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Abstract: The chiral optical Tamm state (COTS) is a special localized state at the interface of
a handedness-preserving mirror and a structurally chiral medium such as a cholesteric liquid
crystal or a chiral sculptured thin film. The spectral behavior of COTS, observed as reflection
resonances, is described by the temporal coupled-mode theory. Mode coupling is different for two
circular light polarizations because COTS has a helical structure replicating that of the cholesteric.
The mode coupling for co-handed circularly polarized light exponentially attenuates with the
cholesteric layer thickness since the COTS frequency falls into the stop band. Cross-handed circularly
polarized light freely goes through the cholesteric layer and can excite COTS when reflected from
the handedness-preserving mirror. The coupling in this case is proportional to anisotropy of the
cholesteric and theoretically only anisotropy in magnetic permittivity can ultimately cancel this
coupling. These two couplings being equal result in a polarization crossover (the Kopp—Genack
effect) for which a linear polarization is optimal to excite COTS. The corresponding cholesteric
thickness and scattering matrix for COTS are generally described by simple expressions.

Keywords: optical Tamm state; cholesteric liquid crystal; handedness-preserving mirror

PACS: 42.70.Df; 61.30.Gd; 42.79.Ci; 42.60.Da; 42.87.Bg

1. Introduction

Matter tends to order thus forming crystals. Orientational alignment is the preferred order in
liquid crystals. Due to its cyclic nature, an echo of a translational order can be additionally generated in
chiral superlattices of cholesteric liquid crystal. As a result, polarized light with the same handedness
as that of the helically structured cholesteric liquid crystal diffracts (Figure 1), whereas the cross-handed
circularly polarized wave travels virtually unaffected. This phenomenon is referred to as the selective
reflection [1] or, alternatively, the Bragg circular diffraction for electromagnetic and acoustic waves [2].
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Figure 1. Circular Bragg diffraction forming COTS. The cholesteric director is shown in blue and green,
and the electric field is in red and yellow. The angle between them does not change with depth.

The results obtained are readily generalized for any material with a helix-like response, including
widely tunable heliconical structures [3]. The selective reflection obstructs observation of localized
states when the order at the interface or at the structural defect is disturbed. This is paid off by a simpler
description of the states, which is an advantage offered by smooth helix symmetry [1,4] as opposed to
discrete translational symmetry of crystals. The structural defect is conventionally represented as a
cavity confined by mirrors, where the role of mirrors is played by the Bragg grating. This counterpart
of a Fabry—Perot resonator possesses a number of defect modes. These defect modes are localized
optical states normally corresponding to the whole numbers of halfwaves accommodated in the
cavity. There are a number of distinctive polarization features [5-11] associated with the chiral defect
applications [2,12-15], among which the twist defect, lacking an intermediate layer and having zero
thickness, is most prominent [16,17]. Strict theoretical [4,18-20] and experimental [16,21,22] studies
of the phenomenon gave rise to a discussion on polarization and relaxation time of the localized
state [23,24]. Theoretically, infinite relaxation time is only possible if there is anisotropy in magnetic
permittivity [4,25]. Otherwise, it appears impossible to simultaneously match electric and magnetic
field strengths at the interface. Note that infinitely increasing the cholesteric thickness does not provide
infinite improvement of the quality factor. The quality factor saturates with increasing cholesteric
thickness and circular polarization of the transmitted light changes from co-handed to cross-handed.
This polarization crossover [17] is termed the Kopp-Genack effect [26]. Unlike the Fabry—Perot
resonator, the twist defect generates a single localized state. The spatial field distribution curve in this
case has no flat top; it consists of two waves exponentially descending in opposite directions. This
resembles a surface wave, with the only difference that, for the twist defect, there is no limitation on
the angle of incidence of the excitation wave, and surface waves at the cholesteric-isotropic dielectric
interface are only observed at the angles ensuring the total internal reflection [27].

