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Abstract: Ca12Al14O33 (C12A7, 12CaO·7Al2O3, or [Ca12Al14O32]
2+:O2−) is a material with a clathrate

cage framework, positively charged and stabilized by anions occluded within 17% of the cages.
The occluded anion is modular and can be elemental, polyatomic, and electronic in nature. This
review focuses on the electride C12A7 ([Ca24Al28O64]

4+:(4 ∗ ∂)e−(2− ∂)O2−), where O2− anions are
replaced with electrons, and compliments previous structural and electronic property reviews to
illuminate the structure–property relationships. Electride formation is updated with new findings
in carbonaceous reduction methods. Most importantly, an extensive compilation of cationic doped
C12A7 isostructural compounds is presented as motivation to study doped C12A7 electrides. Cationic
dopants have profound impacts on the electronic properties due to changes in the density of states,
localized electron behavior, and structural distortions.

Keywords: electride; mayenite; Ca12Al14O33; lime-alumina compound; cationic doping;
structure–property relationships; 12CaO·7Al2O3; C12A7

1. Introduction

Ca12Al14O33 (C12A7), the mineral mayenite, appears in early cement literature and is the
first inorganic electride stable at room temperature. C12A7 crystallizes in the cubic space group
I43d (no. 220), with Z (formula units) = 2 and a lattice parameter ~12 Å. The unit cell contains
118 atoms and two of the O2− atoms, in the stoichiometric case, nucleate a clathrate cage consisting of
tetrahedrally coordinated trivalent Al and octahedrally coordinated divalent Ca cations. The unit cell
contains 12 interconnected cages each with a diameter of ~5 Å [1–3]. The clathrate cage framework
[Ca24Al28O64]

4+ has a net positive charge balanced by anions occluded in the interior of the cage.
In the stoichiometric case, [Ca24Al28O64]

4+:2O2−, O2− is the template ion responsible for nucleating
the framework. The bonding between the framework and the occluded anions leads to a contraction
of the cage, introducing structural disorder (Figure 1), which is discussed later.

The C12A7 framework is stabilized with a range of host of oxyanions: O2− [4,5], OH− [1,6–9],
O− [8,10–14], O−2 [8,10–16], O2−

2 [8,14,16,17] as well as H− [18–21], F− [4,8,9,22–24], Cl− [4,9,22,25],
CN− [9,26,27], S2− [4,9], N3− [9,28], NO2

− [27], C2−
2 [2,29–31], NH−2 [28,32], hydrazine [27] and

Au− [33]. The interconnectivity of the cages allows high ionic diffusion. Research in the last decade
has been heavily focused on the ability for electrons to migrate into the cage framework to satisfy
the electrostatic imbalances resulting from anion vacancies, [Ca24Al28O64]

4+:(4 ∗ ∂)e−(2− ∂)O2−.
As stabilizing anions are removed, electrons migrate into the cages where, when ∂ < 1, they have a 1s
like nature similar to Farbe color centers, leading to the F+-like notation used in the literature for metal
salts and oxides [34,35]. The ability for these electrons to remain in the cages at room temperature
results in [Ca24Al28O64]

4+:(4 ∗ ∂)e−(2− ∂)O2− being the first room temperature inorganic electride.
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Figure 1. Three main cage types in [CaଶସAlଶ଼O଺ସ]ସା framework where Ca atoms are gray, Al atoms 
are orange, O atoms are white, and the occluded anion is maroon: (A) the unoccupied cage showing 
no distortion; (B) the 12a occupied cage observed in OHି and eି occupied cages showing distortion 
in the axial,	Sସ	, direction; and (C) the 48e off center Oଶି occupied cage showing a destruction of the 
framework due to bonding between the framework Ca and Al and the occluded anion. 

Dye from Michigan State University has pioneered the synthesis of crystalline organic electrides 
and defines an electride as “…a stoichiometric ionic crystal in which electrons are trapped in cavities 
and serve as the counter anions to an equal number of positive charges in a regular crystalline lattice 
[36].” The electrons are delocalized from their parent atoms and migrate through the positive 
crystalline frameworks to ensure charge neutrality. This idea of quantum confinement is not new and 
the reports of localized electrons, e.g., alkali ammonia solutions, ionic solids, and Farbe color centers, 
predate the 20th century [36]. Dye’s group has successfully synthesized many crystalline organic 
electrides, where the majority contain cavities 4–6 Å in diameter with 7–9 Å between cage centers 
[36]. Hosono et al. discovered C12A7 as the first inorganic structure to meet the formal definition of 
an electride defined by Dye and C12A7 draws similar parallels to the organic structures from the size 
of the crystalline voids to the observed character of the localized electron [37]. Hosono’s group has 
since discovered the inorganic electrides including Ca2N:	݁ି and Y2C:	2݁ି and used crystal structure 
databases and ab initio calculations to find the first magnetic electrides at ambient temperatures [38–
40]. The development of stable electrides with a low work function leads to possible applications in 
electron emission applications, n-doped electronic applications, and catalysis and reduction 
processes [36,41]. 

C12A7 research has prompted reviews spanning thermodynamics and synthesis [42], single 
crystal and thin film growth and the associated electrical properties [2,43], structural disorder and 
compositional analogs based on the mineral mayenite supergroup [44], and applications in display 
devices [45]. The goal of this review is to consolidate the structure–physical property relationships, 
illuminate discrepancies due to the complicated nature of the compound, suggest areas for future 
research, and investigate the effects of cation doping into the C12A7 clathrate cage framework. 

2. Electride Structure–Physical Property Relationships 

As the Oଶି  anions are removed in [CaଶସAlଶ଼O଺ସ]ସା: (4 ∗ ∂)eି(2 − ∂)Oଶି , the cage framework 
remains with electrons injected into the center of the cage to ensure charge neutrality. The electron is 
trapped in a potential well created by the positively charged framework, similar to a particle in a box, 
and exhibits interactions with framework cations [3,34]. When all anions are removed (∂ = 2), the 
theoretical maximum electron concentration is 2.33 × 1021 cm−3 [34]. As ∂ is increased, changes in 
physical properties are tied to the nature of injected electrons and the resulting structure of the cage 
framework. This discussion is segmented into three parts; A discussion on insulating stoichiometric 
C12A7 (∂ = 0) , semiconducting low and medium electron concentration (∂ < 1) , and metallic 
conducting high electron concentration (∂ > 1).  

2.1. Insulating Stoichiometric (߲ = 0) 
To fully reveal the atomic structure and the resulting electrical properties as electron 

concentration increases, neutron and synchrotron x-ray diffraction studies are vital to characterize 

Figure 1. Three main cage types in [Ca24Al28O64]
4+ framework where Ca atoms are gray, Al atoms

are orange, O atoms are white, and the occluded anion is maroon: (A) the unoccupied cage showing
no distortion; (B) the 12a occupied cage observed in OH− and e− occupied cages showing distortion
in the axial, S4, direction; and (C) the 48e off center O2− occupied cage showing a destruction of the
framework due to bonding between the framework Ca and Al and the occluded anion.

Dye from Michigan State University has pioneered the synthesis of crystalline organic electrides
and defines an electride as “ . . . a stoichiometric ionic crystal in which electrons are trapped in
cavities and serve as the counter anions to an equal number of positive charges in a regular crystalline
lattice [36].” The electrons are delocalized from their parent atoms and migrate through the positive
crystalline frameworks to ensure charge neutrality. This idea of quantum confinement is not new and
the reports of localized electrons, e.g., alkali ammonia solutions, ionic solids, and Farbe color centers,
predate the 20th century [36]. Dye’s group has successfully synthesized many crystalline organic
electrides, where the majority contain cavities 4–6 Å in diameter with 7–9 Å between cage centers [36].
Hosono et al. discovered C12A7 as the first inorganic structure to meet the formal definition of an
electride defined by Dye and C12A7 draws similar parallels to the organic structures from the size
of the crystalline voids to the observed character of the localized electron [37]. Hosono’s group has
since discovered the inorganic electrides including Ca2N: e− and Y2C: 2e− and used crystal structure
databases and ab initio calculations to find the first magnetic electrides at ambient temperatures [38–40].
The development of stable electrides with a low work function leads to possible applications in electron
emission applications, n-doped electronic applications, and catalysis and reduction processes [36,41].

C12A7 research has prompted reviews spanning thermodynamics and synthesis [42], single
crystal and thin film growth and the associated electrical properties [2,43], structural disorder and
compositional analogs based on the mineral mayenite supergroup [44], and applications in display
devices [45]. The goal of this review is to consolidate the structure–physical property relationships,
illuminate discrepancies due to the complicated nature of the compound, suggest areas for future
research, and investigate the effects of cation doping into the C12A7 clathrate cage framework.

2. Electride Structure–Physical Property Relationships

As the O2− anions are removed in [Ca24Al28O64]
4+:(4 ∗ ∂)e−(2− ∂)O2−, the cage framework

remains with electrons injected into the center of the cage to ensure charge neutrality. The electron
is trapped in a potential well created by the positively charged framework, similar to a particle
in a box, and exhibits interactions with framework cations [3,34]. When all anions are removed
(∂ = 2), the theoretical maximum electron concentration is 2.33 × 1021 cm−3 [34]. As ∂ is increased,
changes in physical properties are tied to the nature of injected electrons and the resulting structure
of the cage framework. This discussion is segmented into three parts; A discussion on insulating
stoichiometric C12A7 (∂ = 0), semiconducting low and medium electron concentration (∂ < 1), and
metallic conducting high electron concentration (∂ > 1).

