Exploring why monoclinic paracetamol has poor tableting properties[†]

Jonathan J. Du,¹ Felcia Lai,¹ Linda Váradi,¹ Peter A. Williams,^{1,4} Paul W. Groundwater,¹ James A. Platts,² David E. Hibbs^{1*} and Jacob Overgaard^{3*}

¹Faculty of Pharmacy, The University of Sydney, NSW 2006 Australia
²School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
³Department of Chemistry, Center for Materials Crystallography, Aarhus University, Langelandsgade 140, Aarhus C, DK-8000, Denmark
⁴School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751
*Corresponding author: David E. Hibbs, david.hibbs@sydney.edu.au

Data collection, integration and reduction

Single-crystal X-ray diffraction experiments were carried out in the Faculty of Pharmacy at the University of Sydney using an Agilent SuperNovaTM X-ray diffractometer with an X-ray wavelength of 0.7107 Å (MoK α) at 150K. Crystals of (1), (2) and (3) with dimensions (0.1 x 0.25 x 0.15) mm, (0.1 x 0.2 x 0.5) mm and (0.3 x 0.25 x 0.3) mm, respectively, were mounted on thin glass fibres with Paratone-N oil used as both adhesive and cryoprotectant. Data were collected for all crystals using 1° ω -scans maintaining the crystal-to-detector distance at 5.3 cm for (1), (2) and (3). For (1), reciprocal space coverage was achieved during the data collection by positioning the detector arm at two different angles in 20, at 41.6° and 90.5° with exposure times of 20 and 60 seconds. For (2), reciprocal space coverage was achieved by positioning the detector arm at two angles in 20, at 0° and 49° with exposure times of 50 and 150 seconds. For (3), reciprocal space coverage was covered in 20 at 28° and 66° with exposure times of 25 and 50 seconds. A total of 6680, 1276 and 4618 frames were collected for (1), (2) and (3) respectively.

Integration and reduction of the collected data were performed with the CrysAlis^{Pro} software package¹. All crystals were cooled to 150 K with an Oxford Cryosystems COBRA cooler. The unit cell parameters for (1) were refined from 100164 reflections in the monoclinic space group $P2_1/n$ with Z = 4, F(000) = 320 and $\mu = 0.096$ mm⁻¹. The unit cell parameters for (2) were refined from 19186 reflections in the triclinic space group $P\overline{1}$ with Z = 2, F(000) = 328 and $\mu = 0.078$ mm⁻¹. The unit cell parameters for co-crystal (3) were refined from 170540 reflections in the monoclinic space group $P2_1/c$ with Z=4, F(000) = 1316 and $\mu = 0.102$ mm⁻¹. Refer to Table 1 for selected crystallographic information from the independent atom model (IAM) and multipole (*EXP*) refinements.

Atom	U11	U22	U33	U12	U13	U23
H02	0.030239	0.051887	0.047266	-0.019786	-0.004603	0.018488
H03	0.025852	0.059896	0.040552	-0.013989	-0.011945	0.017423
H05	0.027912	0.044326	0.038833	-0.016919	-0.000219	0.006340
H06	0.025217	0.061884	0.037042	-0.011820	-0.010200	0.011908
H08A	0.064924	0.033707	0.050582	0.001713	0.007159	0.009195
H08B	0.029242	0.068955	0.050665	-0.003159	0.000839	0.022690
H08C	0.051442	0.063808	0.033235	0.009050	0.017402	0.008143
H01A	0.020788	0.051058	0.037994	-0.000332	0.000381	0.014486
H01	0.025077	0.044602	0.039273	-0.004550	0.001690	0.014276

Table S1: Calculated hydrogen anisotropic displacement parameters for (1)

Table S2: Calculated hydrogen anisotropic displacement parameters for (2)

Atom	U11	U22	U33	U12	U13	U23
H1	0.061420	0.042469	0.036631	0.018625	-0.010644	-0.011173
H2	0.076599	0.054484	0.034468	0.005943	-0.023107	-0.010937
H3	0.061508	0.053499	0.050724	0.030360	-0.010496	-0.004375
H4	0.065371	0.049773	0.033141	0.019011	-0.008841	-0.012604
H7	0.055019	0.058459	0.032963	0.023242	-0.000593	-0.007081
H8	0.075704	0.075651	0.024158	0.017663	-0.007689	-0.003800
H9	0.056043	0.075282	0.046676	0.036926	-0.006717	-0.000921
H10	0.052655	0.063622	0.027766	0.021221	-0.000756	-0.005328
H1'	0.061573	0.034158	0.034716	0.005255	0.001880	0.005600
H2'	0.062824	0.035360	0.053843	0.014145	0.002112	-0.007541
H3'	0.070664	0.060329	0.028152	-0.001969	0.007398	0.003044
H4'	0.056567	0.036420	0.035059	0.007052	-0.003366	0.005018
H7'	0.042521	0.056316	0.033969	0.008437	-0.014012	-0.006875
H8'	0.036420	0.062947	0.055749	0.017283	-0.008129	-0.015667
H9'	0.062359	0.065878	0.026433	0.007981	-0.007105	-0.008657
H10'	0.043301	0.048281	0.033934	0.013283	-0.009898	-0.002065

.	T T 1 1	1100	1100	1110	1110	1100
Atom	UII	022	033	012	013	023
H02	0.046872	0.044426	0.039226	0.007098	-0.018231	-0.007667
H03	0.047518	0.033075	0.045141	0.002674	-0.012889	-0.014763
H05	0.046772	0.046080	0.038779	0.006677	-0.017665	-0.012264
H06	0.063235	0.036800	0.050913	0.009094	-0.016042	-0.019830
H08A	0.046458	0.061184	0.064981	0.014085	0.012852	-0.002816
H08B	0.050506	0.040069	0.072446	0.003859	-0.012522	-0.009218
H08C	0.068371	0.061278	0.044524	0.023762	-0.014651	-0.000153
H01	0.039364	0.029407	0.046963	-0.000019	-0.008289	-0.008551
H01A	0.053575	0.038758	0.036390	0.009522	-0.009163	-0.001235
H02'	0.036700	0.051793	0.047999	0.011082	-0.019226	-0.007413
H03'	0.042518	0.037642	0.050596	0.019073	-0.011464	-0.003304
H05'	0.034525	0.041152	0.047225	0.010293	-0.017518	-0.005740
H06'	0.044158	0.035478	0.064293	0.018041	-0.015605	-0.011529
H08D	0.083212	0.054886	0.044166	0.005530	-0.006215	-0.014690
H08E	0.063384	0.039967	0.069835	0.015015	-0.017433	-0.008879
H08F	0.055171	0.049898	0.084740	-0.012842	0.005247	-0.016781
H01'	0.046493	0.029205	0.044152	0.011382	-0.008636	0.001306
H01B	0.037219	0.046579	0.050147	0.004790	-0.013516	-0.011761
H1	0.042069	0.062216	0.041749	-0.017021	0.015164	-0.012486
H2	0.046662	0.073450	0.056529	-0.030075	0.008559	-0.018836
H3	0.056472	0.059985	0.041771	-0.007449	0.016204	-0.018121
H4	0.036409	0.053536	0.047798	-0.011509	0.013220	-0.012374
H7	0.033033	0.049756	0.054292	0.008129	0.003343	-0.016669
H8	0.029653	0.061274	0.058397	-0.002611	-0.004756	-0.017856
H9	0.042928	0.050511	0.048670	0.009493	0.005658	-0.018007
H10	0.027351	0.056000	0.048635	0.002740	0.000423	-0.012826
H1'	0.043858	0.054539	0.051809	0.015508	0.017056	0.012259
H2'	0.046473	0.053827	0.067152	0.020985	-0.000278	0.011962
H3'	0.073740	0.067158	0.048776	0.002865	0.020511	0.021150
H4'	0.047575	0.065558	0.061767	0.016611	0.024697	0.018432
H7'	0.032802	0.072699	0.077326	0.008005	0.015557	0.030026
H8'	0.041487	0.081570	0.096456	0.025818	0.003208	0.034131

Table S3: Calculated hydrogen anisotropic displacement parameters for (**3**)

H9'	0.068434	0.058520	0.058894	0.009422	0.025531	0.025337
H10'	0.033985	0.055300	0.062752	0.007991	0.014990	0.017631

Table S4: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for (1). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)	
C(01)	6344(1)	1702(1)	6299(1)	17(1)
C(02)	4632(1)	1721(1)	5551(1)	21(1)
C(03)	4410(1)	2648(1)	4602(1)	20(1)
C(04)	5886(1)	3566(1)	4385(1)	15(1)
C(05)	7584(1)	3568(1)	5147(1)	18(1)
C(06)	7807(1)	2636(1)	6098(1)	19(1)
C(07)	6790(1)	5121(1)	2807(1)	18(1)
C(08)	5929(1)	5979(1)	1763(1)	26(1)
N(01)	5524(1)	4472(1)	3400(1)	17(1)
O(01)	6646(1)	788(1)	7229(1)	24(1)
O(02)	8535(1)	5038(1)	3088(1)	26(1)

Table S5: Bond lengths [Å] and angles [°] for (1).