There exists a surface wave beyond the restriction of total internal reflection. It is known as an
optical Tamm state (OTS) [28-34], which is similar to the Tamm state of electrons at the superlattice
interface. The dispersion of OTS lies outside the light cone given by k = w/c [35]. Such a state
can be excited even perpendicular to the surface without energy transfer along the surface, which
is advantageous for various applications. A question naturally arises is whether there is an OTS at
the cholesteric-metal interface when the light is normally incident. When dealing with this problem,
one should bear in mind two things: first, semitransparence of the cholesteric due to the circular
Bragg diffraction and, second, polarization change caused by alternating circular polarizations in that
reflection from cholesteric does not change the handedness of circular polarization, whereas reflection
from metal does [36]. This alternation acts like traffic lights: a co-handed circular polarized wave is
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not allowed to go through the cholesteric until after it has been twice reflected from the metal [37].
The polarization match at the interface between chiral and achiral mirrors can be achieved by adding
an extra anisotropic layer. This layer produces a set of localized states with nontrivial polarization
properties [38,39]. Various combinations involving two mirrors have been extensively studied and
proposed for practical applications [36,40], including less-than-one-pitch chiral layer [41—46]. The closer
to the mirror, the higher the energy density of the states may become, but still the states are not localized
at surface but within the bulk of the extra layer. It is possible to do so without an extra layer provided
a special mirror is used. This mirror is known as a handedness-preserving mirror (HPM) [24]. Today,
there are several experimentally measured HPMs based on metasurfaces [47-49]. HPM retains not
only the handedness but also the ellipticity magnitude upon reflection, therefore, such a mirror is also
referred to as a polarization-preserving anisotropic mirror [50]. Furthermore, HPM can be defined as
a reflector with the effect of a half-wave phase plate [49]. A localized state at the HPM/ cholesteric
interface is described in the low-anisotropy approximation of cholesteric liquid crystal and is called a
chiral optical Tamm state (COTS) [44].

In this paper, we seek to answer the question of whether this state is possible in principle with an
ideal HPM and a semi-infinite non-absorbing cholesteric layer having finite anisotropy. A detailed
description is given by the simplest case when the electric and magnetic anisotropies are identical.
Two types of deviations are considered: the lack of magnetic anisotropy and the finite thickness of the
cholesteric layer. The ideal state here becomes a resonance with a finite quality factor and relaxation
time.

A Method to Describe Spectral Peaks

The spectra of interest and the field distribution are conveniently described by the Berreman
formalism [51]. For normal incidence on cholesteric, there is an uncomplicated exact solution [52—
55]. By matching the tangential field strengths at the cholesteric interface, one can write down
general closed-form equations [4,18-20]. For the sake of simplicity and clarity, we additionally use
an approximate analytical method—the temporal coupled-mode theory (TCMT); that is, the theory
of coupled modes in the time domain [56-58]. TCMT provides an instrument to describe the field
in coupled resonators where coupling occurs between the resonator and the waveguide. Here, the
spatial structure of the localized mode is not involved. It is the complex amplitude of this mode and
its time derivative that matter for this theory. TCMT is a popular approach for dealing with stationary
processes where the time derivative is zero. The first word, ‘temporal’, in the term [59] can be treated
as historically coined. Essentially, the same method is employed to describe open resonators [60,61]
and it goes back to the Lippmann and Schwinger’s solution of the scattering problem in quantum
mechanics [62]. This method is not to be confused with the theory of coupled waves [63-65], or the
spatial theory of coupled modes widely used in the optics of cholesterics [27,66-69]. While both
approaches rely on the concept of coupled modes [70], the latter theory deals with coupled amplitudes
of propagating waves, leaving the amplitude of the resonator mode outside the scope of consideration.