2.1. Insulating Stoichiometric (∂ = 0)

To fully reveal the atomic structure and the resulting electrical properties as electron concentration
increases, neutron and synchrotron x-ray diffraction studies are vital to characterize the underlying
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crystallographic changes. An accurate model of the starting stoichiometric structure is needed to
fully appreciate the transition to an electride structure. Several groups, including Palacios et al. and
Sakakura et al., started with the stoichiometric system with the intention to move towards the electride
system with varying degrees of electron concentration [46–48]. An in-depth historical synopsis and
[Ca24Al28O64]

4+:2O2− analysis is summarized by Gfellar in his review of mayenite as both a synthetic
oxide and mineral [44].

[Ca24Al28O64]
4+:2O2− is a highly disordered crystal structure. Synchrotron single-crystal x-ray

diffraction (SSXRD) conducted by Palacios et al. and Sakakura et al. revealed that the structure of the
cage framework ([Ca24Al28O64]

4+) is a superposition of three cage types; unoccupied, occupied, and
adjacent to an occupied cage [46–48]. The disorder arises from the presence of occluded anions needed
to nucleate the cage framework. In O2− occupied cages, the occluded anion is located at an off center
48e special position and is bonded with two framework Ca and a single framework Al. This leads
to contraction of the cage due to bonding between the framework Ca cations and occluded anions.
Crystallographically, the contraction moves the Ca cations towards the center from one 24d site, Ca1, to
two equally partially occupied 24d sites denoted Ca1a and Ca1b. Studies by Sakakura et al. suggest that
the Ca1a site is moved slightly off the S4 axis to a 48e site. These two sites arise due to the symmetry
of the cage and are needed for similar bond lengths between Ca1a/Ca1b and the occluded anion
O3 [46,47]. This trimodal split Ca position was previously reported by Nomura et al., however, no split
Al position was reported, possibly due to correlating refinement parameters with the site occupancy
factor resulting in large uncertainties, especially when the occupation is small [49]. Bonding between
Al1-O3 leads to a new Al position, Al1a, causing a destruction of a framework tetrahedron due to a
breaking of the framework Al1-O1 bond in favor of the Al1a-O3 bond (Figure 2) [46]. This results in a
relaxation of the local structure around this framework tetrahedron and new split positions of both O1
and O2 sites. Further local disorder becomes apparent in adjacent cages where the loss of the attractive
force of the Al1 atom results in a distortion of the Ca1 site to 48e Ca1c site resulting in the third cage
type adjacent to the occupied cages [46]. For a complete listing of crystallographic information, see
Table 1 reproduced with modification from Gfellar [44].
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maroon, and framework Al forming a new tetrahedron (blue) in [CaଶସAlଶ଼O଺ସ]ସା: 2Oଶି. The front of 
the cage has been removed for clarity. 

One discrepancy between the two reports of Palacios et al. and Sakakura et al. concerns another 
occluded anion position on a 12a site directly at the center of the cage [46,47]. [CaଶସAlଶ଼O଺ସ]ସା: 2Oଶି 
is known to be hygroscopic at ambient humidity [6,22]. In his review Gfellar hypothesized, and both 
Boysen et al. and Palacios et al. previously hinted, that the presence of the 12a occluded site density 
was due to a hydrolysis reaction between the occluded O and moisture in the atmosphere leading to 
the reaction ܱଶି(஼௔௚௘) + ଶܪ (ܱ௚) → (௖௔௚௘)ିܪ2ܱ  [1,44,47]. Ensuing hydration and diffraction 
experiments found that stoichiometric samples, when exposed to an atmosphere with a high moisture 
content, led to a reduction in occupation of the 48e O3 special position in favor of occupation of the 
center of the cage 12a site [44]. This 12a site was previously experimentally reported by Boysen et al. 
in samples with larger than the stoichiometric expected occluded anion occupancy, 

Figure 2. Destruction of framework tetrahedron (orange) due to bonding between occluded O2−,
maroon, and framework Al forming a new tetrahedron (blue) in [Ca24Al28O64]

4+:2O2−. The front of
the cage has been removed for clarity.

One discrepancy between the two reports of Palacios et al. and Sakakura et al. concerns another
occluded anion position on a 12a site directly at the center of the cage [46,47]. [Ca24Al28O64]

4+:2O2− is
known to be hygroscopic at ambient humidity [6,22]. In his review Gfellar hypothesized, and both
Boysen et al. and Palacios et al. previously hinted, that the presence of the 12a occluded site density
was due to a hydrolysis reaction between the occluded O and moisture in the atmosphere leading to the
reaction O2−

(Cage) + H2O(g) → 2OH−(cage) [1,44,47]. Ensuing hydration and diffraction experiments
found that stoichiometric samples, when exposed to an atmosphere with a high moisture content, led
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to a reduction in occupation of the 48e O3 special position in favor of occupation of the center of the
cage 12a site [44]. This 12a site was previously experimentally reported by Boysen et al. in samples with
larger than the stoichiometric expected occluded anion occupancy, [Ca24Al28O64]

4+:2OH−O2−, and
by Nomura et al. [49]. With monovalent occluded species, an increase in occupied cages is expected
to be driven by the need to charge balance the positive framework. Upon heating, older reports cite
hydroxides (1.3–1.4 wt %) remain in the C12A7 structure up to 1100 ◦C, however, structural studies by
Boysen et al. suggests that at 700 ◦C the occupation of the 12a site disappears [1,22]. This is consistent
with an irreversible loss of the weakly bonded hydroxide. Both the Ca1b and Ca1a sites are present
when bonding to O2− but when most other species occupy the cages only the Ca1a site is present due to
the location of anions at the 12a, center of the cage, site. Further structural studies of anion substitutions
showed that this 12a site is favored by a large number of possible anions that do not have an affinity
towards the framework Al, leading to the off center 48e site [50]. The 12a site, along with its hygroscopic
nature, further complicates the disorder in the non-stoichiometric [Ca24Al28O64]

4+ framework leading
to an additional cage type, 12a occupied cages. Electron paramagnetic resonance (EPR) has been used
for probing the concentration of extra framework paramagnetic species in C12A7 [11,14,37].

Table 1. Comparison of structural models for disordered 43d [Ca24Al28O64]
4+:2O2−. Reproduced with

modifications from [44]. Occupancies are reported based on the occupancy of the off center and center
anion positions to allow for modular structural occupancies based on the degree of OH− and O2− content.

Name [Occup.] Wycoff Site Boysen [1] Nomura [49] Palacios [47] Sakakura [46]
Ca1 24d x 0.1432 (3) 0.1401 (7) 0.13831 (2) 0.13933 (2)

[1 − (X + 4Y)] y 0 0 0 0
z 0.25 0.25 0.25 0.25

Ca1a 24d x 0.1867 0.1771 (5) 0.17451 -
[X + 2Y] y 0 0 0 -

z 0.25 0.25 0.25 -
Ca1a 48e x - - - 0.1693 (2)

y - - - 0.0067 (3)
z - - - 0.2503 (3)

Ca1b 24d x - 0.1977 (5) 0.2065 0.2069 (1)
[2Y] y - 0 0 0

z - 0.25 0.25 0.25
Ca1c 48e x - - - 0.1353 (2)
[Y] y - - - 0.0043 (3)

z - - - 0.2354 (2)
Al1 [1 − 3Y] 16c x 0.0188 (1) 0.0189 0.01867 (2) 0.01861 (9)

Al1a 48e x - - 0.30520 (9) 0.3041 (2)
[Y] y - - 0.19510 (9) 0.1984 (2)

z - - 0.26090 (9) 0.2619 (2)
Al2 12b x 0.875 0.8750 0.875 0.875
[1] y 0 0 0 0

z 0.25 0.25 0.25 0.25
O1 48e x 0.0367 (1) 0.0381 (1) 0.03612 (4) 0.03605 (4)

[1 − 2Y] y 0.4429 (1) 0.44290 (8) 0.44231 (4) 0.44234 (3)
z 0.15054 (9) 0.1510 (1) 0.15049 (4) 0.15052 (3)

O1a 48e x - - - 0.1302 (3)
[Y] y - - - 0.0603 (3)

z - - - 0.4328 (3)
O1b 48e x - - - 0.1718 (5)
[Y] y - - - 0.0312 (4)

z - - - 0.4352 (5)
O2 [1 − 3Y] 16c x 0.18519 (9) 0.1865 (1) 0.18526 (3) 0.18510 (4)

O2a 48e x - - - 0.1996 (6)
[Y] y - - - 0.1750 (7)

z - - - 0.1893 (6)
O3 12a x 0.375 0.375 0.375 -

(center) y 0 0 0 -
[X] z 0.25 0.25 0.25 -
O3 48e x - 0.344 (2) 0.3588 (2) 0.3559 (6)