C(01)-O(01)	1.3667(3)
C(01)-C(06)	1.3936(3)
C(01)-C(02)	1.3950(2)
C(02)-C(03)	1.3900(3)

C(03)-C(04)	1.3964(2)
C(04)-C(05)	1.3961(2)
C(04)-N(01)	1.4150(2)
C(05)-C(06)	1.3937(3)
C(07)-O(02)	1.2395(3)
C(07)-N(01)	1.3446(2)
C(07)-C(08)	1.5085(3)

O(01)-C(01)-C(06)	118.368(16)
O(01)-C(01)-C(02)	122.109(17)
C(06)-C(01)-C(02)	119.523(17)
C(03)-C(02)-C(01)	119.940(17)
C(02)-C(03)-C(04)	120.680(16)
C(05)-C(04)-C(03)	119.344(17)
C(05)-C(04)-N(01)	124.067(15)
C(03)-C(04)-N(01)	116.571(15)
C(06)-C(05)-C(04)	119.914(16)
C(01)-C(06)-C(05)	120.574(16)
O(02)-C(07)-N(01)	123.30(2)
O(02)-C(07)-C(08)	121.74(2)
N(01)-C(07)-C(08)	114.957(18)
C(07)-N(01)-C(04)	128.261(15)

	U	11	U22	U33	U23	U13	U12
C(0	1)	14(1)	20(1)	18(1)	1(1)	1(1)	-1(1)
C(02	2)	15(1)	24(1)	22(1)	5(1)	-2(1)	-5(1)
C(0.	3)	14(1)	24(1)	20(1)	4(1)	-2(1)	-5(1)
C(04	4)	13(1)	17(1)	16(1)	-1(1)	2(1)	-1(1)
C(0	5)	13(1)	20(1)	19(1)	0(1)	0(1)	-3(1)
C(0	6)	13(1)	23(1)	19(1)	1(1)	-1(1)	-2(1)
C(0'	7)	17(1)	19(1)	18(1)	-1(1)	5(1)	-1(1)
C(08	8)	28(1)	27(1)	25(1)	7(1)	7(1)	2(1)
N(0	1)	13(1)	20(1)	18(1)	2(1)	2(1)	-1(1)
O(0	1)	16(1)	30(1)	25(1)	10(1)	0(1)	-1(1)
O(02	2)	16(1)	39(1)	24(1)	1(1)	6(1)	-4(1)

Table S6: Anisotropic displacement parameters (Å $^{2}x 10^{3}$) for (1). The anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$

	x y	Z	U(eq)	
H(02)	3453(7)	1039(7)	5708(7)	32(2)
H(03)	3090(7)	2645(10)	4014(6)	46(2)
H(05)	8722(7)	4295(7)	5000(7)	33(2)
H(06)	9148(6)	2681(9)	6664(6)	33(2)
H(08A)	6041(14)	7109(2)	1903(10)	70(3)
H(08B)	4452(4)	5827(13)	1513(9)	68(3)
H(08C)	6660(13)	5798(13)	1041(6)	70(3)
H(01A)	4160(4)	4540(10)	3024(7)	42(2)
H(01)	5416(5)	499(9)	7419(7)	42(2)

Table S7: Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å $^2x 10^3$) for (1).

Table S8: Torsion angles $[^{\circ}]$ for (1).

O(01)-C(01)-C(02)-C(03)	-178.55(2)
C(06)-C(01)-C(02)-C(03)	1.24(3)
C(01)-C(02)-C(03)-C(04)	0.00(4)
C(02)-C(03)-C(04)-C(05)	-1.38(3)
C(02)-C(03)-C(04)-N(01)	-179.89(2)
C(03)-C(04)-C(05)-C(06)	1.50(3)
N(01)-C(04)-C(05)-C(06)	179.891(18)

O(01)-C(01)-C(06)-C(05)	178.68(2)
C(02)-C(01)-C(06)-C(05)	-1.12(3)
C(04)-C(05)-C(06)-C(01)	-0.26(3)
O(02)-C(07)-N(01)-C(04)	-2.45(3)
C(08)-C(07)-N(01)-C(04)	177.92(2)
C(05)-C(04)-N(01)-C(07)	22.69(3)
C(03)-C(04)-N(01)-C(07)	-158.87(2)

Table S9: Hydrogen bonds for (1).

D-H	d(D-H) d(HA) <dha a<="" d(da)="" th=""></dha>
С03-Н03	1.083 2.624 135.28 3.478 O01 [x-1/2, -y+1/2, z-1/2]
C05-H05	1.082 2.315 112.92 2.912 OO2
N01-H01A	1.009 1.919 166.91 2.910 O01 [x-1/2, -y+1/2, z-1/2]
O01-H01	0.966 1.706 166.05 2.654 O02 [x-1/2, -y+1/2, z+1/2]

	X	y z	U(eq)	
N(1)	200(1)	11439(1)	1502(1)	31(1)
N(2)	5042(1)	7370(1)	6114(1)	34(1)
C(1)	2309(1)	9388(1)	2136(1)	24(1)
C(2)	1283(1)	10164(1)	1283(1)	28(1)
C(3)	160(1)	11984(1)	2609(1)	30(1)
C(4)	1126(1)	11291(1)	3528(1)	26(1)
C(5)	2222(1)	9934(1)	3303(1)	20(1)
C(6)	3221(1)	9083(1)	4268(1)	20(1)
C(7)	2859(1)	9338(1)	5501(1)	30(1)
C(8)	3787(1)	8460(1)	6375(1)	35(1)
C(9)	5396(1)	7147(1)	4928(1)	37(1)
C(10)	4539(1)	7954(1)	3987(1)	31(1)
N(1')	5595(1)	6786(1)	11103(1)	32(1)
N(2')	10471(1)	2879(1)	6384(1)	32(1)
C(1')	6658(1)	6720(1)	9012(1)	25(1)
C(2')	5738(1)	7448(1)	9964(1)	30(1)
C(3')	6403(1)	5339(1)	11310(1)	31(1)
C(4')	7383(1)	4519(1)	10428(1)	26(1)
C(5')	7520(1)	5216(1)	9245(1)	21(1)
C(6')	8539(1)	4399(1)	8264(1)	21(1)

Table S10: Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for (2). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(7')	9949(1)	3399(1)	8509(1)	25(1)
C(8')	10864(1)	2685(1)	7546(1)	31(1)
C(9')	9102(1)	3827(1)	6161(1)	30(1)
C(10')	8112(1)	4611(1)	7054(1)	25(1)

Table S11: Bond lengths $[Å^{\circ}]$ and angles $[^{\circ}]$ for (2).

N(1)-C(2)	1.3384(7)
N(1)-C(3)	1.3389(7)
N(2)-C(8)	1.3325(7)
N(2)-C(9)	1.3367(7)
C(1)-C(2)	1.3879(6)
C(1)-C(5)	1.3974(6)
C(1)-H(1)	1.08299(11)
C(2)-H(2)	1.08299(10)
C(3)-C(4)	1.3884(6)
C(3)-H(3)	1.08300(10)
C(4)-C(5)	1.3967(5)
C(4)-H(4)	1.08300(10)
C(5)-C(6)	1.4820(5)
C(6)-C(7)	1.3924(6)
C(6)-C(10)	1.3939(6)
C(7)-C(8)	1.3861(6)
C(7)-H(7)	1.08299(11)
C(8)-H(8)	1.08300(10)

C(9)-C(10)	1.3851(6)
C(9)-H(9)	1.08300(11)
C(10)-H(10)	1.08299(11)
N(1')-C(3')	1.3347(7)
N(1')-C(2')	1.3391(7)
N(2')-C(8')	1.3365(7)
N(2')-C(9')	1.3401(7)
C(1')-C(2')	1.3850(6)
C(1')-C(5')	1.3960(5)
C(1')-H(1')	1.08299(11)
C(2')-H(2')	1.08299(11)
C(3')-C(4')	1.3884(6)
C(3')-H(3')	1.08299(10)
C(4')-C(5')	1.3941(6)
C(4')-H(4')	1.08300(10)
C(5')-C(6')	1.4796(5)
C(6')-C(7')	1.3931(5)
C(6')-C(10')	1.3961(6)
C(7')-C(8')	1.3884(6)
C(7')-H(7')	1.08299(11)
C(8')-H(8')	1.08299(10)
C(9')-C(10')	1.3864(6)
C(9')-H(9')	1.08299(10)
C(10')-H(10')	1.08299(11)

C(2)-N(1)-C(3)	116.31(4)
C(8)-N(2)-C(9)	116.15(4)
C(2)-C(1)-C(5)	119.39(4)
C(2)-C(1)-H(1)	119.7(4)
C(5)-C(1)-H(1)	120.9(4)
N(1)-C(2)-C(1)	123.90(4)
N(1)-C(2)-H(2)	117.0(4)
C(1)-C(2)-H(2)	119.1(4)
N(1)-C(3)-C(4)	124.27(4)
N(1)-C(3)-H(3)	116.8(5)
C(4)-C(3)-H(3)	118.9(5)
C(3)-C(4)-C(5)	119.01(4)
C(3)-C(4)-H(4)	120.6(4)
C(5)-C(4)-H(4)	120.4(4)
C(4)-C(5)-C(1)	117.06(3)
C(4)-C(5)-C(6)	121.69(4)
C(1)-C(5)-C(6)	121.23(3)
C(7)-C(6)-C(10)	116.82(4)
C(7)-C(6)-C(5)	121.60(3)
C(10)-C(6)-C(5)	121.56(4)
C(8)-C(7)-C(6)	119.45(4)
C(8)-C(7)-H(7)	119.7(4)
C(6)-C(7)-H(7)	120.8(4)
N(2)-C(8)-C(7)	124.11(4)
N(2)-C(8)-H(8)	114.7(5)