2. Model

A sketch of the cholesteric interface is shown in Figure 1. The cholesteric helical axis is normal
to the mirror surface. In other words, the cholesteric director, i.e., the unit vector of the preferred
orientation of molecules, is constant in the interface-parallel cross-sections, and it uniformly rotates
with increasing distance from the interface. Near the interface, a chiral optical Tamm state (COTS) is
possible, described in [44] in the limit of low cholesteric anisotropy. This state can be represented as a
superposition of two circularly polarized counter-propagating co-handed waves with their strengths
rotating in time in opposite directions. The resultant polarization is linear at each point of space, and the
plane of polarization uniformly rotates together with the cholesteric director as the distance from the
interface increases. The amplitude exponentially drops without standing-wave nodes and antinodes.
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Figure 2 compares HPM with a conventional mirror. In a conventional metallic mirror, the electric
field, when reflected, reverses its phase whereas the magnetic field does not. A reverse situation is
possible, in which case the mirror is called a magnetic mirror. HPM combines the electric and magnetic
types of reflection [48]. Let y be such an axis in the HPM plane that an electric field linearly polarized
along that axis changes its phase after reflection. The orthogonal axis x corresponds to magnetic
reflection. It is important that the magnetic field is orthogonal to the electric one, and hence to the
x-axis, and is directed along y. In other words, the electric and magnetic field components directed
along y are subject to a phase jump and yield a node, i.e., zero intensity. It is only x-components of the
field that remain non-zero.

Conventional
mirror /7

Handedness
preserving
mirror

Figure 2. HPM and a conventional mirror. The x-polarized light reflection is different. For HPM,
the reflected electric strength E; preserves its phase and the phase of the magnetic strength Hy
alters instead.

Maxwell Equations in the Basis Associated with the Cholesteric Director

Here, we limit ourselves to the case of normal light incidence. For y = 1, the Maxwell equation
for a wave propagating along the helical axis z can be written as

?E e 9L
922~ 2o

)

The wave is described by a vector E of complex amplitudes for the electric field components in
the orthogonal directions x and y. Projection of the dielectric permittivity tensor € on the plane x, y at
the depth of z in the cholesteric is given by

o €. cos> P+ €,sin* g sin2¢ (e, — €,)/2 @

sin2 (e, —€,)/2  €,sin® P + €, cos> P

Here, the optical axis coinciding with the cholesteric director is given by the twist angle

$(z) = 2mz/p + ¢, which is measured from the x-axis toward the y-axis; p is the helical pitch.

The positive pitch refers to a right-handed helix, and the negative pitch refers to a left-handed one.

Taking magnetic permittivity fly, into account makes an explicit form of the magnetic strength H
expression more preferable and increases the field vector dimensionality from 2 to 4:

T: [EXI H}// Ey/ *HX]T-

Consequently, the order of the differential equation goes down from second to first. Let us assume
that the principal axes of the magnetic and electric permittivity tensors coincide. On this assumption,
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we can use the orthonormal basis u, v, z uniformly rotating together with the cholesteric director so
that the u-axis always goes along the director:

TR = [Eu/ H‘()/ E'U/ _Hu]T-

By the Berreman method [51], Maxwell’s equations in a stationary case have the following form:

iTJR. ®)

FE

A differential transfer matrix for rotating basis is formulated in [4,18] and it can be reduced to

o
o O >

, (4)

o oF

o >0
oxF »mo

€o

where A = Ag/p = 2mc/wp is the dimensionless wavelength and Z = zw/c = 2mz/Ag is the
dimensionless coordinate. There are different units for electric and magnetic strengths in the SI system;
therefore, they have to be normalized via the vacuum impedance Zy = E/H = /o / €.

3. Solution without the Low-Anisotropy Approximation

Four normal waves (eigenmodes) correspond to Equation (3). They are determined by the
eigenvalues of the T matrix. These eigenvalues have the sense of refractive indices 7 and the respective
eigenvectors of the T matrix have the sense of polarizations Jy. Based on the z-axis reversal symmetry
z — —z, these four normal waves can be classified as two pairs of counter-directed waves. In each
pair, the wave with a larger refractive index has a lower phase velocity. We refer to this wave as a slow
wave. The other wave is called a fast wave:

TRO = T;if eXP(ii”s,ff)- ®)

