spark plasma sintering, etc.

Other research works have shown that the physical properties of ceramics are also sensitive to
the value of the sintering temperature [15–18]. Actually, all these research works have confirmed that
the electronic, magnetic, and transport properties are significantly affected by the grain size. Among
the earliest reports on the effect of particle size on the physical properties, one can mention that of
Mahesh et al. [19], who varied the particle size from 0.025 to 0.35 µm and found significant changes in
the properties. Gupta et al. [20] reported that the saturation magnetization decreased with increase
in the grain size (grain sizes 3, 14, and 24 µm), although Tc (~230 K) remained constant. However,
Zhang et al. [21] observed that Tc decreased with increase in the grain size in the range of 24.4–240 nm.
It is known that this variation of Tc is controlled by the electron bandwidth W and the mobility of eg

electrons [11,22,23]. In fact, the structure, magnetism, and the magnetocaloric effect are very correlated,
primarily by the bandwidth W.

In addition, our original idea is to change the physical properties by simple methods including
simple annealing at low temperature.

It is in this context that the present research work lies to study the effect of the sintering
temperature on magnetic and magnetocaloric properties of La0.8−x�xCa0.2MnO3 (x = 0, 0.1 and
0.2) manganites.

2. Experimental Details

The La0.8−x�xCa0.2MnO3 (x = 0, 0.1 and 0.2) compounds were prepared by solid-state reaction
and heated at a temperature of 1373 K. The preparation method as well as the structural and magnetic
results were discussed in our previous research work [11]. In the present work, these samples
were annealed at 973 K for 7 days in air. The structure of the samples was checked using X-ray
diffraction with Cu Kα radiation (λ = 1.5406 Å) by step scanning (0.02◦) in the range of 10◦ ≤ 2θ ≤ 100◦.
The magnetic measurements were performed on BS2 magnetometer developed in Louis Neel
Laboratory of Grenoble.

3. Results and Discussion

The XRD patterns of La0.8−x�xCa0.2MnO3 (x = 0; 0.1 and x = 0.2) compounds annealed at 973 K are
represented in Figure 1. Similarly to the case of the annealing at 1373 K, the refinements of XRD patterns of
the compounds annealed at 973 K revealed the presence of two phases. The main phase was accredited to
La0.8−x�xCa0.2MnO3, and the other phase was attributed to the presence of unreacted MnO3.
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Figure 1. Observed (open symbols) and calculated (solid lines) X-ray diffraction pattern for  
La0.8−x�xCa0.2MnO3 (x = 0, 0.1 and 0.2) annealed at 973 K (S2). Positions for the Bragg reflection are 
marked by vertical bars. Differences between the observed and the calculated intensities are shown 
at the bottom of the diagram. 

The X-ray diffraction analysis showed that all samples crystallized in the orthorhombic structure 
with Pnma space group.  

The results of the refinement are summarized in Table 1. It is worth noting that the decrease of 
the annealing temperature was accompanied by a reduction of the grain size, leading to a decrease 
of the bond length dMn–O, an increase in the bond angle θMn–O–Mn, and thus a decrease in the unit cell 
volume. 

Table 1. Results of Rietveld refinements, determined from XRD patterns recorded at room 
temperature for La0.8−x�xCa0.2MnO3 (x = 0, 0.1 and 0.2) compounds annealed at 973 K (S2). 

x 0 0.1 0.2
Space group Pnma Pnma Pnma

Lattice parameter    
a (Å) 5.4503 5.448 5.446 
b (Å) 7.712 7.709 7.707 
c (Å) 5.474 5.468 5.463 

Unit cell volume (Å3) 57.522 57.437 57.412 
dMn–O (Å) 1.967 1.958 1.952 
θMn–O–Mn (°) 161.234 161.012 160.453 
χ2 (%) 1.27 1.51 1.51 

Figure 1. Observed (open symbols) and calculated (solid lines) X-ray diffraction pattern for
La0.8−x�xCa0.2MnO3 (x = 0, 0.1 and 0.2) annealed at 973 K (S2). Positions for the Bragg reflection are
marked by vertical bars. Differences between the observed and the calculated intensities are shown at
the bottom of the diagram.

The X-ray diffraction analysis showed that all samples crystallized in the orthorhombic structure
with Pnma space group.

The results of the refinement are summarized in Table 1. It is worth noting that the decrease of
the annealing temperature was accompanied by a reduction of the grain size, leading to a decrease
of the bond length dMn–O, an increase in the bond angle θMn–O–Mn, and thus a decrease in the unit
cell volume.