C(7)-C(8)-H(8)	121.2(5)
N(2)-C(9)-C(10)	124.20(4)
N(2)-C(9)-H(9)	116.6(5)
C(10)-C(9)-H(9)	119.2(5)
C(9)-C(10)-C(6)	119.27(4)
C(9)-C(10)-H(10)	121.6(5)
C(6)-C(10)-H(10)	119.1(5)
C(3')-N(1')-C(2')	116.76(4)
C(8')-N(2')-C(9')	116.59(4)
C(2')-C(1')-C(5')	118.76(4)
C(2')-C(1')-H(1')	117.4(4)
C(5')-C(1')-H(1')	123.8(4)
N(1')-C(2')-C(1')	124.02(4)
N(1')-C(2')-H(2')	116.0(5)
C(1')-C(2')-H(2')	119.9(5)
N(1')-C(3')-C(4')	123.79(4)
N(1')-C(3')-H(3')	118.6(4)
C(4')-C(3')-H(3')	117.5(4)
C(3')-C(4')-C(5')	118.97(4)
C(3')-C(4')-H(4')	120.4(5)
C(5')-C(4')-H(4')	120.6(5)
C(4')-C(5')-C(1')	117.68(4)
C(4')-C(5')-C(6')	121.51(3)
C(1')-C(5')-C(6')	120.81(3)
C(7')-C(6')-C(10')	117.75(4)

C(7')-C(6')-C(5')	121.56(3)
C(10')-C(6')-C(5')	120.69(3)
C(8')-C(7')-C(6')	118.81(4)
C(8')-C(7')-H(7')	119.8(4)
C(6')-C(7')-H(7')	121.4(4)
N(2')-C(8')-C(7')	124.05(4)
N(2')-C(8')-H(8')	115.9(5)
C(7')-C(8')-H(8')	120.0(5)
N(2')-C(9')-C(10')	123.92(4)
N(2')-C(9')-H(9')	117.7(4)
C(10')-C(9')-H(9')	118.3(4)
C(9')-C(10')-C(6')	118.87(4)
C(9')-C(10')-H(10')	120.5(4)
C(6')-C(10')-H(10')	120.7(4)

Table S12: Anisotropic displacement parameters (Å $^{2}x 10^{3}$) for (**2**). The anisotropic displacement factor exponent takes the form: $-2\pi^{2}$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	U11	U22	U33	U23	U13	U12
N(1)	29(1)	33(1)	27(1)	3(1)	-10(1)	3(1)
N(2)	34(1)	38(1)	24(1)	4(1)	-8(1)	7(1)
C(1)	27(1)	22(1)	20(1)	-2(1)	-6(1)	1(1)
C(2)	33(1)	29(1)	23(1)	0(1)	-10(1)	0(1)

C(3)	27(1)	31(1)	28(1)	2(1)	-5(1)	8(1)
C(4)	26(1)	27(1)	22(1)	-1(1)	-3(1)	6(1)
C(5)	20(1)	21(1)	18(1)	0(1)	-3(1)	0(1)
C(6)	20(1)	21(1)	18(1)	0(1)	-3(1)	0(1)
C(7)	33(1)	33(1)	18(1)	-2(1)	-3(1)	8(1)
C(8)	40(1)	41(1)	19(1)	1(1)	-6(1)	9(1)
C(9)	32(1)	43(1)	26(1)	2(1)	-6(1)	14(1)
C(10)	28(1)	37(1)	21(1)	-1(1)	-3(1)	12(1)
N(1')	32(1)	36(1)	26(1)	-9(1)	3(1)	0(1)
N(2')	30(1)	37(1)	27(1)	-9(1)	2(1)	3(1)
C(1')	29(1)	21(1)	23(1)	-2(1)	0(1)	2(1)
C(2')	32(1)	26(1)	30(1)	-7(1)	1(1)	3(1)
C(3')	34(1)	35(1)	21(1)	-3(1)	2(1)	-1(1)
C(4')	30(1)	26(1)	20(1)	-1(1)	-2(1)	-1(1)
C(5')	22(1)	20(1)	19(1)	-3(1)	-3(1)	-1(1)
C(6')	22(1)	19(1)	19(1)	-2(1)	-3(1)	0(1)
C(7')	23(1)	27(1)	24(1)	-5(1)	-5(1)	2(1)
C(8')	24(1)	34(1)	31(1)	-8(1)	-2(1)	5(1)
C(9')	34(1)	32(1)	20(1)	-4(1)	0(1)	2(1)
C(10')	28(1)	25(1)	19(1)	-2(1)	-3(1)	3(1)

	x y	Z	U(eq)	
H(1)	3148(5)	8355(4)	1894(7)	42(2)
H(2)	1318(11)	9703(6)	394(2)	44(2)
H(3)	-659(6)	13060(4)	2772(8)	49(3)
H(4)	1024(12)	11785(6)	4409(2)	46(2)
H(7)	1868(4)	10217(5)	5785(7)	46(3)
H(8)	3542(13)	8636(11)	7340(2)	56(3)
H(9)	6410(4)	6258(5)	4709(8)	63(3)
H(10)	4859(12)	7718(10)	3038(2)	59(3)
H(1')	6698(11)	7379(6)	8133(2)	41(2)
H(2')	5095(7)	8631(3)	9811(9)	50(3)
H(3')	6260(12)	4744(6)	12207(3)	54(3)
H(4')	8016(7)	3348(3)	10655(8)	48(3)
H(7')	10346(7)	3184(12)	9428(2)	44(2)
H(8')	11976(4)	1922(6)	7713(8)	59(3)
H(9')	8722(7)	3933(13)	5238(2)	51(3)
H(10')	7019(4)	5362(6)	6817(7)	46(3)

Table S13: Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å 2 x 10^3) for (2).

Table S14: Torsion angles $[^{\circ}]$ for (2).

C(3)-N(1)-C(2)-C(1)	1.46(8)
C(5)-C(1)-C(2)-N(1)	0.67(8)
C(2)-N(1)-C(3)-C(4)	-1.80(8)
N(1)-C(3)-C(4)-C(5)	-0.01(8)
C(3)-C(4)-C(5)-C(1)	2.14(7)
C(3)-C(4)-C(5)-C(6)	-176.19(4)
C(2)-C(1)-C(5)-C(4)	-2.45(7)
C(2)-C(1)-C(5)-C(6)	175.89(4)
C(4)-C(5)-C(6)-C(7)	16.62(7)
C(1)-C(5)-C(6)-C(7)	-161.64(5)
C(4)-C(5)-C(6)-C(10)	-165.39(5)
C(1)-C(5)-C(6)-C(10)	16.35(7)
C(10)-C(6)-C(7)-C(8)	-1.15(8)
C(5)-C(6)-C(7)-C(8)	176.93(5)
C(9)-N(2)-C(8)-C(7)	0.25(11)
C(6)-C(7)-C(8)-N(2)	0.71(10)
C(8)-N(2)-C(9)-C(10)	-0.75(11)
N(2)-C(9)-C(10)-C(6)	0.28(11)
C(7)-C(6)-C(10)-C(9)	0.69(8)
C(5)-C(6)-C(10)-C(9)	-177.39(5)
C(3')-N(1')-C(2')-C(1')	0.12(9)
C(5')-C(1')-C(2')-N(1')	-1.22(8)
C(2')-N(1')-C(3')-C(4')	1.24(9)

N(1')-C(3')-C(4')-C(5')	-1.43(8)
C(3')-C(4')-C(5')-C(1')	0.24(7)
C(3')-C(4')-C(5')-C(6')	-179.70(4)
C(2')-C(1')-C(5')-C(4')	0.98(7)
C(2')-C(1')-C(5')-C(6')	-179.08(4)
C(4')-C(5')-C(6')-C(7')	-34.64(6)
C(1')-C(5')-C(6')-C(7')	145.41(5)
C(4')-C(5')-C(6')-C(10')	145.40(5)
C(1')-C(5')-C(6')-C(10')	-34.54(6)
C(10')-C(6')-C(7')-C(8')	0.90(7)
C(5')-C(6')-C(7')-C(8')	-179.05(4)
C(9')-N(2')-C(8')-C(7')	-0.06(9)
C(6')-C(7')-C(8')-N(2')	-0.86(8)
C(8')-N(2')-C(9')-C(10')	0.94(9)
N(2')-C(9')-C(10')-C(6')	-0.87(8)
C(7')-C(6')-C(10')-C(9')	-0.10(7)
C(5')-C(6')-C(10')-C(9')	179.85(4)

_

Table S15: Hydrogen bonds for (2). [Å and °].

D-H	d(D-H) d(HA) <dha a<="" d(da)="" th=""></dha>
C1-H1	1.083 2.438 158.59 3.469 N1' [x, y, z-1]
C4-H4	1.083 2.420 173.31 3.497 N2' [x-1, y+1, z]
С7-Н7	1.083 2.522 156.33 3.540 N2' [x-1, y+1, z]
C10-H10	1.083 2.338 170.79 3.411 N1' [x, y, z-1]
C4'-H4'	1.083 2.462 154.04 3.468 N1 [x+1, y-1, z+1]
C7'-H7'	1.083 2.640 144.61 3.578 N1 [x+1, y-1, z+1]
C10'-H10'	1.083 2.336 166.79 3.399 N2

Table S16: Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for (**3**). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x y	Z	U(eq)	
C(1)	2887(1)	2851(1)	-64(1)	27(1)
C(2)	2464(1)	2510(1)	-981(1)	31(1)
C(3)	4174(1)	2598(1)	-1840(1)	29(1)
C(4)	4676(1)	2946(1)	-960(1)	24(1)
C(5)	4022(1)	3080(1)	-44(1)	20(1)
C(6)	4493(1)	3454(1)	910(1)	19(1)
C(7)	5704(1)	3480(1)	1305(1)	24(1)
C(8)	6086(1)	3851(1)	2183(1)	26(1)
C(9)	4197(1)	4155(1)	2322(1)	24(1)