(off cen.) y - 0.036 (2) 0.0616 (2) 0.0614 (7)
[Y] z - 0.243 (5) 0.2479 (2) 0.2506 (7)
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The structural disorder in the stoichiometric case results in a complicated band structure
calculated through density functional theory (DFT). Theoretical calculations of the band structure
corresponding to [Ca24Al28O64]

4+:(4 ∗ ∂)e−(2− ∂)O2− with various levels of ∂ have proven difficult
due to the conversion of the system from an insulating to a metallic state, however, similar trends are
observed from a variety of different functionals [3,34,51,52]. Sushko et al. performed band structure
calculations from the stoichiometric insulating state to the electride state using two different density
functionals; B3LYP works well with insulating systems and LDA works well with metallic systems [3].
[Ca24Al28O64]

4+:2O2− has a large bandgap, Eg = 6–7 eV, making it electrically insulating [51]. Many
interstitial electronic states reside in the band gap (Figure 3A), and form two general groups, 1–2 eV
above the valence band (VB) and 0.5–2 eV below the conduction band. The grouping of ten states
below the conduction band corresponds to the ten unoccupied cages, deemed the cage conduction
band (CCB). The presence of this conduction band makes C12A7 a system where two conduction
bands are observed; the states associated with framework cations and those corresponding to the
cage potential well. The states above the valence band correspond to two different features. The eight
states between −4.0 and −5.0 eV correspond to O 2p states split off from the valence band due to
disorder associated with the bonding between framework Al and occluded O2−; this is due to the
presence the presence of oxygen splits positions in the 48e occupied cage type. The two states above
−4.0 eV correspond to O2− occupied CCB states [3]. The contraction of the cage due to interactions
with occluded species move occupied CCB states to lower energies. Other band structure calculations
only exhibit the two occupied CCB states near the valence band. Sushko et al. reported that if the
off-center O2− position was discarded in favor of a metastable center of the cage position, historically
reported in diffraction studies, the 2p states associated with the framework did not split from the
valence band and only two bands, corresponding to the two O2− occupied cages, are observed [3].
This is understandable, without the off-center O2− position there will be higher homogeneity in the O’s
contained in the framework. These 12 states of the CCB account for all 12, unoccupied and occupied,
cages in the unit cell of C12A7, and the structure of the cage correlates to the energy of these states
giving rise to the interesting electrical properties.
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Figure 3. Band structure of: (A) [Ca24Al28O64]
4+:2O2−; (B) partially reduced

[Ca24Al28O64]
4+:(α)e−(4− α)H−; and (C) fully reduced [Ca24Al28O64]

4+:4e− calculated using
B3LYP and LDA functionals. “3 × 3 × 3 k mesh was used in both cases, the Fermi level is shown as a
thick dash line, and only spin up states are shown.” Adapted with permission from [3]. Copyright 2007
American Chemical Society.

Due to the large band gap, C12A7 single crystals exhibit >90% optical transparency in the
visible range, and at low electron concentration C12A7 combines optical transparency with electrical
conductivity leading to potential applications as a transparent conductive oxide that is both inexpensive
and earth abundant [52–54].
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2.2. Semiconducting Low/Medium Electron Concentration (∂ < 1, ne < 1× 1021)

At low and medium electron concentration, C12A7 transfers into a semiconducting state.
The introduction of electrons into the cages results in a color change from clear to green, which
is characteristic of F+ centers.

The structure is now more disordered with a new electron occupied cage type in addition to the
previous cage types. Palacios et al. performed SSXRD looking at low electron loadings and determined
that, as electron loading increased from [Ca24Al28O64]

4+:0.6e−1.7O2− to [Ca24Al28O64]
4+:1.8e−1.1O2− ,

the lattice parameter increased by 0.05% and 0.21%, respectively [47,48]. This is consistent with the
relaxation of the occupied cage type toward an unoccupied cage type due to weakened interaction
between the localized electron and the framework. A decrease in both the Ca1a and Ca1b site
occupancies with increased electron loading further substantiates this theory. It was reported that
there was a small increase in the Ca1a-Ca1b (occupied cage diameter) while Ca1-Ca1 (unoccupied cage
diameter) did not change [47]. The occupied cage diameter is contracted with respect to the unoccupied
cage diameter due to the bonding between framework Ca and the O2−. As the occupancy of O2− is
reduced, there should be no change in the bonding behavior leading to a relaxation in Ca1a/Ca1b
positions. The observed change in contracted cage diameter could be attributed to the averaging of all
the cage types. There are two likely possibilities; As the O3 and Ca1a/Ca1b occupancy decreases and
the Ca1 occupancy increases, the refinement may be compromised due to difficulties distinguishing
between the heavily correlated Ca1 and split positions, leading to inaccuracy in the atomic coordinates,
and the second being a weak interaction between the localized electron and the framework Ca leading
to a split Ca position in between Ca1 and Ca1a/Ca1b. As the electron occupied cage type increases in
relevance the averaging of the split Ca position, corresponding to e− occupied cages and Ca1a/Ca1b
would lead to a larger contracted cage diameter. This evidence points to a contraction of the cage due
to interaction with occluded electrons. Palacios et al. found that electron scattering density, at the 12a
center of the cage position in reduced compositions, increased as electron loading increased [47]. This,
experimentally, suggests that the electron is localized in the cage and the localized electron is located at
the 12a center of the cage position as predicted by theoretical models [34,55]. However, since it is likely
that the stoichiometric samples Palacios et al. studied were exposed to moisture, it is possible, since
electron doping has not reached a maximum, that moisture caused the formation of hydroxide species
leading to the observed electron density on the 12a position in reduced samples. The experimental
observations from SSXRD are corroborated by band structure calculations.

Band structure calculations corresponding to low e− occupation results in occupied CCB states
0.4–1 eV below the CCB and the small dispersion of this state indicates high localization of the
electron [3]. It should be noted that these band structures were calculated through modeling
of [Ca24Al28O64]

4+:(α)e−(4− α)H− and not [Ca24Al28O64]
4+:(4 ∗ ∂)e−(2− ∂)O2−. This allows for

calculations to be performed at lower electron concentration and both B3LYP and LDA functionals give
similar band structures for the low electron loaded models. The calculated occupied cage diameter
associated with the localized electron increases from 4.39 Å in O2− occupied cages to 5.07 Å, which
is, however, still significantly less than the unoccupied cage diameter of 5.6 Å. The average of these
two cage diameters corroborates the diffraction observations associated with the expansion in average
occupied cage diameter suggesting that localized electrons are polarons and induce cage framework
contractions. This reduction in contracted cage diameter raises the energy of e− occupied CCB states
towards the unoccupied CCB, and the gap between the occupied and unoccupied CCB states gives
rise to a semiconducting state [3].

The optical absorption spectra displays two peaks centered near 2.8 and 0.4 eV [29,56].
The absorption of these two peaks are assigned to the 1s to 2p excitation of a localized electron in a
single cage, consistent with F+ color centers, and to the transition of localized electrons between cages,
respectively [2,21,56]. Optical reflectance data show sharp phonon lines in the infrared regime as well as
absorption in the visible and ultraviolet range typical of insulators. Limited Drude response is observed
and contributions to the reflectance pattern can be fit with a Lorentzian model further indicating
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the dominate carrier type is localized opposed to free carriers [51,52]. Temperature dependent DC
conductivity measurements when ∂ < 0.5 reveal a temperature dependence of log(σ) of T−1 suggesting
that at low concentrations the electrons conduct as polarons [37]. This indicates a strong lattice-electron
coupling as previously observed in diffraction experiments and in DFT calculations and the activation
energy (0.1 eV) and mobility (0.1 cm2·(Vs)−) are consistent with polaron theory [37,51,57]. As ∂

increases to 1, electrons form bipolarons due to neighboring cages being occupied, limiting polaron
type conduction, and a change in the temperature dependence to T−1/4 is consistent with thermally
activated variable range hopping (VRH) conduction [2,37,51,58]. In the semiconducting state a room
temperature electrical conductivity (σRT) below 100 S·cm−1 is obtained [2].

The presence of bipolarons is confirmed through analysis of EPR trends. Localized electrons act as
F+-like centers in a paramagnetic spin state [43]. This paramagnetic nature allows for the concentration
of localized electrons to be determined by EPR. However, it was observed by Matsuishi et al. and
corroborated by Kim et al. that the EPR signal saturates at approximately 8 × 1019 electrons [37,59].
This is only 1% of the theoretical maximum electron concentration and further statistical analysis
determined that at peak electron loading there is a 99% chance of a neighboring cages being occupied.
This suggests that, as electron concentration increases, neighboring electrons alter the paramagnetic
state of the localized electron. Matsuishi et al. [37], further confirmed by Kim et al. [2], proposed that
these neighboring electrons would form an EPR invisible bipolaron. Due to this fact, EPR should not
be used to determine electron concentration unless ∂ is small, but can be used to identify the presence
of F+ paramagnetic centers characteristic of localized electrons at all levels of electron concentration.