Substituting the solution for fz“f into Equation (3) yields:
i[T—ng e NJ ;=0 (6)
where [ is the unit matrix, the index + in f:f has been omitted. The refractive indices are as follows:

np =A% H e £\ J4EEA? + d2,, (7)

where de;, = (€cpto — €ote) /2 is the antisymmetry coefficient of permittivities and the overbar means
the arithmetic mean over ordinary and extraordinary permittivities:

€elo + EoHe
-5

®)

e -
s EU = €ecoMoe =

Scale invariance of Maxwell’s Equation (3) and normalization of material parameters (see
Supplement in [4]) reduces the structure to two crucial parameters: electric and magnetic anisotropies

o= e €0 5 _ He Mo ©)

€g+€0’ e ,ug‘i‘ﬂo.
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3.1. The Case of Equal Anisotropies, e = dy

Consider the case of equal anisotropies 6 = é¢ = Jy. The clarity and fineness of this
single-parametric set of structures should compensate the difficulty of their physical realization
in the optical range for the reader [25]. The wavelength parameterizes the set of differential transfer
matrixes (Equation (4)) in the way as eccentricity does to a set of conical cross-sections. The cholesteric
eigenmode dispersion law is simplified due to the symmetry of permittivities de;, = 0

ngp= (A% \/ER)? — (e — &), (10)

Without further prejudice to the generality, we assume the normalization fi = € and ey = 1.
Then, \/ﬁ = € > 1. In other words, the permittivity is normalized to the geometric mean of ¢, and
€e: € = (/€0€c = 1, and the arithmetic mean is not less than unity: € > 1. The second term in the
right-hand part of the cholesteric eigenmode dispersion law becomes squared anisotropy éfi — efi = 2.
Anisotropy here acquires the meaning of the standard deviation of permittivities:

nzlf =(A+e)? -4 (11)

Unlike the parabolic approximation typical of periodic media, the dispersion curves have a
hyperbolic shape, except for the stop band where they have the shape of a circle. The cholesteric
eigenmode dispersion law (11) can be written for the refractive index as well as for the wave vector

nyp=A£28A+1,
zzg,f = ngrf/Z\Z =@* +2e0 + 1. (12)

This inversion symmetry of A(n) and @ (k) = 1/A dispersions indicates the symmetry of the
longwave and shortwave limits. In the longwave limit, the medium is homogeneous and becomes
isotropic. The negative optical activity ceases as the situation comes close to the static field case.
In the shortwave limit, positive optical activity is supported by the Mauguin waveguide regime
(Figure 3). This symmetry is destroyed when the anisotropies become unequal (J¢ 7 J,). The ordinary
and extraordinary waves can then be distinguished in the high-frequency limit equivalent to helix
untwisting. Next, we focus on the circular Bragg diffraction, when (;\ —VEf )2 < 62 and the refractive
index for the fast wave 1y acquires purely imaginary values. This is the case when the phase velocity
becomes infinite and the group velocity becomes meaningless. It would be reasonable here to write
down cholesteric eigenmode dispersion law (11) in the form of a trigonometric identity where some
angle x € [0, 71/2] acts, instead of the wavelength:

— 8?sin? 2 = 62 cos? 2y — &°. (13)

This means that at wavelength
Ay = €+ dcos2y, (14)

the refractive index of the fast wave ny = idsin2)x describes full reflection in the cholesteric bulk.
This wave is conventionally called a diffracting wave [1] and its polarization is derived from nontrivial
solvability of Equation (6). Subtracting the refractive index from transfer matrix (4) yields the
following identity:

—isin2y A—¢ —iA —icos2y 0 cos X
A o A+é —isin2y 0 —iA —icos2x —isinx
T—nl|]f=9 =0,
[ nelly iA+icos2y 0 —isin2y A+é —siny