C(10)	3729(1)	3796(1)	1455(1)	22(1)
N(1)	3081(1)	2379(1)	-1867(1)	31(1)
N(2)	5359(1)	4193(1)	2685(1)	24(1)
C(01)	3938(1)	6582(1)	3423(1)	22(1)
C(02)	3810(1)	6103(1)	2744(1)	22(1)
C(03)	4540(1)	5649(1)	3027(1)	21(1)
C(04)	5404(1)	5660(1)	3986(1)	19(1)
C(05)	5515(1)	6138(1)	4675(1)	23(1)
C(06)	4785(1)	6592(1)	4389(1)	24(1)
C(07)	7144(1)	5128(1)	4895(1)	23(1)
C(08)	7740(1)	4571(1)	4876(1)	32(1)
N(01)	6120(1)	5180(1)	4193(1)	21(1)
O(01)	3266(1)	7046(1)	3176(1)	31(1)
O(02)	7587(1)	5511(1)	5511(1)	34(1)
C(1')	7024(1)	9699(1)	6123(1)	24(1)
C(2')	6642(1)	10083(1)	5269(1)	28(1)
C(3')	8231(1)	9916(1)	4272(1)	31(1)
C(4')	8689(1)	9525(1)	5080(1)	26(1)
C(5')	8084(1)	9411(1)	6040(1)	21(1)
C(6')	8556(1)	9008(1)	6942(1)	22(1)
C(7')	9752(1)	8856(1)	7077(1)	37(1)
C(8')	10143(1)	8476(1)	7932(1)	42(1)
C(9')	8297(1)	8393(1)	8525(1)	35(1)
C(10')	7820(1)	8765(1)	7687(1)	28(1)
N(1')	7221(1)	10198(1)	4354(1)	32(1)

N(2')	9444(1)	8243(1)	8658(1)	35(1)
C(01')	9902(1)	5874(1)	7470(1)	22(1)
C(02')	9181(1)	6345(1)	7398(1)	22(1)
C(03')	9469(1)	6792(1)	8134(1)	21(1)
C(04')	10468(1)	6779(1)	8960(1)	19(1)
C(05')	11182(1)	6304(1)	9040(1)	21(1)
C(06')	10897(1)	5861(1)	8292(1)	23(1)
C(07')	11532(1)	7334(1)	10556(1)	23(1)
C(08')	11673(1)	7919(1)	11008(1)	34(1)
N(01')	10713(1)	7263(1)	9636(1)	22(1)
O(01')	9681(1)	5421(1)	6784(1)	31(1)
O(02')	12160(1)	6952(1)	11005(1)	33(1)

Table S17: Bond lengths [Å] and angles [°] for (**3**)

C(1)-C(2)	1.3864(8)
C(1)-C(5)	1.3946(7)
C(1)-H(1)	1.0821(10)
C(2)-N(1)	1.3375(9)
C(2)-H(2)	1.0826(10)
C(3)-N(1)	1.3413(8)
C(3)-C(4)	1.3920(7)
C(3)-H(3)	1.0823(10)
C(4)-C(5)	1.3944(7)

C(4)-H(4)	1.0822(10)
C(5)-C(6)	1.4781(6)
C(6)-C(10)	1.3933(7)
C(6)-C(7)	1.3969(7)
C(7)-C(8)	1.3879(7)
C(7)-H(7)	1.0820(10)
C(8)-N(2)	1.3409(8)
C(8)-H(8)	1.0829(10)
C(9)-N(2)	1.3387(7)
C(9)-C(10)	1.3859(7)
C(9)-H(9)	1.0823(10)
C(10)-H(10)	1.0821(10)
C(01)-O(01)	1.3652(6)
C(01)-C(06)	1.3912(7)
C(01)-C(02)	1.3945(7)
C(02)-C(03)	1.3887(7)
C(02)-H(02)	1.0825(10)
C(03)-C(04)	1.3968(6)
C(03)-H(03)	1.0821(10)
C(04)-C(05)	1.3989(6)
C(04)-N(01)	1.4185(6)
C(05)-C(06)	1.3892(7)
C(05)-H(05)	1.0823(10)
C(06)-H(06)	1.0826(10)
C(07)-O(02)	1.2392(6)

C(07)-N(01)	1.3461(6)
C(07)-C(08)	1.5045(8)
C(08)-H(08A)	1.0584(10)
C(08)-H(08B)	1.0587(10)
C(08)-H(08C)	1.0583(10)
N(01)-H(01)	1.0081(10)
O(01)-H(01A)	0.9671(10)
C(1')-C(2')	1.3890(7)
C(1')-C(5')	1.3983(7)
C(1')-H(1')	1.0826(10)
C(2')-N(1')	1.3335(10)
C(2')-H(2')	1.0823(10)
C(3')-N(1')	1.3412(9)
C(3')-C(4')	1.3884(8)
C(3')-H(3')	1.0823(10)
C(4')-C(5')	1.3936(8)
C(4')-H(4')	1.0824(10)
C(5')-C(6')	1.4814(7)
C(6')-C(10')	1.3900(8)
C(6')-C(7')	1.3942(8)
C(7')-C(8')	1.3853(9)
C(7')-H(7')	1.0830(10)
C(8')-N(2')	1.3366(11)
C(8')-H(8')	1.0828(10)
C(9')-N(2')	1.3384(9)

C(9')-C(10')	1.3871(8)
C(9')-H(9')	1.0826(10)
C(10')-H(10')	1.0829(10)
C(01')-O(01')	1.3585(6)
C(01')-C(06')	1.3927(6)
C(01')-C(02')	1.3957(7)
C(02')-C(03')	1.3893(7)
C(02')-H(02')	1.0827(10)
C(03')-C(04')	1.3985(6)
C(03')-H(03')	1.0826(10)
C(04')-C(05')	1.3976(6)
C(04')-N(01')	1.4169(6)
C(05')-C(06')	1.3916(7)
C(05')-H(05')	1.0822(10)
C(06')-H(06')	1.0819(10)
C(07')-O(02')	1.2409(6)
C(07')-N(01')	1.3439(6)
C(07')-C(08')	1.5071(8)
C(08')-H(08D)	1.0588(10)
C(08')-H(08E)	1.0587(10)
C(08')-H(08F)	1.0585(10)
N(01')-H(01')	1.0090(10)
O(01')-H(01B)	0.9671(10)

C(2)-C(1)-C(5) 119.22(5)

C(2)-C(1)-H(1)	120.6(6)
C(5)-C(1)-H(1)	119.9(6)
N(1)-C(2)-C(1)	124.16(5)
N(1)-C(2)-H(2)	117.1(7)
C(1)-C(2)-H(2)	118.7(7)
N(1)-C(3)-C(4)	123.83(6)
N(1)-C(3)-H(3)	114.1(6)
C(4)-C(3)-H(3)	121.8(6)
C(3)-C(4)-C(5)	119.17(5)
C(3)-C(4)-H(4)	119.9(6)
C(5)-C(4)-H(4)	120.9(6)
C(4)-C(5)-C(1)	117.26(4)
C(4)-C(5)-C(6)	122.05(4)
C(1)-C(5)-C(6)	120.68(5)
C(10)-C(6)-C(7)	117.30(4)
C(10)-C(6)-C(5)	120.51(4)
C(7)-C(6)-C(5)	122.19(4)
C(8)-C(7)-C(6)	119.04(5)
C(8)-C(7)-H(7)	120.7(6)
C(6)-C(7)-H(7)	120.3(6)
N(2)-C(8)-C(7)	123.82(5)
N(2)-C(8)-H(8)	115.4(5)
C(7)-C(8)-H(8)	120.6(6)
N(2)-C(9)-C(10)	123.67(5)
N(2)-C(9)-H(9)	117.6(6)

C(10)-C(9)-H(9)	118.7(6)
C(9)-C(10)-C(6)	119.42(4)
C(9)-C(10)-H(10)	118.3(6)
C(6)-C(10)-H(10)	122.1(6)
C(2)-N(1)-C(3)	116.36(5)
C(9)-N(2)-C(8)	116.70(4)
O(01)-C(01)-C(06)	118.23(4)
O(01)-C(01)-C(02)	122.65(4)
C(06)-C(01)-C(02)	119.12(4)
C(03)-C(02)-C(01)	119.80(4)
C(03)-C(02)-H(02)	122.0(5)
C(01)-C(02)-H(02)	118.2(5)
C(02)-C(03)-C(04)	121.32(4)
C(02)-C(03)-H(03)	120.2(5)
C(04)-C(03)-H(03)	118.4(5)
C(03)-C(04)-C(05)	118.61(4)
C(03)-C(04)-N(01)	117.16(4)
C(05)-C(04)-N(01)	124.23(4)
C(06)-C(05)-C(04)	119.97(4)
C(06)-C(05)-H(05)	121.9(5)
C(04)-C(05)-H(05)	118.1(5)
C(05)-C(06)-C(01)	121.16(4)
C(05)-C(06)-H(06)	120.5(6)
C(01)-C(06)-H(06)	118.3(6)
O(02)-C(07)-N(01)	123.07(5)

O(02)-C(07)-C(08)	121.34(5)
N(01)-C(07)-C(08)	115.59(5)
C(07)-C(08)-H(08A)	110.9(7)
C(07)-C(08)-H(08B)	112.7(8)
H(08A)-C(08)-H(08B)	106.4(11)
C(07)-C(08)-H(08C)	111.2(8)
H(08A)-C(08)-H(08C)	104.0(10)
H(08B)-C(08)-H(08C)	111.3(11)
C(07)-N(01)-C(04)	127.96(4)
C(07)-N(01)-H(01)	114.9(5)
C(04)-N(01)-H(01)	117.0(5)
С(01)-О(01)-Н(01А)	102.1(8)
C(2')-C(1')-C(5')	119.09(5)
C(2')-C(1')-H(1')	117.6(6)
C(5')-C(1')-H(1')	123.3(6)
N(1')-C(2')-C(1')	124.19(5)
N(1')-C(2')-H(2')	116.9(6)
C(1')-C(2')-H(2')	118.7(6)
N(1')-C(3')-C(4')	123.79(6)
N(1')-C(3')-H(3')	116.9(6)
C(4')-C(3')-H(3')	119.3(6)
C(3')-C(4')-C(5')	119.41(6)
C(3')-C(4')-H(4')	117.9(6)
C(5')-C(4')-H(4')	122.7(6)
C(4')-C(5')-C(1')	117.06(5)