2.3. Metallic High Electron Concentration (∂ > 1, ne > 1× 1021)

In the semiconducting state electrons are localized in the cages due to electron framework
interactions leading to a large degree of inhomogeneity of cage types. As electron concentration
increases past 1× 1021 samples demonstrate a loss of optical transparency and a color change to black
corresponding to absorption in the full visible range. DC conductivity measurements show a negative
trend of log(σ) with respect to temperature, and metallic like conduction of approximately 1500 S·cm−1

with an increase in carrier mobility to 4.0 cm2·(Vs)− is observed [58].
As electron concentration is increased, the degree of disorder associated with O2− occupied

cages is reduced due to the limited concentration of stabilizing anions. Kim et al. conducted
synchrotron powder XRD (SPXRD) on [Ca24Al28O64]

4+:4e− and analyzed the data combining
maximum entropy method (MEM) and Rietveld refinement techniques. No split positions were
reported for [Ca24Al28O64]

4+:4e− and no electron scattering density was observed at the center of the
cage, in contrast to reports in the semiconducting state by Palacios et al., suggesting a full relaxation of
the contraction associated with electron occupied cages and loss of localized electrons which leads to a
homogeneity among cage types [57].

Band structure calculations when ∂ = 2, maximum electron concentration, show four occupied
CCB states corresponding to the e− occupied cages as well eight states corresponding to the unoccupied
cages. B3LYP predicted a semiconducting system while LDA, displays no observable bandgap
between the occupied CCB and unoccupied CCB [3]. A closer look reveals that one of the occupied
CCB states is at a higher energy than the unoccupied CCB creating a metallic system matching
the observed DC conductivity results. Further, a higher dispersion of these states suggests that an
increase in carrier density leads to the formation of delocalized free carriers [3,57]. The calculated cage
diameter of electron occupied cages has increased to ~5.4 Å, which is only slightly (~0.2 Å) smaller
than the unoccupied cage diameter and explains why no split positions were observed in powder
diffraction experiments.

Seebeck coefficient measurements reveal a decrease in Seebeck coefficient with increased carrier
concentration and a change in sign concurrent with the transition from a semiconducting to a metallic
state. This provides insight into the density of states (DOS) around the Fermi energy as electron
concentration is increased indicating valleys in the DOS, confirmed through band structure calculations
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(Figure 4 (left)). The DOS around the lower CCB corresponds to Ca s-projected contribution and the
higher CCB states have a Ca d-projected contribution [60]. With increased electron concentration, the
occluded electrons that are initially localized is a s-like F+ state change to the sd-hybridized state of
Ca (Figure 4 (right)). This hybridized state plays a role in the observed superconducting transition at
~0.2 K due to the increased ability for Cooper pairs to form [58,60].
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Optical reflectance studies find that as electron concentration is increased a Drude peak and
broadening of phonon peaks in the IR region, characteristic of free electron carriers, is observed in
conjunction with the characteristic Lorentzian transitions associated with localized carriers [51,52].
The dominant conductivity type changes from VRH conduction to band conduction, but the Lorentzian
features suggests both forms of conduction occur concurrently [51,52]. Lobo et al. identified an increase
in asymmetry of phonon peaks with increased carrier concentration in the metallic regime. This is
characteristic of the Fano effect and indicates a large lattice-electron coupling. The observance of an
increased Fano effect with carrier concentration confirms that localized and delocalized carriers are
observed in the metallic state and the increase in carrier concentration favors the formation of polarons.
There have only been EPR studies conducted just up to the metal transition, and paramagnetic electron
species are still observed [37]. These experimental results along with the theoretical calculations point
to the presence of localized and delocalized electrons existing in the C12A7 leading to concurrent and
cooperative types of electrical conduction [43,52].

2.4. Summary

C12A7 exhibits an insulator to metal transition heavily correlated to structural changes. As anions
are removed, and electrons are injected into the structure, the initial insulating disordered system
relaxes to a less disordered metallic system due to a loss of off centered O2− occupied cages. A weaker
interaction between localized electrons, occupying the center of the cage, and framework Ca leads
to a relaxation of the occupied cage diameter toward the unoccupied cage diameter resulting in an
increase in homogeneity of the cages. This relaxation of the system is observed in theoretical band
structure calculations and results in the occupied CCB states rising in energy until they overlap with
the unoccupied CCB states leading to delocalization of electrons over all cages and metallic conduction.
Electrical conductivity and optical reflectance measurements support the insulator to semiconductor
to metallic conductor transition observed in band structure calculations. However, since the occupied
cages do not fully relax back to the unoccupied state there is still some degree of electron localization.
Structural, experimental, and theoretical studies conclusively point to the same trends in C12A7.

The diffraction studies by Kim et al. raise some important questions on the contraction of electron
occupied cages. Does SPXRD have enough resolution to deconvolute the heavily correlated split
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positions and reveal small scattering due to localized electrons in the cage? There are inconsistencies
between diffraction studies and possibly disagreement between diffraction studies and theoretical
calculations in the metallic regime. Due to the hygroscopic nature of stoichiometric C12A7 it is
important that all samples are handled consistently to avoid contamination. A systematic study across
all electron concentrations, from insulating to metallic, with careful contamination control is needed to
compliment physical property studies by Lobo et al. and Matsuishi et al. Neutron diffraction studies
probe the nuclear density, making it invisible to the localized electrons, while synchrotron diffraction
studies probe the localized electrons and induced electrostatic distortions in electron clouds. Combined,
they paint two different pictures of the same system and single crystal diffraction experiments at high
electron concentration are needed.

Convoluted cooperative electronic conduction, observed at peak electron loading, is complicated.
However, the current theory for the conversion from localized carrier to free carriers does not explain
the increase in phonon electronic coupling observed through the Fano effect. While it may be related
to the sd-hybridization proposed by Hosono et al. research to understand the behavior of polarons
and free carrier conduction at peak electron loading can illuminate the mechanism behind the Fano
effect observed by Lobo et al.

3. Electride Formation Processes

3.1. C12A7 Synthesis

C12A7 melts congruently and single crystals can be grown through many techniques including
float zone (FZ), Czochralski (CZ), and melt forming techniques [2,47,56,61,62]. C12A7 is an
intermediate compound in the CaO and Al2O3 binary system sandwiched between the two-phase
regions consisting of C12A7 and either secondary phases denoted CA (CaAl2O3) and C3A (Ca3Al2O6)
(Figure 5). These two secondary phases are the formation products of C12A7 at higher temperatures
(≥1200 ◦C), normally through solid-state synthesis, and decomposition products when no anions are
present to stabilize the cage framework at high temperatures [63,64].
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Wet chemistry processes can be used to synthesize C12A7 below 900 ◦C. It is suspected
that the formation reaction proceeds through a secondary phase which is metastable, C5A3
(Ca5Al6O14) [63,64,66]. There is a small stoichiometric difference between the C12A7 and C5A3,
9 Ca5Al6O14 + Ca3Al2O6 → 2 [Ca24Al28O64]

4+:2O2−. C5A3 consists of layered octahedrally
coordinated Ca and tetrahedrally coordinated Al cations similar to the C12A7 cage framework
(Figure 6). When the extra oxygen is available, it nucleates the clathrate cage framework. C5A3 and
C3A are decomposition products, observed by Palacios et al. and our own investigations (discussed
below), at 1100 ◦C under dry vacuum conditions [4,48].
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Exploiting the affinity of weakly bonded occluded anions to form more stable bonds and high
ionic diffusion afforded by the clathrate cage framework is the foundation of currently developed
[Ca24Al28O64]

4+:(4 ∗ ∂)e−(2− ∂)O2− electride formation processes. The electride formation processes
can be divided into two groups with varied processing parameters: processes that extract the occluded
anion species and those replacing occluded species.

3.2. Extraction Formation Processes

The occluded O2− anions exhibit a high affinity to form more stable bonds, the basis of many
reduction processes, and C12A7 electride formation extraction processes focus on using bulk metals
and C as reducing agents.

3.2.1. Metal Reduction Processes

Metal extraction methods involve reacting the occluded O2− anions with metals to form metal
oxides. Ca metal is unstable and readily reacts with O2 and H2O in ambient atmosphere to form H2

gas. Matsuishi et al. exploits this instability to form electride float-zone (FZ) single crystals, sealed in
an evacuated (10−4 Pa) quartz ampule with Ca metal shot at a reduction temperature of 700 ◦C [37].
As process duration is increased, the initially clear single-crystals demonstrate the characteristic color
change through green to black. After 240 h the carrier density (ne) and electrical conductivity at room
temperature (σRT) saturate at 2 × 1021, which is close to the theoretical 2.33 × 1021 if all occluded O2−

is removed, and 100 S·cm−1, respectively [37,47]. O2− diffuses to the surface where it reacts with Ca in
the vapor phase, O2−

(cage) + Ca(g) → CaO(sur f ace) + 2e−
(cage) . After the process, the samples are encased

in CaO layer that has to be mechanically removed. This layer has negative processing impacts as it
limits the processing temperature to 700 ◦C due to the increase in Ca stoichiometry, derived from the
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CaO layer, which moves the phase equilibria into a two phase C12A7 and C3A region. Further this
CaO layer limits the application of this process to thin high surface area samples due to the oxygen
inability to diffuse through this CaO layer to react with metallic Ca, thereby turning off the electride
formation process.