0 iA+icos2x A—¢ —isin2y —icosx
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where A = €/4. We deal here with a manifest symmetry with respect to exchange between electric
and magnetic fields and permittivities, E, /E, = (—H,/H,)*. The equality of electric and magnetic
permittivities is equivalent to the Umov-Pointing vector going to zero the same way as for conventional
standing-wave nodes and antinodes. The electric and magnetic fields are linearly polarized at the same
angle —x to the cholesteric director. This direction coincides with the x-axis for x = ¢ = ¢(z = 0).
Surface conditions for an ideal HPM are exactly the same—both the electric field and the magnetic field
are linearly polarized along the magnetic axis of the mirror (Figure 2). Hence, the derived expression
provides an exact description of COTS for a finite anisotropy.

gl

|nf,s

Figure 3. Inversion symmetry of dispersion curves, Equation (12). (a) wavelength A as a function of the
refractive index |n g|. (b) frequency @ =1/ A as a function of the wave number |k f,s|- The blue curve is
the fast wave, the purple curve — slow wave. The solid curve is drawn fore, = y. = 3/2,€p = po =2/3,
de = dy. The semicircle refers to a diffracting wave for which the refractive index acquires purely
imaginary values |n¢| = Im(nf). The Mauguin regime, A < 1, is equivalent to homogenization
@ < 21 according to the inversion symmetry of Equation (12). The symmetry is violated for the
dashed line with e, =2/3,€, =3/2, pte = o = 1.

3.2. The Case of Unequal Anisotropies, de # 6y

In a general case, we denote the directions of electric and magnetic polarizations by the angles xr
and x . Generalized nontrivial solution of Equation (6) provides eigenvectors of the transfer matrix (4)
and exact solutions for the angles [19]:

u 3 Me + Ho
tan xg = E—U = —Agn S 71]2(}40 - )ﬂ%‘ue,
—cotxy = Hy = —Aong ee—i;eo ——
—Hy He€e€o — M€ — Ag€e
Y=xe—xu#0,
X=(e+xu)/2 (15)

where the refractive index 7 should be borrowed from cholesteric eigenmode dispersion law (7). It is
evident that the polarizations are linear for the purely imaginary refractive index 7, whereas for the
real refractive index 715, they are almost circular in the stop band. The cholesteric eigenmode dispersion

law (14) can be generalized as
Ao ~ \/€fi + \/&fi — €fi cos 2. (16)

For a cholesteric without magnetic anisotropy (¢ = 1), we have

Ao ~ VE+ VE—T1cos2x. (17)
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The eigenfrequency is:
1

“wor Ve+VE—Tcos2x

This expression is more exact in comparison with the earlier obtained approximation (Equation (10)

in [44]) and still there remains approximation. We have to use a unified angle y between the cholesteric

optical axis and HPM, hence the electric and magnetic polarizations are directed differently in a

general case. This does not meet the condition on the HPM surface. The non-zero angle of polarization

mismatch, i, introduces a new non-local COTS component [19]. This enables the state to become a
leaky mode (or resonance), acquiring finite relaxation time Typ.

(18)

4. Relaxation Time and Spectral Manifestation

By definition, the time of relaxation of a vibrational state is the ratio of the stored energy & to the
lost power P taken with a positive sign:

T _ & _  Energy stored (19)
2 P Power of leakage’

Here, 7 is the amplitude relaxation time, which is twice the energy relaxation time. Since the field
does not penetrate into depth of an ideal HPM, the whole stored energy is the energy of diffracting
waves inside the cholesteric layer. Let us find this energy by integrating its density over space
W = [ED + HB]/87 in Gaussian units. The period-averaged densities of electric and magnetic energy
components are equal because ED = HB. Moreover, |E2| = |E2| /2, where E is the wave amplitude.
Therefore, W = &|E3|/87. A standing wave in the layer is formed by two waves travelling in opposite
directions. Their constructive interference is compensated by a destructive one, and their energy
densities add up. In the defect layer, Wy = &|E3|/47. Integration yields

o . W()/\O
5:/ Wi 2ins - 2mz/Ag)dz = . 20
0 Oexp( f / 0) 47T|I’lf| ( )
With account of Equations (7) and (17) for 6, = 0and € =~ 1,
|7’lf| = (8¢/2) sin 2%, /\f:/\0/|1’lf|. (21)