C(4')-C(5')-C(6')	121.36(5)
C(1')-C(5')-C(6')	121.57(5)
C(10')-C(6')-C(7')	117.24(5)
C(10')-C(6')-C(5')	121.24(5)
C(7')-C(6')-C(5')	121.51(5)
C(8')-C(7')-C(6')	119.03(6)
C(8')-C(7')-H(7')	118.1(7)
C(6')-C(7')-H(7')	122.8(7)
N(2')-C(8')-C(7')	124.12(6)
N(2')-C(8')-H(8')	114.2(6)
C(7')-C(8')-H(8')	121.6(6)
N(2')-C(9')-C(10')	123.62(6)
N(2')-C(9')-H(9')	120.1(7)
C(10')-C(9')-H(9')	116.2(7)
C(9')-C(10')-C(6')	119.49(6)
C(9')-C(10')-H(10')	120.0(6)
C(6')-C(10')-H(10')	120.5(6)
C(2')-N(1')-C(3')	116.45(5)
C(8')-N(2')-C(9')	116.49(5)
O(01')-C(01')-C(06')	117.68(4)
O(01')-C(01')-C(02')	123.44(4)
C(06')-C(01')-C(02')	118.88(4)
C(03')-C(02')-C(01')	119.85(4)
C(03')-C(02')-H(02')	122.0(5)
C(01')-C(02')-H(02')	118.2(5)

C(02')-C(03')-C(04')	121.32(4)
C(02')-C(03')-H(03')	122.1(5)
C(04')-C(03')-H(03')	116.6(5)
C(05')-C(04')-C(03')	118.79(4)
C(05')-C(04')-N(01')	124.15(4)
C(03')-C(04')-N(01')	117.01(4)
C(06')-C(05')-C(04')	119.67(4)
C(06')-C(05')-H(05')	123.2(5)
C(04')-C(05')-H(05')	117.1(6)
C(05')-C(06')-C(01')	121.49(4)
C(05')-C(06')-H(06')	123.2(5)
C(01')-C(06')-H(06')	115.3(5)
O(02')-C(07')-N(01')	123.48(5)
O(02')-C(07')-C(08')	120.96(5)
N(01')-C(07')-C(08')	115.54(5)
C(07')-C(08')-H(08D)	110.7(7)
C(07')-C(08')-H(08E)	113.1(7)
H(08D)-C(08')-H(08E)	110.0(10)
C(07')-C(08')-H(08F)	108.9(9)
H(08D)-C(08')-H(08F)	110.8(11)
H(08E)-C(08')-H(08F)	103.0(11)
C(07')-N(01')-C(04')	128.21(4)
C(07')-N(01')-H(01')	116.9(7)
C(04')-N(01')-H(01')	114.9(7)
C(01')-O(01')-H(01B)	111.0(7)

	U11	U22	U33	U23	U13	U12
C(1)	27(1)	30(1)	25(1)	-5(1)	5(1)	-9(1)
C(2)	32(1)	33(1)	28(1)	-6(1)	3(1)	-13(1)
C(3)	35(1)	28(1)	24(1)	-7(1)	4(1)	-4(1)
C(4)	27(1)	23(1)	23(1)	-3(1)	5(1)	-3(1)
C(5)	24(1)	17(1)	19(1)	-1(1)	2(1)	-3(1)
C(6)	22(1)	16(1)	19(1)	0(1)	2(1)	-1(1)
C(7)	21(1)	22(1)	29(1)	-5(1)	2(1)	0(1)
C(8)	23(1)	25(1)	29(1)	-4(1)	-1(1)	-2(1)
C(9)	27(1)	22(1)	23(1)	-4(1)	2(1)	1(1)
C(10) 21(1)	22(1)	23(1)	-3(1)	1(1)	1(1)
N(1)	37(1)	31(1)	25(1)	-7(1)	1(1)	-8(1)
N(2)	28(1)	22(1)	23(1)	-3(1)	0(1)	-2(1)
C(01) 24(1)	20(1)	20(1)	-1(1)	-2(1)	0(1)
C(02) 23(1)	21(1)	20(1)	-2(1)	-4(1)	-1(1)
C(03) 21(1)	20(1)	19(1)	-3(1)	-3(1)	-2(1)
C(04) 19(1)	19(1)	17(1)	-1(1)	0(1)	-2(1)
C(05) 27(1)	23(1)	17(1)	-3(1)	-4(1)	-1(1)
C(06) 31(1)	21(1)	20(1)	-4(1)	-5(1)	0(1)
C(07) 21(1)	27(1)	20(1)	-2(1)	-2(1)	1(1)
C(08) 30(1)	31(1)	33(1)	-3(1)	-4(1)	8(1)

Table S18: Anisotropic displacement parameters (Å $^{2}x 10^{3}$) for (**3**). The anisotropic displacement factor exponent takes the form: $-2\pi^{2}$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

N(01)	21(1)	21(1)	21(1)	-2(1)	-3(1)	0(1)
O(01)	36(1)	23(1)	30(1)	-4(1)	-8(1)	7(1)
O(02)	28(1)	36(1)	36(1)	-13(1)	-13(1)	4(1)
C(1')	21(1)	23(1)	27(1)	2(1)	-1(1)	1(1)
C(2')	26(1)	23(1)	33(1)	1(1)	-9(1)	1(1)
C(3')	38(1)	30(1)	26(1)	7(1)	1(1)	-6(1)
C(4')	26(1)	27(1)	26(1)	5(1)	4(1)	-1(1)
C(5')	20(1)	19(1)	23(1)	2(1)	1(1)	-1(1)
C(6')	22(1)	19(1)	24(1)	2(1)	2(1)	2(1)
C(7')	23(1)	44(1)	44(1)	18(1)	5(1)	8(1)
C(8')	31(1)	44(1)	50(1)	17(1)	0(1)	13(1)
C(9')	42(1)	29(1)	34(1)	12(1)	9(1)	9(1)
C(10')	29(1)	26(1)	31(1)	8(1)	8(1)	6(1)
N(1')	38(1)	26(1)	29(1)	6(1)	-10(1)	-4(1)
N(2')	43(1)	26(1)	34(1)	8(1)	1(1)	10(1)
C(01')	18(1)	23(1)	23(1)	-1(1)	-2(1)	2(1)
C(02')	17(1)	25(1)	22(1)	1(1)	-4(1)	4(1)
C(03')	18(1)	23(1)	22(1)	2(1)	-2(1)	6(1)
C(04')	17(1)	19(1)	19(1)	2(1)	-1(1)	3(1)
C(05')	16(1)	20(1)	25(1)	0(1)	-4(1)	3(1)
C(06')	18(1)	21(1)	28(1)	-2(1)	-4(1)	4(1)
C(07')	23(1)	23(1)	23(1)	-1(1)	-2(1)	3(1)
C(08')	39(1)	26(1)	35(1)	-8(1)	-4(1)	2(1)
N(01')	22(1)	19(1)	22(1)	0(1)	-3(1)	4(1)
O(01')	27(1)	29(1)	35(1)	-10(1)	-9(1)	4(1)

Table S19: Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å 2 x 10^3) for (3).

	x y	Z	U(eq)	
H(1)	2383(9)	2908(5)	671(6)	56(3)
H(1')	6484(8)	9644(5)	6833(7)	54(3)
H(02')	8396(5)	6346(4)	6773(6)	35(2)
H(2')	5867(6)	10333(4)	5380(9)	42(3)
H(2)	1586(5)	2330(5)	-985(12)	62(4)
H(02)	3120(6)	6096(4)	2019(6)	35(2)
H(03)	4477(9)	5284(2)	2480(7)	33(2)
H(3)	4610(8)	2514(4)	-2609(5)	43(3)
H(03')	8945(7)	7168(2)	8091(9)	34(2)
H(3')	8683(9)	9992(5)	3509(6)	48(3)
H(4)	5570(4)	3102(4)	-985(9)	39(3)
H(4')	9510(5)	9319(4)	4930(10)	50(3)
H(05)	6199(6)	6145(4)	5405(6)	37(2)
H(05')	11928(6)	6300(4)	9710(6)	38(3)
H(06')	11430(7)	5488(2)	8291(9)	35(2)
H(06)	4888(10)	6969(3)	4896(8)	46(3)
H(7)	6333(7)	3219(4)	918(9)	45(3)

H(7')	10384(8)	9002(5)	6506(9)	68(4)
H(8)	7025(2)	3898(4)	2470(9)	37(2)
H(8')	11047(4)	8320(4)	8024(10)	49(3)
H(08A)	8483(7)	4587(6)	4394(9)	65(4)
H(08B)	7170(10)	4259(4)	4485(12)	73(4)
H(08C)	8109(12)	4452(6)	5720(5)	70(4)
H(08D)	11681(11)	7927(5)	11924(2)	62(4)
H(08E)	11014(8)	8192(4)	10620(10)	61(3)
H(08F)	12470(7)	8087(6)	10753(13)	84(5)
H(9)	3594(7)	4416(4)	2744(8)	44(3)
H(9')	7676(9)	8205(5)	9059(9)	65(4)
H(10')	6876(2)	8854(4)	7597(9)	43(3)
H(10)	2772(1)	3770(4)	1269(10)	43(3)
H(01')	10213(9)	7596(3)	9374(11)	56(3)
H(01)	5870(8)	4838(2)	3726(7)	32(2)
H(01A)	2921(11)	6975(6)	2388(4)	67(4)
H(01B)	8944(6)	5462(5)	6283(8)	54(3)

_

Table S20: Torsion angles $[^{\circ}]$ for (3).