Matsuishi et al. exploit the formation of the CaO phase by starting the system off equilibrium to
use the CaO to directly synthesize [Ca24Al28O64]

4+:4e− powder [67]. The process involves reacting
a C12A7 and CA mixture with Ca shot at 700 ◦C for 15 h in an evacuated (10−4) sealed quartz tube.
Subsequent grinding, resealing, and firing at 1100 ◦C for 2 h led to the formation of the black C12A7
electride powder. This process was also carried out utilizing CaH2 at 600–700 ◦C for 15 h, and found
that dehydration of OH− occupied cages to O2− before reduction increased electron concentration
suggesting that OH− cannot be extracted by Ca oxidation [68]. Understanding that anions are needed
to nucleate the clathrate framework, in this study, where there are no obvious template anions, suggests
that direct C12A7 electride can be accomplished when the electride phase already exists. This same idea
was observed when FZ single crystals were grown from a polycrystalline C12A7 feed rod and single
crystal electride seed. When the electride seed was attached to a non-electride feed rod, it resulted in
the formation of the electride phase [2,69]. Future experiments should explore different bulk metals
in a hope of directly synthesizing doped C12A7 electrides and further investigate direct electride
formation processes.

Kim et al. improved the Ca metal shot process by changing the reactive metal shot to Ti
powder [2,57]. The resulting metal oxide film has the composition TixO2−x, where 1 ≤ x ≤ 2,
a non-stoichiometric oxide [70]. This allows for continual oxygen diffusion through the metal oxide
layer allowing the process to be employed for single crystals of any size. The Ti extraction method
also allows for the processing temperature to be raised up to 1300 ◦C due to the stability of the
C12A7-TixO2−x system [71]. This increase in processing temperature leads to an increase in O2−

diffusion in C12A7 resulting in shorter processing times [2]. Czochralski (CZ) grown single crystals
(5 × 5 × 15 mm3) were fired at 1100 ◦C in an evacuated (10−1 Pa) sealed quartz tube, and reached a ne

of 2.3 × 1021 and σRT of 1500 S·cm−1 after a reduction process time of 24 h compared to 240 h in the Ca
method [57]. The increase in σRT is contributed to an increase in ne and carrier mobility (µe) associated
with metallic band conduction [2]. Ali et al. found that ideal reduction time and temperature was
48–60 h at 1100 ◦C and an increase in temperature to 1200 ◦C led to a decomposition of the C12A7
phase and an increase in duration led to a brittle sample and a large reduction in conductivity [72].

Palacios et al. applied a similar process with a different form of Ti and single crystal geometry [47].
Melt formed crystals are wrapped in a Ti foil and sealed in an evacuated (10−2 Pa) quartz tube and
fired at 1000 ◦C. After a processing time of 48 h, the specimen showed a color change from clear to
green and ne was estimated, through analysis of SSXRD data, refining on the occluded anion site
occupancy factor (sof), to be approximately 1.0 × 1021. An increase in processing time to 144 h yielded
black samples with a ne of approximately 2.3× 1021 [47]. The increase in process duration could be due
to a smaller surface area associated with the Ti foil leading to less vapor transport as well as a decrease
in temperature leading to a decrease in O2− diffusion. The foil process needs further investigation as
there was no mention of having to mechanically remove a TiO2 layer in the reports by Palacios et al.,
and the size and irregular geometry of the melt formed crystals would make mechanical removal of
this oxide layer difficult. Palacios et al. [48] also report using V foil and even a V sample container
for neutron powder diffraction (NPD) experiments to reduce powder and melt formed single crystal
samples. In the V foil process powder samples are fired at 1000 ◦C surrounded by the V foil in an
evacuated (1.3 × 102 Pa) sealed quartz tube and in the V container process powder samples are sealed
in an evacuated (10−3) V-can and fired at 1100 ◦C for 8 h. In the V-can reduction process, electride
formation was observed in the temperature range of 700 to 1100 ◦C, however, during the 8 h dwell at
1100 ◦C C12A7 decomposed to C5A3 and C3A.

Metal extraction techniques are ideal on single crystals where high process temperatures and
times and post processing techniques are not an issue. Stable metal foil extraction methods show
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promise for processing of polycrystalline samples, and if metal oxides are formed in the process a
direct synthesis route to doped [Ca24Al28O64]

4+:(4 ∗ ∂)e−(2− ∂)O2− may be easily realized.
The metal extraction technique cannot be applied to thin films; however, Miyakawa et al.

developed a technique, similar in principle to the metal reduction method, utilizing a oxygen deficient
C12A7 layer to reduce the previously deposited thin film below [73]. The oxygen deficient C12A7
replaces the metal as the reducing agent with a high affinity toward oxygen. C12A7 thin films were
grown using pulsed laser deposition (PLD) where an amorphous C12A7 was deposited at room
temperature and then crystallized in air at 1100 ◦C. The thin film was placed back into the PLD system
where another amorphous C12A7 layer was deposited under vacuum conditions at 700 ◦C. This top
layer would be oxygen deficient and act as a reduction agent for the polycrystalline C12A7 thin film
previously deposited. After mechanical removal of the top layer the resultant thin film displayed
electrical conductivity as high as 800 S·cm−1. This process has been repeated on Sr12Al14O33 (S12A7)
thin films and S12A7/C12A7 layered thin films, which is discussed later [74].

3.2.2. Carbonaceous Atmosphere Process

The second extraction method, CO/CO2 reducing atmosphere, is fundamentally different than
the previous reactive metal shot techniques. Kim et al. developed the process which can be
performed on any starting form, including polycrystalline powder, thin films, or single crystals [2,59].
The advantage over the metal shot technique is the reduction reaction occurs in the gas phase, allowing
for sample surfaces to remain unaffected during the process. Samples are placed in a graphite
crucible, with a lid, under flowing inert gas. It is suspected that inside the crucible a strong carbon
monoxide reducing atmosphere is formed reacting with the occluded O2− to form CO/CO2 gas,
O2−
(cage) + CO (g) → CO2(g) + 2e−

(cage) . A FZ single crystal sample fired at 1200 ◦C for 0.5 h produced a

σRT of 4 S·cm−1. EPR was used to determine carrier concentration, which can only identify carriers in
the paramagnetic state. Therefore, actual carrier density is unable to be confirmed, and higher degrees
of reduction may result by increased process times and/or temperatures. If this proposed reduction
reaction occurs, the graphite crucible can be removed and the entire process can be conducted with
flowing CO gas allowing for quick batch processing. This is confirmed by electrical conductivity
measurements on Fe-doped C12A7 FZ single crystals where electrical conductivity increased after
processing in a CO/CO2 atmosphere at 800, 900, and 1000 ◦C [75].

The CO/CO2 reduction technique is versatile and can be applied to all sample types and
geometries leading to electron loading at moderate process temperatures. However, the degree
of maximum electron concentration needs to be investigated and long process durations may be
needed to achieve a high degree of electron loading.

3.3. Replacement Formation Processes

Replacement reduction techniques work by replacing the occluded species and subsequently
altering the replacement anion for localized electron generation. Currently, two main processes
replacing the stoichiometric occluded anion O2− have been developed with H− and C2−

2 .

3.3.1. H− Replacement and Photoionization Process

A H2 gas reduction process allows for low levels of electron loading due to replacement of O2−

and subsequent ionization of hydrogenous species. Hayashi et al. first published the light-induced
insulator to conductor conversion of C12A7 [21]. FZ single crystal samples underwent a firing process
at 1300 ◦C in a flowing H2 reducing atmosphere consisting of 20% H2 and 80% N2. After the samples
were processed at 1300 ◦C for 2 h the single crystals were quenched to room temperature where
no color change was observed and the σRT was low (insulating). Spectroscopy analysis showed the
single crystals had a large concentration of H− anions confirming that the anion replacement process
had succeeded through the following chemical reaction, O2−

(cage) + H2(g) → OH−(cage) + H−
(cage) [21].
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Theoretical calculations by Sushko et al. suggest that the H2 gas decomposes to an H+ and H− pair
in the C12A7 framework [76]. The H− anion is localized in the center of the cage stabilizing the
clathrate framework. The H+ ion diffuses through the sample until it bonds to an occluded O2−

anion, creating an occluded OH− anion, or until it bonds to an oxygen in the clathrate framework [76].
After subsequent processing via UV light irradiation, with a flux of approximately 1020 photons·cm−2,
the sample demonstrated the characteristic green color change associated with localized electrons
and a σRT of 0.3 S·cm−1 [21]. The UV irradiation forms C12A7 electride by ionizing the H− ion
forming elemental H and an electron, H−

(cage) → H0
(cage) + e−

(cage) . Theoretical calculations find that

the elemental H is unstable and will thermally release another electron ionizing to an H+ anion.
This anion then diffuses through the system until in bonds with framework or occluded O anions
as previously discussed. The leads to the following reaction after the complete ionization process:

H−
(cage) +O2−

(cage) + null(cage)
UV λ→ OH−(cage) + 2e−

(cage) [76,77]. This ionization is stable after irradiation
has stopped, however at 320 ◦C the oxygen bonded protons and electrons recombine to form a H2

molecule in a cage and the characteristic properties of the localized electrons are lost. Upon further
heating to 550 ◦C H2 gas is released from the sample and subsequent UV irradiation results in no
formation of localized electrons [21].