Here, Ag = Agp is given by Equation (16). The power of leakage is proportional to the flow
velocity ¢/+/€ and the energy density W, = é|Eé| /87 carried away by the travelling wave. The
strength is governed by the boundary conditions:

Ey = 2Egsin(/2). (22)
We finally have [19]
) = A1 (23)
e sin?(1p/2)

Consider a cholesteric layer of finite thickness L embedded in a medium with permittivity
€ = \/€o€.. Instead of Equation (22), the power of leakage at the edge of the cholesteric is given by:

Er =2Epexp (—M> . (24)
Af



Crystals 2017, 7,113 9 of 15

Note that, because of the cholesteric boundary condition, Ey is twice as high as just exponentially
decreasing by Equation (5). Then, the corresponding relaxation time is

A
T = —fexp <47TL> , (25)
A

T 4re

which agrees with the expressions obtained in [10,19]. The last formula is also directly applicable when
€ # 1, assuming L being the optical density: L = Lo, /&;.

4.1. Temporal Coupled-Mode Theory

By the temporal coupled-mode theory [58,71], the resonance is described by the cyclic
eigenfrequency wp and complex amplitude A. This theory should not be confused with the spatial
coupled-wave theory where the amplitudes of propagating waves are involved [63,70]. The resonance
manifests itself through the amplitudes s/.. of incoming and outgoing energy fluxes:

dA . Na N o2
E__IWOA_E:T?_‘_E ESH,

[2
Sp_ = —Spy + 4| —A. (26)
T

Excitation via one of the ports s;, = spexp (—iwt) yields the amplitude

2

T
Ay(w) = - Sps. 27)
() z(wo—w)—l-Zé\]:l% "

Amplitudes of reflection from port ¢ into port ¢/ form a scattering matrix

2 /2
7 T[’:

i(wp —w) + Z%:l TT/,,

Syr_ a
T = = = =8y +
S04

(28)

where &, is the Kronecker symbol. Reflections are observed as spectral peaks in the shape of Lorentzian
profiles with full width at half maximum (FWHM)

N
1

2y=2) —. 29

! ;Te @)

Scaling from the cyclic frequency w = 27tv to the frequency v yields a 27t times narrower width
of the peak:

| —

1 N
AV:I:—E
7T ﬂf:l

This is sufficient to allow the spectral behavior of the state to be described in terms of temporal
coupled-mode theory.

: (30)
¢

"1
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Figure 4. The Kopp—Genack effect. The linewidth saturates with increasing cholesteric layer thickness.
Polarization reversal of the optimal exciting light. (a) reflection spectrum, Equation (28). (b) spectral
dip width, Equation (30). The cholesteric helix pitch is p = 1um, electric anisotropy is dc = 0.1; there is
no magnetic anisotropy, 6, = 0. (c) reflection at the resonance frequency w = wg, Equation (31). (d)
state amplitude at the resonance frequency w = wy, Equation (27).

In the previous section, we dwelt in detail with ideal COTS with its eigenfrequency given by
Equation (16). Relaxation times given by Equations (23) and (25) were used to express deviations
from the ideal state associated with the angle ¢ and the layer thickness L, respectively. The other
possibly large relaxation times from HPM and dissipation are easy to be incorporated into TCMT.
Nevertheless, for the sake of simplicity, here we keep only two of them. This appears to be sufficient to
fully describe COTS in terms of TCMT. The port of coupling via angle ¥ has the cross-handed circular
polarization with respect to the cholesteric twist, while coupling via the cholesteric thickness L has
the co-handed circular polarization. Equation (28) at the resonance frequency w = wy generates the

following reflection matrix:

N

2 2 2 2
R_| Tss rsollcos 20 sin 29], (31)

s Ao | | sin?20 cos?26

where tan0 = 7y /77, indices S and O stand for the same and the opposite circular polarizations,
respectively. This matrix satisfies the energy conservation law. Maximum nondiagonal reflections
occur at crossover when the relaxation times become equal 6 = 7/4.
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An analytical expression for the length of crossover L. is obtained by equalizing relaxation times
described by Equations (23) and (25), which yields:

Anle, 1
i) (32)

Pl B sin?(yp/2)’

L :ﬁuo sin?(y/2)| (33)
¢ 47 08 ’

This length, as is fairly noted in [24], is difficult to measure in the twist defect of a cholesteric
because of the high 7, and the high requirements of the experiment accuracy. In the case of COTS, the
Ty magnitude appears to be substantially larger because of the HPM imperfectness and the crossover
length reduces, which should simplify its experimental measurement.

4.2. TCMT Applicability Limits

When using TCMT to tackle the problem of coupling between a localized state and waveguides,
there are certain limits imposed such as linearity, time-invariant structural parameters, energy
conservation, time-reversible energy flux and weak coupling [58]. The model chosen a priori meets
the first four requirements. The fifth one incorporates, in fact, two requirements. First, the solution
derived from Equation (26) ignores corrections with respect to a small parameter that is defined as a
vibration period-to-relaxation time ratio [56]. Second, the waveguide dispersion should be small over
the frequency range of the resonance Lorentz profile. For a fairly large relaxation time, the Lorentzian
profile width approaches zero and this automatically takes care of the second requirement [58]. In this
case, the cholesteric acts as a waveguide for waves with cross-handed circular polarization. Dispersion
in the middle of the stop band is moderate. Thus, we believe the set of linear differential equations,
Equation (26), provides an adequate description of the model when L > 5p and é. = 0.1. Beyond
this approximation, the eigenfrequency depends on the cholesteric layer thickness and is possible to
describe through the approach proposed in [10].

4.3. Numerical Results

Figure 4 shows that there is a Kopp—Genack effect observed for COTS. For definiteness, we took the
helical pitch p = 1 um. For the parameters specified in the figure, the eigenfrequency vy/c = 1 um~!
is achieved at the angle ¢ = ¥ ~ 45.7° and the mismatch angle ¢ ~ 2.9°. The crossover length
L. ~ 11.75 um agrees with Equation (33). For substantially thicker cholesteric layers, L >> L., the line
width is Ave/c &~ 1.25- 10~ um~! and the quality factor saturates: Qs = 1/ Aves ~ 8000. Note that
for crossover, L = L, the quality is half the magnitude.

Figure 4a illustrates that for crossover L = L, the structure reflects light as a conventional mirror;
that is, the circular polarization handedness changes for the opposite one. The growing thickness of
the cholesteric layer L > L. takes its polarization properties back to the HPM properties when L = 0,
i.e., the circular polarization handedness no longer changes under reflection. Figure 4b proves that
the co-handed and cross-handed (right and left) circular polarizations excite COTS equally efficiently
when L = L, (crossover). Hence, the most efficient excitation occurs when both polarizations, with
equal amplitudes and a certain phase difference, are superimposed to produce linearly polarized light.
No COTS is excited by orthogonally polarized light. For thicker cholesterics, L >> L., excitation is only
possible with cross-handed circularly polarized light as co-handed circularly polarized light is totally
reflected from the cholesteric.

5. Conclusions

COTS can be considered strictly localized only provided the electric and magnetic permittivities
are equal and the respective tensor axes coincide. Otherwise, COTS is observed as a polarized
reflection resonance with two relaxation constants determined by the permittivity difference and
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the cholesteric layer thickness. COTS is closely connected with the twist defect of cholesteric and
renders the Kopp-Genack crossover effect. A scattering matrix, where spectral peaks are described
by Lorentzian profiles, has been found in terms of the temporal coupled-mode theory. It is for the
first time, to the best of our knowledge, that a formula for the cholesteric crossover thickness has been
suggested, which is equally suitable for COTS and for the twist defect. The analytical result agrees
with the direct numerical one.
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