C(5)-C(1)-C(2)-N(1)	0.27(10)
N(1)-C(3)-C(4)-C(5)	0.00(9)
C(3)-C(4)-C(5)-C(1)	0.29(8)
C(3)-C(4)-C(5)-C(6)	-179.06(5)
C(2)-C(1)-C(5)-C(4)	-0.42(8)
C(2)-C(1)-C(5)-C(6)	178.94(5)
C(4)-C(5)-C(6)-C(10)	147.72(5)
C(1)-C(5)-C(6)-C(10)	-31.61(7)
C(4)-C(5)-C(6)-C(7)	-32.40(7)
C(1)-C(5)-C(6)-C(7)	148.27(6)
C(10)-C(6)-C(7)-C(8)	-1.81(8)
C(5)-C(6)-C(7)-C(8)	178.31(5)
C(6)-C(7)-C(8)-N(2)	-0.21(9)
N(2)-C(9)-C(10)-C(6)	-0.45(9)
C(7)-C(6)-C(10)-C(9)	2.12(8)
C(5)-C(6)-C(10)-C(9)	-178.00(5)
C(1)-C(2)-N(1)-C(3)	0.02(10)
C(4)-C(3)-N(1)-C(2)	-0.16(10)
C(10)-C(9)-N(2)-C(8)	-1.56(8)
C(7)-C(8)-N(2)-C(9)	1.89(9)
O(01)-C(01)-C(02)-C(03)	178.55(5)
C(06)-C(01)-C(02)-C(03)	-1.25(8)
C(01)-C(02)-C(03)-C(04)	0.24(8)

C(02)-C(03)-C(04)-C(05)	0.84(8)
C(02)-C(03)-C(04)-N(01)	-178.97(5)
C(03)-C(04)-C(05)-C(06)	-0.92(8)
N(01)-C(04)-C(05)-C(06)	178.88(5)
C(04)-C(05)-C(06)-C(01)	-0.08(9)
O(01)-C(01)-C(06)-C(05)	-178.63(6)
C(02)-C(01)-C(06)-C(05)	1.17(9)
O(02)-C(07)-N(01)-C(04)	2.88(10)
C(08)-C(07)-N(01)-C(04)	-176.37(5)
C(03)-C(04)-N(01)-C(07)	165.31(5)
C(05)-C(04)-N(01)-C(07)	-14.49(9)
C(5')-C(1')-C(2')-N(1')	0.26(8)
N(1')-C(3')-C(4')-C(5')	-0.14(9)
C(3')-C(4')-C(5')-C(1')	0.82(8)
C(3')-C(4')-C(5')-C(6')	-178.23(5)
C(2')-C(1')-C(5')-C(4')	-0.87(7)
C(2')-C(1')-C(5')-C(6')	178.17(5)
C(4')-C(5')-C(6')-C(10')	-159.87(6)
C(1')-C(5')-C(6')-C(10')	21.12(8)
C(4')-C(5')-C(6')-C(7')	19.88(8)
C(1')-C(5')-C(6')-C(7')	-159.12(6)
C(10')-C(6')-C(7')-C(8')	0.04(11)
C(5')-C(6')-C(7')-C(8')	-179.73(7)
C(6')-C(7')-C(8')-N(2')	-0.59(13)
N(2')-C(9')-C(10')-C(6')	-0.82(11)

C(7')-C(6')-C(10')-C(9')	0.61(9)
C(5')-C(6')-C(10')-C(9')	-179.62(6)
C(1')-C(2')-N(1')-C(3')	0.43(8)
C(4')-C(3')-N(1')-C(2')	-0.49(9)
C(7')-C(8')-N(2')-C(9')	0.43(13)
C(10')-C(9')-N(2')-C(8')	0.29(11)
O(01')-C(01')-C(02')-C(03')	179.90(5)
C(06')-C(01')-C(02')-C(03')	0.58(8)
C(01')-C(02')-C(03')-C(04')	-0.57(8)
C(02')-C(03')-C(04')-C(05')	-0.14(8)
C(02')-C(03')-C(04')-N(01')	177.44(5)
C(03')-C(04')-C(05')-C(06')	0.84(8)
N(01')-C(04')-C(05')-C(06')	-176.57(5)
C(04')-C(05')-C(06')-C(01')	-0.84(9)
O(01')-C(01')-C(06')-C(05')	-179.23(5)
C(02')-C(01')-C(06')-C(05')	0.12(9)
O(02')-C(07')-N(01')-C(04')	-5.31(10)
C(08')-C(07')-N(01')-C(04')	173.26(6)
C(05')-C(04')-N(01')-C(07')	-10.28(9)
C(03')-C(04')-N(01')-C(07')	172.27(5)

Table S21: Hydrogen bonds for (3). [Å and °].

D-H	d(D-H) d(HA) <dha a<="" d(da)="" th=""></dha>
C02'-H02'	1.083 2.594 126.07 3.348 O02
С02-Н02	1.082 2.687 121.10 3.376 N1' [-x+1, y-1/2, -z+1/2]
С02-Н02	1.082 2.558 125.20 3.303 O02' [x-1, y, z-1]
С03'-Н03'	1.083 2.609 129.21 3.399 N1 [-x+1, y+1/2, -z+1/2]
C3'-H3'	1.082 2.595 147.65 3.557 O01' [x, -y+3/2, z-1/2]
C4-H4	1.082 2.573 156.60 3.592 O02' [-x+2, -y+1, -z+1]
С05-Н05	1.082 2.185 118.75 2.867 O02
C05'-H05'	1.082 2.169 120.96 2.879 O02'
C8'-H8'	1.083 2.648 178.00 3.731 O01 [x+1, -y+3/2, z+1/2]
C08-H08A	1.058 2.603 177.44 3.661 O01' [-x+2, -y+1, -z+1]
С9-Н9	1.082 2.544 143.92 3.477 O02 [-x+1, -y+1, -z+1]
N01'-H01'	1.009 1.930 169.70 2.928 N2'
N01-H01	1.008 2.013 175.63 3.019 N2
O01-H01A	0.967 1.733 169.91 2.691 O02' [x-1, y, z-1]
O01'-H01B	0.967 1.694 174.56 2.658 O02

Residual density analysis

Residual density analysis

The residual density analysis introduced by Meindl *et al.*^{2, 3} was also performed on the data for (1), (2) and (3). The tests were performed to ensure that the residual density in both the IAM and multipolar models both conform to a gaussian distribution allowing it to be attributed to experimental "noise" and ensure critical data has not been overlooked in the refinement process. The parabolic curves in the fractal diagram and residual density histogram and even spread of data points in the structure factor residuals *vs.* standard uncertainties graph for all models are in accordance with what is recommended by Meindl *et al.* to classify the residual density as noise.

fractal dimension (df) vs. residual density ($\rho_{\scriptscriptstyle 0})$

(a) fractal plot for (1); residual density vs. fractal dimension

(b) histogram showing residual density of multipole refinement for (1)

(c) structure factor residuals vs. standard uncertainties for (1)

Figure S1: Results of the residual density analysis on the data sets for (1)

fractal dimension (df) vs. residual density ($\rho_{\scriptscriptstyle 0})$

(a) fractal plot for (2); residual density vs. fractal dimension

(b) histogram showing residual density of multipole refinement for (2)

(c) structure factor residuals vs. standard uncertainties for (2)

Figure S2: Results of the residual density analysis on the data sets for (2)

fractal dimension (d^f) vs. residual density ($\rho_{_0})$

(a) fractal plot for (3); residual density vs. fractal dimension

(b) histogram showing residual density of multipole refinement for (3)

(c) structure factor residuals vs. standard uncertainties for (3)

Figure S3: Results of the residual density analysis on the data sets for (3)

Topological Analysis

	ρ(e	Å ⁻³)	$\nabla^2 ho (\mathrm{e}\mathrm{\AA}^{-5})$			8
Bond	Exp	SP	Exp	Bond	Exp	SP
O(01) -C(01)	2.006	1.918	-17.04	-9.06	0.14	0.02
O(01) -H(01)	2.043	2.435	-30.10	-60.11	0.04	0.02
O(02) -C(07)	2.813	2.653	-35.63	-11.34	0.16	0.08
N(01) -C(04)	1.956	1.894	-15.01	-18.36	0.19	0.07
N(01) -C(07)	2.374	2.202	-25.73	-21.03	0.27	0.10
N(01) -H(01A)	2.072	2.304	-23.66	-39.74	0.05	0.06
C(01) -C(02)	2.112	2.094	-18.77	-20.98	0.26	0.25
C(01) -C(06)	2.160	2.109	-20.13	-21.45	0.29	0.24
C(02) -C(03)	2.129	2.083	-19.38	-20.64	0.23	0.23
C(02) -H(02)	1.851	1.884	-16.85	-23.01	0.09	0.02
C(03) -C(04)	2.135	2.086	-19.35	-20.73	0.27	0.25
C(03) -H(03)	1.800	1.890	-17.00	-23.17	0.08	0.02
C(04) -C(05)	2.099	2.076	-18.28	-20.70	0.25	0.23
C(05) -C(06)	2.109	2.073	-18.51	-20.50	0.23	0.22
C(05) -H(05)	1.827	1.924	-17.27	-24.19	0.06	0.02
C(06) -H(06)	1.827	1.899	-16.42	-23.47	0.09	0.02
C(07) -C(08)	1.765	1.734	-13.00	-15.33	0.16	0.07
C(08) -H(08A)	1.614	1.963	-9.79	-24.60	0.38	0.02
C(08) -H(08B)	1.747	1.972	-12.79	-24.89	0.47	0.02
C(08) -H(08C)	1.809	1.975	-14.41	-25.06	0.36	0.03
O(02) - H(05)	0.107	0.102	1.36	1.31	0.22	0.29

Table S22: List of bond critical points (BCP's) found from topological analysis of experimental and theoretical models for (1).