Bertoni et al. conducted a similar process on polycrystalline samples where after processing
sintered pellets, in a 4% H2/96% N2 forming gas at 1300 ◦C for 2 h, subsequent irradiation, using a Hg
lamp (275–650 nm) for approximately 1 h, yielded electride C12A7 with a conductivity on the same
order of magnitude as the single crystal [78]. These polycrystalline samples showed a decrease in
decomposition temperature from 300 to 135 ◦C, the origin of which is unclear. The H2 gas reduction
process results in a lower electrical conductivity and carrier concentration associated with limited
replacement between the O2− occluded anions with H− anions.

Sushko et al. [76] proposes treating [Ca24Al28O64]
4+:4e−, formed through another reduction

process, to obtain the fully H− replaced compound. Hayashi builds on this idea by employing a CaH2

reduction process to obtain the highest concentration of [Ca24Al28O64]
4+:4H− [20]. Stoichiometric FZ

grown single crystals and electride single crystals were processed at 800 ◦C for various process times in
sealed and evacuated quartz ampules and these samples were compared to FZ single crystals fired at
1300 ◦C for 6 h at 0.2 atm H2. He found that reproducibility was poor and process duration had no clear
dependence on H− inclusion. Improvement was found when the CaH2 and samples were wrapped
in Pt foil due to increased contact area between the reduction agent and the samples as well as the
reduction of O species diffusion through or supplied by the silica tube. The samples were then ground
to remove a containment layer on the outside of the single crystals. After 240 h, the H− concentration
was estimated to be ~2× 1021, corresponding to the highest replacement [Ca24Al28O64]

4+:4H− and the
lattice parameter was determined to be approximately 11.97 Å, smaller than stoichiometric C12A7 and
similar to other fully monovalent balance C12A7 [77]. It was found that after ionization, samples with
only half of the theoretical maximum H− produced the highest electron concentrations and electron
concentration decreased with decreasing O2− content [77]. This verifies the ionization mechanisms
and determines that the increasing H− towards the maximum does not increase electron generation.
“...the theoretical maximum number of photo generated electrons per unit cell is determine by the
smaller value of either 2[H−] or 2[O2−] [77]”. This process is similar to that conducted in the synthesis
of powder electride C12A7 by Inoue et al., however, in their results no evidence due to H− was
observed in the absorption spectrum [68]. One explanation could be tied to the short processing time
in comparison to the process conducted by Hayashi.

3.3.2. Carbide Replacement Process

The second replacement reduction technique involves the replacement of O2− with C2−
2 that

is suggested as a high temperature anion with the ability to stabilize the clathrate framework.
The carbide anion has the same valence and similar ionic radii as O2−, 1.2 Å and 1.4 Å, respectively [29].
It is believed that the carbide ion stabilizes the crystallization of the clathrate framework at high
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temperatures and then decomposes to 2C or 2CO on cooling [29]. This replacement reaction was
first found by Kim et al. while trying to directly synthesize reduced C12A7 single crystals from a
high temperature melt under a reducing atmosphere [29]. C12A7 stoichiometric powder was loaded
into a graphite crucible with a lid and a melt was formed at 1600 ◦C in a strongly reducing CO/CO2

atmosphere similar to the extraction method described in the previous section. When the melt was
cooled, it crystallized in the C12A7 decomposition products, C3A and CA, as is expected when no
template anions can nucleate crystallization of the cage framework. However, after repeating the
process, the melt crystallized into the C12A7 electride suggesting that an anion must be present to
nucleate the crystallization of the clathrate framework [29,56]. Raman spectra of the C3A and CA
intermediary products revealed an absorption band matched to the reference for CaC2, however, after
the second processing step this absorption band is absent. This is consistent with the notion that
the carbide ion decomposes out of the clathrate framework, however, it does not explain why the
C12A7 decomposition occurs after the first processing step. Kim et al. report that the electride would
seldom form after the initial firing process and is fully reproducible after the second. It is assumed
that after the second firing process the carbide ion concentration is high enough to nucleate the full
crystallization of the C12A7 electride phase. While this process can be used to directly fabricate melt
formed electride single crystals, Kim et al. also show how a glass ceramic can be created by quenching
the melt. The quenched melt is transparent and exhibits photochromism as a color change to gray is
observed during UV irradiation [10]. The C12A7 crystallization temperature of the glass ceramic was
determined to be 900 ◦C by differential thermal analysis (DTA). After quenching the glass ceramic is
sealed in an evacuated quartz tube and fired at 1000 ◦C for 0.5 h it demonstrated the characteristic
green color change and electronic conductivity similar to the melt cooled single crystals.

Recently reduction techniques in an intrinsic carbonaceous environment have been reported.
Volodin et al. have developed and extensively studied the functionality of C coatings around TiO2,
MgO, Al2O3, and C12A7 nanoparticles [31]. These carbon coatings insulate the nanoparticles from
surrounding particles allowing for phase and chemical reactions to occur on the individual particle
level through the gas permeable carbon shell at high temperatures while preventing sintering of the
nanostructure material. The C coated samples were placed in a graphite crucible sealed in an inert
gas purged alumina ampoule and fired at various temperatures between 1250 and 1450 ◦C for 6 h.
Electride formation was observed in all samples. This process closely replicates the CO/CO2 exchange,
albeit at temperatures above the decomposition temperature of 1200 ◦C observed by Palacios et al.
under dry reducing conditions [48]. If the exchange reaction removes the occluded O2− an additional
anion would be needed to stabilize the C12A7 framework at these elevated temperatures. Due to this
understanding, C2−

2 anions must have diffused into the structure from the C coatings, leading to the
stability of the clathrate framework at high temperatures.

Chung et al. show that electride formation is possible during spark plasma sintering (SPS) due to
the carbonaceous environment [30]. The high localized temperatures, electric field, and plasma all
work together to promote diffusion of C species into the C12A7 framework. Graphite dies, which are
filled with powdered C12A7, are loaded into an evacuated (1.3 × 10−4 Pa) chamber. The graphite die
is necessary to conduct the large amounts of current needed to achieve a ramp rate of 100 ◦C/min to
approximately 1000 ◦C while having the uniaxial strength to concurrently apply 40 MPa of pressure [30].
The fast ramp rate and short processing time, reported as 0.16 h, leads to fully dense samples with
limited sintering [30]. At 900 ◦C no electride formation occurred, but as the processing temperature
was raised to 1000 and 1100 ◦C electride formation occurred with a higher concentration of localized
electrons at 1100 ◦C [30]. Samples processed at 900 ◦C were insulating at room temperature while
those processed at 1000 ◦C were still resistive but saw an increase in electrical conductivity with σRT

and ne of 3.8 × 10−3 S·cm−1 and 3.2 × 1017, respectively. At a processing temperature of 1100 ◦C the
σRT and ne increased to 5.88 S·cm−1 and 5.3 × 1019, respectively. XRD, of samples processed at 900
and 1000 ◦C, showed partial decomposition of the C12A7 phase into C3A and CA. Raman spectra of
these two samples also show an absorption band corresponding the C2−

2 anion. The concentration



Crystals 2017, 7, 143 15 of 25

of the C2−
2 vibrational mode decreases as temperature increases as does the presence of secondary

phases. This suggests that the C2−
2 vibrational mode is correlated to the decomposition of C12A7 phase.

The authors present the hypothesis that these secondary phases recrystallize into C12A7 with C2−
2 as

the anion responsible for nucleating the clathrate framework. From this point they follow the same
argument that the anion is only metastable and decomposes into 2C solid or it reacts with remaining
occluded O2− to produce 2CO gas.

We performed similar experiments by sintering sol-gel synthesized C12A7 in a graphite die,
similar to the die used in SPS, under high vacuum (10−5 Pa). The furnace was ramped at 8 ◦C/min
to 1000, 1200, or 1300 ◦C and then held for 2 h. In the 1000 ◦C sample, there was limited sintering,
no observed color change, and powder XRD shows single phase mayenite. At 1200 ◦C, the sample
showed only slight green/yellow discoloring on the edges of the pellet and powder XRD show
(Figure 7) the decomposition products C5A3 and C3A, the same decomposition products observed by
Palacios et al. [48]. Another sample was processed at 1200 ◦C for 240 h. The resulting pellet, when
cross-sectioned, revealed a white core and black edges near the graphite, Figure 7 inset. If the black
edges are reduced C12A7 then an anion must be present which can stabilize the framework and it
appears to be diffusing from the graphite foil around the powder indicating a C species. At 1300 ◦C
there was no decomposition of the C12A7 structure and [Ca24Al28O64]

4+:(4 ∗ ∂)e−(2− ∂)O2− was
formed, confirmed by the observed color change with process duration, changes in relative peak
intensity observed through XRD, and Rietveld analysis showed no occluded position occupancy.
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Figure 7. XRD data of vacuum sintered C12A7 in a carbonaceous environment at: 1200 ◦C (left); and
1300 ◦C (right). The reduced products at 1200 ◦C correspond to C3A (♣) and C5A3 (I). The inset on
the left shows the cross-sectioned pellet demonstrating the diffusion of C species and the inset on the
right demonstrates the color change associated with the formation of semiconducting and metallic
C12A7. The (�) phase corresponds to graphite foil remaining on the sample surface.