Table 1. Results of Rietveld refinements, determined from XRD patterns recorded at room temperature
for La0.8−x�xCa0.2MnO3 (x = 0, 0.1 and 0.2) compounds annealed at 973 K (S2).

x 0 0.1 0.2

Space group Pnma Pnma Pnma

Lattice parameter
a (Å) 5.4503 5.448 5.446
b (Å) 7.712 7.709 7.707
c (Å) 5.474 5.468 5.463

Unit cell volume (Å3) 57.522 57.437 57.412
dMn–O (Å) 1.967 1.958 1.952

θMn–O–Mn (◦) 161.234 161.012 160.453
χ2 (%) 1.27 1.51 1.51
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We have also estimated the average crystallite size D from the XRD patterns using the Scherrer
formula [8]:

D =
180
Π

0.89λ

β cos θ
(1)

where λ is the X-ray wavelength, θ and β are the diffraction angle and the full width for the most
intense peak with:

β = β2
m − β2

i (2)

β2
m is the experimental full width at half maximum (FWHM) and β2

i is the FWHM of a standard
silicon sample.

The D values were found to be 8.37 nm, 9.23 nm, and 10.48 nm for x = 0, 0.1 and 0.2 samples,
respectively. In comparison with our previous results [8], it is illustrated that with the increase in
the annealing temperature, the particle size of samples increased, confirming that the annealing
temperature promotes the grain growth of the samples [15–17,24,25].

It should be mentioned that a special focus was placed on how the physical properties are strongly
influenced by the grain size.

Figure 2 displays an example of the temperature dependence (T) of the magnetization (M),
measured at the applied magnetic field of 0.05 T, for La0.8−x�xCa0.2MnO3 (x = 0, 0.1 and 0.2)
compounds annealed at 1373 K (S1) and 973 K (S2). For the two annealing temperatures, we can
note the presence of a magnetic transition from the ferromagnetic to paramagnetic phase at the Curie
temperature TC, when increasing temperature for S1 and S2 compounds. Moreover, it is clearly
shown that the annealing at 973 K induced an increase of the magnetization. The paramagnetic to
ferromagnetic (PM–FM) transition temperatures (TC) were estimated from the peak of dM/dT curves
(Figure 3).
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Table 2. The Curie temperature (TC) values for S1 and S2 compounds.  

 Tannealing = 1373 K Tannealing = 973 K
 x = 0 x = 0.1 x = 0.2 x = 0 x = 0.1 x = 0.2 

TC (K) 236 241 247 240 252 258 
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Figure 3. Comparison of the temperature dependence of (−dM/dT) measured for an applied magnetic
field of 0.5 T for La0.8−x�xCa0.2MnO3 (x = 0, 0.1 and 0.2) compounds annealed 1473 K and 973 K.

The decrease of the annealing temperature was found to clearly lead to an important increase
of the TC value. The increase of TC can be explained by the increase of Mn-O-Mn bond angle and
the decrease of Mn-O bond length predictably with the increase of deficiency content. Both shorter
Mn-O distance and larger Mn-O-Mn bonding angle lead to the increase of the electron bandwidth W
and the mobility of eg electrons, and hence the Double Exchange (DE) interaction (Table 2). Therefore,
the improvement of TC can be explained by the increase of electron-one bandwidth W given by:

W = w0

cos
(

π−γ
2

)
〈

dMn−O

〉3,5

where γ is the Mn-O-Mn angle, dMn-O the Mn-O distance, and W0 a positive constant [26].

Table 2. The Curie temperature (TC) values for S1 and S2 compounds.

Tannealing = 1373 K Tannealing = 973 K

x = 0 x = 0.1 x = 0.2 x = 0 x = 0.1 x = 0.2

TC (K) 236 241 247 240 252 258
W /W0

(10−2 eV) 9.05 9.14 9.28 9.361 9.498 9.544
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At this level, we were interested in the most important physical property for industrial
application—namely the magnetocaloric effect, which is an intrinsic property of magnetic materials.
The magnetocaloric effect is a magneto-thermodynamic phenomenon in which a change in temperature
of a suitable material is caused by exposing the material to a changing magnetic field. This effect is
maximized when the material is near its magnetic ordering temperature (Curie temperature TC).