Table S23: List of ring and cage critical points (RCP, CCP) found from topological analysis of experimental and theoretical models for (1).

	ho (eÅ ⁻³)		$ abla^2 ho (\mathrm{e}\mathrm{\AA}^{-5})$	
Bond	Exp	SP	Bond	Exp
RCP				
-C(01) - C(02) - C(03) - C(04) - C(05) - C(06)-	0.152	0.144	3.10	3.77
-O(02) - C(07) - N(01) - C(04) - C(05) - H(05)-	0.098	0.080	1.40	1.48

	ρ(θ	eÅ-3)	$ abla^2 ho (\mathrm{e}\mathrm{\AA}^{-5})$			3
Bond	Exp	SP	Exp	Bond	Exp	SP
N(1) -C(2)	2.351	2.297	-27.18	-24.03	0.20	0.10
N(1) -C(3)	2.247	2.299	-26.92	-24.03	0.22	0.10
N(2) -C(8)	2.288	2.306	-27.86	-24.02	0.20	0.10
N(2) -C(9)	2.304	2.318	-24.75	-23.71	0.32	0.10
N(1') -C(2')	2.242	2.290	-26.66	-23.90	0.27	0.11
N(1') -C(3')	2.383	2.303	-27.54	-23.82	0.16	0.11
N(2') -C(8')	2.297	2.312	-28.07	-23.97	0.24	0.11
N(2') -C(9')	2.301	2.291	-27.71	-23.73	0.18	0.10
C(1) -C(2)	2.149	2.123	-22.11	-21.59	0.25	0.22
C(1) -C(5)	2.083	2.082	-19.52	-20.82	0.23	0.19
C(1) -H(1)	1.714	1.902	-16.67	-23.46	0.05	0.02
C(2) -H(2)	1.816	1.939	-19.24	-24.54	0.15	0.03
C(3) -C(4)	2.129	2.126	-22.06	-21.66	0.23	0.22
C(3) -H(3)	1.780	1.939	-17.80	-24.55	0.10	0.03
C(4) -C(5)	2.064	2.079	-19.71	-20.74	0.27	0.19
C(4) -H(4)	1.749	1.902	-18.00	-23.45	0.09	0.02
C(5) -C(6)	1.729	1.796	-13.15	-16.39	0.15	0.06
C(6) -C(7)	2.093	2.097	-19.61	-21.17	0.22	0.19
C(6) -C(10)	2.087	2.100	-19.74	-21.21	0.25	0.19
C(7) -C(8)	2.149	2.133	-22.00	-21.79	0.26	0.22
C(7) -H(7)	1.722	1.904	-16.76	-23.51	0.08	0.02
C(8) -H(8)	1.840	1.937	-20.47	-24.46	0.10	0.03
C(9) -C(10)	2.121	2.129	-22.59	-21.74	0.29	0.22
C(9) -H(9)	1.866	1.940	-22.23	-24.55	0.06	0.03
C(10) -H(10)	1.809	1.904	-19.43	-23.51	0.08	0.02
C(1') -C(2')	2.164	2.134	-22.99	-21.84	0.30	0.21
C(1') -C(5')	2.040	2.083	-19.79	-20.86	0.27	0.19
C(1') -H(1')	1.786	1.921	-18.31	-24.04	0.08	0.02
C(2') -H(2')	1.841	1.932	-19.08	-24.34	0.12	0.03
C(3') -C(4')	2.171	2.123	-22.92	-21.63	0.28	0.22
C(3') -H(3')	1.795	1.937	-18.99	-24.47	0.10	0.03
C(4') -C(5')	2.072	2.093	-19.94	-21.04	0.28	0.20
C(4') -H(4')	1.754	1.900	-17.51	-23.43	0.09	0.02
C(5') -C(6')	1.787	1.809	-14.76	-16.69	0.15	0.06

Table S24: List of bond critical points (BCP's) found from topological analysis of experimental and theoretical models for (2).

C(6') -C(7')	2.088	2.090	-20.23	-20.98	0.25	0.20
C(6') -C(10')	2.048	2.080	-19.89	-20.79	0.24	0.19
C(7') -C(8')	2.109	2.126	-21.49	-21.69	0.28	0.22
C(7') -H(7')	1.743	1.900	-17.06	-23.44	0.07	0.02
C(8') -H(8')	1.823	1.936	-19.12	-24.44	0.09	0.03
C(9') -C(10')	2.120	2.141	-21.91	-21.99	0.28	0.22
C(9') -H(9')	1.780	1.935	-17.98	-24.41	0.11	0.03
C(10') -H(10')	1.767	1.910	-16.63	-23.74	0.09	0.02
N(2) - H(1')	0.045	0.092	0.53	1.03	0.47	0.06
N(2) - H(10')	0.070	0.048	1.25	0.50	0.20	0.12

Table S25: List of ring and cage critical points (RCP, CCP) found from topological analysis of experimental and theoretical models for (**2**).

	ρ(eÅ-3)	$ abla^2 ho (\mathrm{e}\mathrm{\AA}^{-5})$	
Bond	Exp	SP	Bond	Exp
RCP				
-N(1') - C(3') - C(4') - C(5') - C(1') - C(2')-	0.220	0.164	3.50	4.24
-N(2') - C(9') - C(10') - C(6') - C(7') - C(8')-	0.226	0.164	3.50	4.24
-N(2) - H(10') - C(10') - C(6') - C(5') - C(1') - H(1')-		0.039		0.46
-N(2) - C(8) - H(8) - H(2') - C(2') - C(1') - H(1')-		0.020		0.27
-N(2) - C(9) - C(10) - C(6) - C(7) - C(8)-	0.228	0.167	3.60	4.27
-N(1) - C(3) - C(4) - C(5) - C(1) - C(2)-	0.232	0.163	3.50	4.21
-C(1) - C(5) - C(6) - C(10) - H(10) - H(1)-		0.080		1.45
-C(4) - C(5) - C(6) - C(7) - H(7) - H(4)-		0.084		1.55

	<i>ρ</i> (e	eÅ ⁻³)	$\nabla^2 ho (\mathrm{e}\mathrm{\AA}^{-5})$		ł	6
Bond	Exp	SP	Exp	Bond	Exp	SP
N(1) -C(2)	2.351	2.297	-27.18	-24.03	0.20	0.10
N(1) -C(3)	2.247	2.299	-26.92	-24.03	0.22	0.10
N(2) -C(8)	2.288	2.306	-27.86	-24.02	0.20	0.10
N(2) -C(9)	2.304	2.318	-24.75	-23.71	0.32	0.10
N(1') -C(2')	2.242	2.290	-26.66	-23.90	0.27	0.11
N(1') -C(3')	2.383	2.303	-27.54	-23.82	0.16	0.11
N(2') -C(8')	2.297	2.312	-28.07	-23.97	0.24	0.11
N(2') -C(9')	2.301	2.291	-27.71	-23.73	0.18	0.10
C(1) -C(2)	2.149	2.123	-22.11	-21.59	0.25	0.22
C(1) -C(5)	2.083	2.082	-19.52	-20.82	0.23	0.19
C(1) -H(1)	1.714	1.902	-16.67	-23.46	0.05	0.02
C(2) -H(2)	1.816	1.939	-19.24	-24.54	0.15	0.03
C(3) -C(4)	2.129	2.126	-22.06	-21.66	0.23	0.22
C(3) -H(3)	1.780	1.939	-17.80	-24.55	0.10	0.03
C(4) -C(5)	2.064	2.079	-19.71	-20.74	0.27	0.19
C(4) -H(4)	1.749	1.902	-18.00	-23.45	0.09	0.02
C(5) -C(6)	1.729	1.796	-13.15	-16.39	0.15	0.06
C(6) -C(7)	2.093	2.097	-19.61	-21.17	0.22	0.19
C(6) -C(10)	2.087	2.100	-19.74	-21.21	0.25	0.19
C(7) -C(8)	2.149	2.133	-22.00	-21.79	0.26	0.22
C(7) -H(7)	1.722	1.904	-16.76	-23.51	0.08	0.02
C(8) -H(8)	1.840	1.937	-20.47	-24.46	0.10	0.03
C(9) -C(10)	2.121	2.129	-22.59	-21.74	0.29	0.22
C(9) -H(9)	1.866	1.940	-22.23	-24.55	0.06	0.03
C(10) -H(10)	1.809	1.904	-19.43	-23.51	0.08	0.02
C(1') -C(2')	2.164	2.134	-22.99	-21.84	0.30	0.21
C(1') -C(5')	2.040	2.083	-19.79	-20.86	0.27	0.19
C(1') -H(1')	1.786	1.921	-18.31	-24.04	0.08	0.02
C(2') -H(2')	1.841	1.932	-19.08	-24.34	0.12	0.03
C(3') -C(4')	2.171	2.123	-22.92	-21.63	0.28	0.22
C(3') -H(3')	1.795	1.937	-18.99	-24.47	0.10	0.03
C(4') -C(5')	2.072	2.093	-19.94	-21.04	0.28	0.20
C(4') -H(4')	1.754	1.900	-17.51	-23.43	0.09	0.02
C(5') -C(6')	1.787	1.809	-14.76	-16.69	0.15	0.06

Table S26: List of bond critical points (BCP's) found from topological analysis of experimental and theoretical models for (**3**).