These studies, especially the peculiar nature of the crystallization from the high temperature melt,
suggest that a carbonaceous species are able to nucleate the C12A7 structure from the decomposition
products of C12A7. What is not clear is if this process only occurs from the decomposition products or
if the carbide anion can stabilize the already formed framework structure without decomposition.

O2−, C2−
2 , and H− are primarily the anions reported to form [Ca24Al28O64]

4+:4e−. Other reports
of electride formation are contributed to induced anion vacancies, however, these vacancies were
reported to be small and large scale extraction is not reported. Polfus et al. found an increase in
electrical conductivity tied to occluded position and framework vacancies created by outgassing of
NH2− and N3− under reducing conditions at 700 ◦C [28]. Dong et al. reported that, after SPS of
isostructural [Sr24Al28O64]

4+:4Cl− (discussed later), a color change to brown and observed EPR signal
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are characteristic of localized F+ centers [79]. Future research should determine if electride formation
is possible through the removal of the numerous other anions.

4. Cationic Doping of [Ca24Al28O64]4+:(4 * ∂)e−(2 − ∂)O2−

The mineral mayenite forms a supergroup of minerals containing both isostructural oxides and
silicates. Gfellar in his review goes in-depth into the different types and synthesis of various group
members, especially Cl-mayenite structures, where the cation frameworks, consisting of Mg, Al, Si,
Fe, and Ca, are stabilized by Cl− anions occluded in the cages [44,80]. Research into other doped
isostructural compounds has focused on increasing occluded anion occupancy, ion conduction, and
luminescent properties. These studies have synthesized a wide variety of stoichiometric structures
with aliovalent and isovalent dopants on cationic sites. Known synthetic doped-C12A7 compounds
are summarized in Table 2.

Table 2. Isostructural synthesized C12A7 with dopant ionic radii, coordination number (CN), ionic
radii (IR), observed dopant concentrations, available lattice parameters, and electride references (ER).

Dopant +
(Co-Dopants)
(valence/CN/IR)
Al
(3+/4/0.39)
Ca
(2+/6/1.00)

Formula
Representing the dopant site
and change in cage charge
with aliovalent doping.
The occluded species is not
corrected for an increase in
cage charge.

References
Doped/co-doped
C12A7 synthesis

Sub. Site
Substitutional
site for dopant
normally
determined by
ionic radii

Max x/y
Maximum
stoichiometric
value reported

a [Å] ER

Oxides

Sr
(2+/6/1.18)

[Sr24Al28O64]
4+ :2O2−

[Sr24Al28O64]
4+ :4Cl−

[CaxSr24−xAl28O64]
4+ :2O2−

[81]—SG 1

[82]—SS 2

[83]—HSS 3

[79]—SS
[79]—SPS 4

[84]

Ca2+ ** 0.24
12.33: (O2−) [83]

12.346 (2):
(Cl−2 ) [79]

[74]
[85]

Fe
(2+/4/0.63)
(2+/6/0.78)
(3+/4/0.49)
(3+/6/0.645)

[Ca24Al28−xFexO64]
4+ :2O2−

[15]—SS
[75]—FZ 5

[86]—FZ
[87]—SG

Al3+ ** 0.28 11.9904 (4) [75] [75]

Cu
(1+/4/0.6)
(1+/6 /0.77)
(2+/4/0.57)
(2+/6/0.73)

[Ca124−xCuxAl28O64]
4+ :2O2− [88]—SS

[87]—SG Ca2+ ** 1 11.974 N/A

Nb
(3+/6/0.72)
(4+/6/0.68)
(5+/4/0.48)
(5+/6/0.64)

[Ca24Al28−xNbxO64]
4+2x+ :2O2− [87]—SG Al3+ 0.24 12.0049(3) N/A

Ta
(3+/6/0.72)
(4+/6 /0.68)
(5+/6/0.64)

[Ca24−xTaxAl28O64]
4+?x+ :2O2− [87]—SG Ca2+ 0.24 N/A N/A

Co
(2+/4/0.58)
(2+/6/~0.7)
(3+/6/~0.58)
(4+/4/0.4)

[Ca24Al28O64Cox]
4+ :2O2− [87]—SG unknown 0.24 N/A N/A

V
(2+/6/0.79)
(3+/6/0.64)
(4+/6/0.58)
(5+/4/0.46)
(5+/6/0.54)

[Ca24Al28−xVxO64]
4+2x+ :2O2− [87]—SG Al3+ 0.72-1.2 N/A N/A

Ni
(2+/4/0.55)
(2+/6/0.69)
(3+/6/~0.58)
(4+/6/0.48)

[Ca24Al28−xNixO64]
4−x+ :2O2− [86]—FZ

[87]—SG Al3+ ** 0.28 N/A N/A

Mg
(2+/4/0.57)
(2+/6/0.72)

[Ca24−xMgxAl28O64]
4+ :2O2− [78]—SS

[87]—SG Ca2+ 2 N/A [78]

Dopant +
(Co-Dopants)
(valence/CN/IR)

Formula Reference Sub. Site Max x/y a [Å] ER
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Table 2. Cont.

Dopant +
(Co-Dopants)
(valence/CN/IR)
Al
(3+/4/0.39)
Ca
(2+/6/1.00)

Formula
Representing the dopant site
and change in cage charge
with aliovalent doping.
The occluded species is not
corrected for an increase in
cage charge.

References
Doped/co-doped
C12A7 synthesis

Sub. Site
Substitutional
site for dopant
normally
determined by
ionic radii

Max x/y
Maximum
stoichiometric
value reported

a [Å] ER

Mn
(2+/4/0.66)
(2+/6/~0.75)
(3+/6/0.65)
(4+/4/0.39)
(4+/6/0.53)
(5+/4/0.33)
(6+/4/0.25)

[Ca24−xMnxA28O64]
4+ :2O2−

[Ca24−xMnxAl28O64]
4+ :4Cl−

[89]—SS
[15]—SS

Ca2+

possibly Al3+ 0.28 N/A N/A

Ga
(3+/4/0.47)
(3+/6/0.62)

[Ca24Al28−xGaxO64]
4+ :2O2− [90]—SS

[87]—SG Al3+ ** 2 11.99734(6) [90]

Zn + P
(2+/4/0.6)
(2+/6/0.74)

[Ca24Al28−xZnxO64]
4−x+ :2O2− [91]—SS

[87]—SG Al3+ 1.3 11.993(2) N/A

P
(3+/6/0.44)
(5+/4/0.17)
(5+/6/0.38)

[Ca24Al28−xPxO64]
4+2x+ :2O2− [91]—SS Al3+ 0.66 11.981(2) N/A

Eu + (Mn, Yb, Nb)
(2+/6/1.17)
(3+/6/~0.947)

[Ca24−xEuxAl14O64]
4+ :2O2−

[89]—SS
[92]—PLD 6

[93]—SS
[94]—SS
[95]

Ca2+ 0.04 N/A N/A

Er
(3+/6/0.89) [Ca24−xErxAl28O64]

4+x+ :2O2−

[96]—CP 7

[94]—SS
[95]
[97]—CP

Ca2+
0.12

0.72 [94]
2.4 [97]

N/A N/A

Ce
(3+/6/1.01)
(4+/6/0.87)

[Ca24−xCexAl28O64]
4+x+ :2O2−

[98]—SS
[98]—SG
[99]—SS
[95]
[100]—SS

Ca2+ 0.24 N/A N/A

Dy + (Ce)
(3+/6/1.07)
(4+/6/0.912)

[Ca24−xDyxAl28O32]
4+x+ :2O2− [101]—CP

[102] Ca2+ 0.48 N/A N/A

Gd + (Sr)
(3+/6/0.938) [Ca24−xGdxAl28O64]

4+x+ :2O2− [103]—SS
[95] Ca2+ 0.024 N/A [103]

Tb + (Ce)
(3+/6/0.923)
(4+/6 /0.76)

[Ca24−xTexAl28O64]
4+x+ :2O2− [99]—SS Ca2+ 0.24 N/A N/A

Nd
(3+/6/0.983) [Ca24−xNdxAl28O64]

4+x+ :2O2− [93]—SS
[72]—FZ Ca2+ 0.2 N/A N/A

Dopant +
(Co-Dopants)
(valence/CN/IR)

Formula Reference Sub. Site Max x/y a [Å] ER

Yb
(2+/6 /1.02)
(3+/6/0.868)

[Ca24−xYbxAl28O64]
4+x+ :2O2− [94]—SS Ca2+ 2.4 N/A N/A

Ho
(3+/6/0.901) [Ca24−xHoxAl28O64]

4+x+ :2O2− [104]—CP
[97]—CP Ca2+ 1.2 N/A N/A

Pr
(3+/6/0.99)
(4+/6/0.85)

[Ca24−xPrxAl28O64]
4+x+ :2O2− [105]—SS Ca2+ 0.192 12.007 N/A

Sm
(3+/6/0.958) [Ca24−xSmxAl28O64]

4+x+ :2O2− [106]—SG Ca2+ 0.48 N/A [106]

Silicates
Si
(4+/4/0.26)
(4+/6/0.4)

[Ca24Al20Si8O64]
12+ :6O2−

[16]—HT 8

[54]—HT
[107]—HT

Al3+ ** - 11.9748 (15) [16] [54]

Fe + Si [Ca24Fe20Si8O64]
12+ :12Cl− [108]—SS Al3+ ** - 12.2158 (8) N/A

Si + (Co, Ni, Cr, Cu,
Fe)

[
Ca24−yXyAl20Si8O64

]12+ :6O2−
[109]—HT
[107]—HT
[110]—HT(Co)

Ca2+

Cu (1.2)
Cr (1.7)

Co (0.82)
Ni (2.4)

Fe (0.96)

N/A N/A

** Empirical confirmation; 1 SG—Sol-Gel synthesis; 2 SS—solid state synthesis; 3 HSS—High pressure solid state
synthesis; 4 SPS—Spark Plasma Synthesis; 5 FZ—Float Zone Single Crystal synthesis; 6 PLD—Pulsed Laser
Deposition synthesis; 7 CP—Co-Precipitation synthesis; 8 HT—Hydrothermal synthesis; Highlighted ionic radii
information is the observed or expected coordination of dopant. All Ionic radii information is from [111].