Figure 4 shows the magnetic applied field (µ0H) dependence of the magnetization M (T, µ0H)
measured at different temperatures (T) for the La0.8−x�xCa0.2MnO3 (x = 0, 0.1 and 0.2) compounds
annealed at 973 K.

The magnetic entropy change ∆SM was deduced from the M (T, µ0H) curves using the following
equation [27]:

∆SM(
T1 + T2

2
) =

1
T2 − T1

 µ0 Hmax∫
0

M(T2, µ0H)µ0dH −
µ0 Hmax∫

0

M(T1, µ0H)µ0dH

 (3)
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From these curves, it can be deduced that the annealing at low temperature (973 K) changed the
value of the maximum of the magnetic entropy change (−∆SM max) and the full width at half maximum
(δTFWHM). For example, for x = 0, under H = 2 T, ∆SM max is equal to 5.96 and 3.84 J Kg−1 K−1 at
Tannealing = 1373 and 973 K, respectively.

The cooling efficiency of magnetic refrigerants was evaluated by means of the so-called relative
cooling power (RCP) factor, corresponding to the amount of heat transferred between the cold and hot
sinks in the ideal refrigeration cycle and defined as [28]:

RCP = −∆SMax × δTFWHM (4)

where ∆SMax is the maximum of magnetic entropy change and δTFWHM is a full width at half maximum.
We can clearly deduce that the annealing at low temperature (973 K) enhanced the value of the

relative cooling power (RCP) factor for both samples (Figure 5).
Table 3 exhibits the comparison between the obtained results and those of other magnetocaloric

materials. From the comparison with Gd data and from a technological point of view, our data
emphasize that our material can be considered as a relevant potential candidate to be used in cooling
systems based on magnetic refrigeration. From an industrial point of view, this material presents
beneficial parameters such as low cost, lacking rare earths, low weight, no corrosion, ease of synthesis,
and chemical stability. For all these reasons, the suggested material can be considered as a substantial
candidate for magnetic refrigeration.

Table 3. Comparison of reported values of the maximum magnetic entropy change (−∆SM max) and
RCP values at the Curie temperature (Tc) under a magnetic field (µ0H) for various manganites and the
Gd magnetic refrigerant material.

Materials TC (K) µ0H (T) −∆SM max (J/K kg) RCP (J/kg) References

Gd 299 2 5 196 [29]
La0.7Na0.2MnO3 335 2 2.83 76.91 [23]

La0.8Na0.15�0.05MnO3 320 2 2.97 96.06 [23]
La0.8Na0.1�0.1MnO3 295 2 2.97 96.06 [23]

La0.8Ca0.2MnO3 240 2 3.84 95.15 This work
La0.7�0.1Ca0.2MnO3 252 2 2.98 96.17 This work
La0.6�0.2Ca0.2MnO3 258 2 4.56 83.97 This work

The change of magnetic entropy can be also calculated from the field dependence of the specific
heat by the following integration [30]:

∆SM(T, H) =

T∫
0

Cp(T, µ0H)− Cp(T, 0)
T

dT (5)

The change of specific heat ∆Cp associated with a magnetic field variation from 0 to H can be
calculated using Equation (5) as:

∆CP(T, µ0H) = CP(T, µ0H)− CP(T, 0) =
Tδ∆SM(T, µ0H)

δT
(6)

Using Equation (6), ∆Cp of the La0.8−x�xCa0.2MnO3 (x = 0 and 0.2) compounds annealed at 1373
and 973 K versus temperature for an applied magnetic field of 2 T is displayed in Figure 6. As the figure
shows, anomalies are observed in all curves around the Curie temperature TC, due to the magnetic
phase transition. The value of ∆Cp undergoes a sudden change of sign from positive to negative
around TC with a negative value below TC and a positive value above TC. For example, for x = 0.2,
the maximum/minimum values of ∆Cp exhibit a steady increase with the decrease of annealing
temperature, which proves that the annealing temperature is an alternative method to ameliorate the
value of the change of specific heat in manganites.
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effects on the structural, magnetic, and magnetocaloric properties of La0.8−x�xCa0.2MnO3 (x = 0; 0.1
and x = 0.2) samples. The decrease of the annealing temperature from 1373 (S1) to 973 K (S2) was
found to decrease the grain size, leading to: (i) a decrease of the lattice parameters and the unit cell
volume, (ii) an increase of magnetization as well as of Curie Temperature Tc, (iii) an increase of the
value of the (RCP) factor.
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