The amount of research into the electride properties of doped-C12A7 is lacking in comparison to
research on oxygen conduction and luminescence. Electride investigations of S12A7, an isostructural
compound with 100% substitution of Sr for the Ca, was performed by Hosono’s group who evaluated
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S12A7 thin films to see if they exhibited the same electride features as C12A7. Electride formation was
confirmed through two reduction processes, H− ion implantation and oxygen deficient amorphous
C12A7. After UV irradiation, the implanted thin films exhibited similar conductivities, activation
energy, temperature dependence, and absorption behavior as electride C12A7. The oxygen deficient
reduction process led to a conductivity of approximately 270 S·cm−1 and an electron concentration
of 1.3 × 1021. Physical property measurements coupled with a Drude effect in the optical absorption
spectra confirms that S12A7 exhibits similar conductivity mode changes associated with the metal to
insulator transition (MIT) of C12A7 [74]. Further studies of layered C12A7/S12A7 thin films found an
increase in carrier mobility possibly associated with accumulation of charge carriers at the interface
between the two films [85].

Bertoni et al. studied the possibility of [Ca24Al20Si8O64]
12+ being a transparent conductive oxide

and induced electride formation through the H− replacement reduction process [54]. Hydrogarnet was
calcined at 800 ◦C to form the C12A7 compound, however, it is reported that samples decomposed at
elevated temperatures and hydrogen incorporation by the conventional route was not possible. Instead
H− replacement was conducted at 300 ◦C through ion implantation. They found that the electrical
conductivity double and tripled with increasing Si doping. Further it was found that a slight increase
in Seebeck coefficient was observed with increasing dopant concentration and the sign remained
negative as expected when below the MIT. Bertoni el al. stress that the increase in conductivity is
primarily due to an increase in available hopping centers and not due to the gradual increase in
electron concentrations associated with an increase in H− [54]. Only low electron concentration
electrides were formed and due to the metastability of the phase there is currently no process to fully
reduce [Ca24Al20Si8O64]

12+ to the metallic regime. Bertoni et al. also studied
[
Ca23.76Mg0.24Al28O64

]4+

electride reduced by H− replacement process and found that conductivity decreased with increasing
Mg concentration due to Mg acting as a blocking agent for hopping conductivity [78]. These two
studies illuminate that in the semiconducting regime hopping sites and not carrier concentration limits
electrical conductivity.

Palacios et al. studied the electride formation of [Ca24Al26Gd2O64]
4+. The lattice parameter

increased to 11.99734(6) Å. The samples were then reduced by firing pellets in an alumina crucible
buried in graphite powder at 1350 ◦C for 6 h. The resultant gray pellet was multiphase with C3A
phase in high concentrations. Structural refinements revealed that the lattice parameter of the reduced
sample was close to 11.989 Å, close to the lattice parameter of undoped stoichiometric C12A7, and
the Ga site occupancy refined to zero. Further X-ray photoelectron spectroscopy (XPS) revealed that
the Ga3+ reduced to Ga metal and the conclusion was drawn that this metal must be nanodispersed
on the C12A7 surface [90]. This study raises concern of the stability of doped C12A7 under reducing
conditions, especially when considering transition metals that may change oxidations states under
reducing conditions.

Ali et al. performed the Ti reduction process on blue colored 0.1 mol % Nd aliovalent doped
C12A7 FZ single crystals [72]. Maximum electrical conductivity values were lower than those reported
by Kim et al. and carrier mobility and concentration were measured via Hall measurements yielding
large errors [57]. Ali et al. found that carrier mobility increases with annealing time while carrier
concentration is independent of annealing time between 36 and 60 h. Further, when compared to
undoped C12A7 at the same annealing time and temperature Ali et al. found an increase in carrier
concentration with similar carrier mobility, and low temperature carrier mobility was higher in the
doped case [72]. This is the first electride investigation of aliovalent doped C12A7 and shows an
increase in carrier density and mobility from the undoped C12A7.

Since the CCB is responsible for electrical conductivity in C12A7, modifications to the chemical
species in cage framework can have profound impacts on the landscape of DOS around the Fermi
energy, leading to changes in electron localization, electrical conductivity, and Seebeck coefficient.
Huang et al. performed DFT and electron localization function (ELF) calculations to investigate the
change in DOS of the CCB and the change in attractive anionic species with various cation dopants.
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They modeled the stoichiometric and fully reduced electride structures doped with ~0.86 mol %
of Cu, Sr, Fe, Ir, P, and V [34]. Lattice parameter had a linear trend with ionic radii validating
the qualitative assessment of dopant substitution and substitutional site normally employed by
experimental investigation. Cu, Fe, and Ir are exceptions to this rule suggesting an increase in cage
distortion with respect to other studied dopants. As the electride is formed the lattice parameter
increases by approximately 0.03 Å for all dopants except for Fe, where the lattice parameter only
increases about 0.01 Å [34].

Density of state calculations confirm the assumption that small changes in the cage framework
can drastically alter the density of states around the Fermi level, shown in Figure 8. Transition metal
dopants lead to an increase in interstitial states in the stoichiometric case, which disappear as the
electride is formed. At maximum electron loading Ir and Cu lead to occupied states at the Fermi level
contrasted to the valley observed in the stoichiometric case, shown in Figure 4, and other dopant cases.
In Cu-doped C12A7 the DOS of the CCB decreases from the stochiometric to the electride case further
suggesting a distortion of the cage framework.
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Electron localization function calculations are used to analyze chemical bonds and the localization
of anionic species in C12A7. Huang et al. found the character of the occluded species, localization of the
electron, and distortion of the C12A7 framework varies based on dopant. If the presence of a localize
F+ like center electron indicates semiconducting hopping conduction and the absence of this localized
attractor is characteristic of delocalized band conduction then Mg, Sr, P, and V exhibit a semiconducting
state while Cu, Ir, and Fe exhibit band conduction at max electron concentration. This assumption is
unclear as undoped-C12A7 shows a strong F+ attractor, however previous investigations have shown
that the dominant conduction carrier is a free carrier when fully reduced. The presence of localized
attractors in the ELF calculations does align with the observation by Lobo et al. where increasing
carrier concentration ultimately leads to an increase in lattice electron coupling observed in undoped
C12A7. Will the increase in Fano effect be observed for Cu, Ir, and Fe doped systems? Does the
distortion to the framework negate the formation of polarons at high electron loading like in other
systems? For Mg doping a stronger attraction to the F+ center than in undoped C12A7 confirms the
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theoretical and experimental results found by Bertoni et al. that Mg acts as a blocking agent in the
hopping conduction regime [78].

Cationic dopants are theoretically predicted to have profound impacts on the structure and
electrical properties of [Ca24Al28O64]

4+:4e−. Investigations into the effects of these dopants are few
and research should proceed to quantify and confirm the effects dopants will have on the Seebeck
coefficient, electrical conductivity, and superconducting transition. What is unclear is the experimental
stability of the cation doped framework both during the process to extract or replace the occluded
anions and in the final electride state.

5. Conclusions

[Ca24Al28O64]
4+:(4 ∗ ∂)e−(2− ∂)O2− consists of a clathrate cage framework whose complicated

crystallographic structure results in interesting properties with potential applications in both the
stoichiometric and electride states. The convertibility from a wide band gap insulator to semiconductor
to metallic conductor is performed through processing without the need for acceptor and donator
dopants as with traditional semiconductors. The strong atomic structure to physical property
relationship is responsible for this transition and modifying this structure leads to a transformation of
the electronic density of states. The intricacies of the mayenite structure are far from solved and future
research is still needed. Some areas for future investigations are:

1. Determining what is responsible for the increase in the Fano effect with increased carrier
concentration and what is the relationship between free carriers and polarons.

2. Synthesis of new doped-isostructural compounds and subsequent characterization of the
structural and electronic changes that occur.

3. Development of new reduction processes for Cl− stabilized structure that will be stable at higher
temperatures and have large substitutions of framework Ca and Al cations.

4. Development of direct electride synthesis processes where the cage framework can be nucleated
by e− or through an anion exchange process where, after the framework nucleates slight changes
in synthesis conditions, the stabilizing anions can be extracted creating anionic vacancies.
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