C(6') -C(7')	2.088	2.090	-20.23	-20.98	0.25	0.20
C(6') -C(10')	2.048	2.080	-19.89	-20.79	0.24	0.19
C(7') -C(8')	2.109	2.126	-21.49	-21.69	0.28	0.22
C(7') -H(7')	1.743	1.900	-17.06	-23.44	0.07	0.02
C(8') -H(8')	1.823	1.936	-19.12	-24.44	0.09	0.03
C(9') -C(10')	2.120	2.141	-21.91	-21.99	0.28	0.22
C(9') -H(9')	1.780	1.935	-17.98	-24.41	0.11	0.03
C(10') -	1.767	1.910	-16.63	-23.74	0.09	0.02
H(10')						
N(2) - H(1')	0.045	0.092	0.53	1.03	0.47	0.06
N(2) - H(10')	0.070	0.048	1.25	0.50	0.20	0.12

Table S27: List of ring and cage critical points (RCP, CCP) found from topological analysis of experimental and theoretical models for (**3**).

	ρ(θ	eÅ-3)	$ abla^2 ho (\mathrm{e}\mathrm{\AA}^{-5})$	
Bond	Exp	SP	Bond	Exp
RCP			RCP	
-N(1') - C(3') - C(4') - C(5') - C(1') - C(2')-	0.220	0.164	3.50	4.24
-N(2') - C(9') - C(10') - C(6') - C(7') - C(8')-	0.226	0.164	3.50	4.24
-N(2) - H(10') - C(10') - C(6') - C(5') - C(1') - H(1')-		0.039		0.46
-N(2) - C(8) - H(8) - H(2') - C(2') - C(1') - H(1')-		0.020		0.27
-N(2) - C(9) - C(10) - C(6) - C(7) - C(8)-	0.228	0.167	3.60	4.27
-N(1) - C(3) - C(4) - C(5) - C(1) - C(2)-	0.232	0.163	3.50	4.21
-C(1) - C(5) - C(6) - C(10) - H(10) - H(1)-		0.080		1.45
-C(4) - C(5) - C(6) - C(7) - H(7) - H(4)-		0.084		1.55

Hydrogen bond geometry

Table S28: Geometrical details for hydrogen bonds and short contacts found in (1).

Bond	HA	DA	<(DHA)
Intramolecular			
C(07)-O(02)····H(05)	2.315	2.912	112.9
Intermolecular			
$C(03)-H(03)-O(01)^{a}$	2.624	2.478	135.3
N(01)-H(01A)····O(01) ^a	1.919	2.91	166.9
O(01)-H(01)···O(02) ^b	1.706	2.654	166.1

Symmetry operators: ^a*x*-0.5, -*y*+0.5, *z* -0.5; ^b*x*-0.50, -*y*+0.5, *z*+0.5

Table S29: Geometrical details for hydrogen bonds and short contacts found in (2).

Bond	HA	DA	<(DHA)
Intramolecular			
$C(1')-H(1')\cdots N(2)$	2.741	3.541	130.5
C(10')-H(10')····N(2)	2.336	3.399	166.8
H(4) - H(7)			
Intermolecular			
$C(1)-H(1)\cdots N(1')^a$	2.438	3.469	158.6
$C(4)-H(4)\cdots N(2')^b$	2.420	3.497	173.3
C(7)- $H(7)$ ···· $N(2')$ ^b	2.522	3.540	156.3
$C(10)-H(10)\cdots N(1')^{a}$	2.338	3.411	170.8
$C(4')-H(4')\cdots N(1)^{c}$	2.462	3.468	154.0
$C(7')-H(7')\cdots N(1)^{c}$	2.640	3.578	144.6

Bond	HA	DA	<(DHA)
Intramolecular			
C(05')-H(05')····O(02')	2.169	2.879	121.0
C(05)-H(05)····O(02)	2.185	2.867	118.8
N(01)-H(01)····N(2)	2.013	3.019	175.6
C(08)-H(08D)····N(2')	2.728	3.588	138.3
N(01')-H(01')····N(2')	1.93	2.928	169.7
Intermolecular			
C(02)-H(02)····N(1')	2.687	3.376	121.1
C(03')-H(03')····N(1)	2.609	3.399	129.2
C(3')-H(3')····O(01')	2.595	3.557	147.7
C(4)-H(4)····O(02')	2.573	3.592	156.6
C(8')-H(8')····O(01)	2.648	3.731	178.0
C(08)-H(08A)····O(01')	2.603	3.661	177.4
C(9)-H(9)····O(02)	2.544	3.477	143.9
H(01A)····O(02')	1.733	2.691	169.9
Short Contacts			
H(9)····H(03)	0.041	0.553	0.91

Table S30: Geometrical details for hydrogen bonds and short contacts found in (3).

Symmetry operators: ^a -x+1, y-1/2, -z+1/2; ^b -x+1, y+1/2, -z+1/2; ^c x, -y+3/2, z-1/2; ^d -x+2, -y+1, -z+1; ^e x+1, -y+3/2, z+1/2; ^f -x+2, -y+1, -z+1; ^g -x+1, -y+1, -z+1; ^h x-1, y, z-1

Table S31: Topological analysis of hydrogen bonding in (1). Standard uncertainties have been omitted from the Table for clarity. They are closely scattered around 0.02 $e^{A^{-3}}(\rho_{bcp})$ and 0.05 $e^{A^{-3}}(\rho_{bcp})$

⁵ ($\nabla^2 \rho_{bcp}$).

Bond	ρ (eÅ ⁻³)	$ abla^2 ho$ (eÅ-5)	3	<i>d</i> _{H⋯bcp} (Å)	<i>d</i> _{A⋯bcp} (Å)	G/Eh (eÅ ⁻³)	V/E_h (eÅ ⁻³)	H/E_h $(eÅ^{-3})$	G/r	E _{HB} (kJ mol ⁻¹)
Intramolecular										
C(05)-H(05)····O(02)	0.107	1.4	0.22	1.044	1.358	0.08	-0.07	0.01	0.78	27.46
Intermolecular										
C(03)-H(03)····O(01) ^a	0.143	2.8	0.07	1.247	2.715	0.16	-0.13	0.03	1.14	50.19
N(01)-H(01A)····O(01) ^a	0.143	2.8	0.07	0.691	1.247	0.16	-0.13	0.03	1.14	50.19

O(01)-H(01)····O(02) ^b	0.216	4.3	0.02	0.579	1.134	0.26	-0.23	0.04	1.22	87.8
Symmetry operators $a = 0.5$ $y = 0.5$ $z = 0.5$ $b = 0.50$ $y = 0.5$										

Symmetry operators: a x-0.5, -y+0.5, z -0.5; b x-0.50, -y+0.5, z+0.5

Table S32: Topological analysis of hydrogen bonding in (2). Standard uncertainties have been omitted from the Table for clarity. They are closely scattered around 0.02 eÅ⁻³ (ρ_{bcp}) and 0.05 eÅ⁻

 5 ($abla^{2}
ho_{bcp}$).

ρ	$\nabla^2 \rho$	3	<i>d</i> н…ьср	<i>d</i> Аьср	G/E _h	V/E_h	H/E_h	G/r	E _{HB}
(eÅ ⁻³)	(eÅ-5)		(Å)	(Å)	(eÅ ⁻³)	(eÅ ⁻³)	(eÅ ⁻³)		(kJ mol ⁻¹)
0.045	0.5	0.47	1.173	1.633	0.03	-0.02	0.01	0.65	8.36
0.07	1.3	0.2	0.865	1.482	0.07	-0.05	0.02	0.97	18.8
0.051	0.9	0.17	0.922	1.538	0.05	-0.03	0.02	0.94	12.65
0.035	1.0	0.11	0.863	1.566	0.05	-0.03	0.02	1.43	11.49
0.041	0.7	0.24	0.989	1.578	0.04	-0.02	0.01	0.88	9.28
0.05	1.3	0.19	0.835	1.514	0.06	-0.04	0.02	1.3	15.82
0.048	0.8	0.29	0.964	1.541	0.04	-0.03	0.01	0.89	11.29
0.042	0.6	0.25	1.076	1.607	0.03	-0.02	0.01	0.73	8.32
0.029	0.5	0	1.074	1.251	0.03	-0.02	0.01	0.96	6.68
	 ρ (eÅ⁻³) 0.045 0.07 0.051 0.035 0.041 0.05 0.048 0.042 0.042 0.029 	ρ $\nabla^2 \rho$ (eÅ-3)(eÅ-5)0.0450.50.071.30.0510.90.0351.00.0410.70.051.30.0480.80.0420.60.0290.5	ρ (eÅ ⁻³) $\nabla^2 \rho$ (eÅ ⁻⁵) ε (eÅ ⁻⁵)0.0450.50.470.0450.50.470.071.30.20.0510.90.170.0351.00.110.0410.70.240.051.30.190.0480.80.290.0420.60.250.0290.50	ρ $\nabla^2 \rho$ ε $d_{H\cdots bcp}$ (eÅ-3)(eÅ-5)(Å)0.0450.50.471.1730.20.8650.071.30.20.0510.90.170.0351.00.110.0410.70.240.0540.8650.0540.190.0551.30.190.8350.0480.80.290.9640.0420.60.0290.501.074	ρ (eÅ-3) $\nabla^2 \rho$ (eÅ-5) ε (Å) $d_{\text{H}\cdots\text{bcp}}$ (Å) $d_{\text{A}\cdots\text{bcp}}$ (Å)0.0450.50.471.1731.6330.071.30.20.8651.4820.0510.90.170.9221.5380.0351.00.110.8631.5660.0410.70.240.9891.5780.051.30.190.8351.5140.0480.80.290.9641.5410.0420.60.251.0761.6070.0290.501.0741.251	ρ (eÅ-3) $\nabla^2 \rho$ (eÅ-5) ε (Å) $d_{\text{H}\cdots\text{bcp}}$ (Å) $d_{\text{A}\cdots\text{bcp}}$ (Å) G/Eh (eÅ-3)0.0450.50.471.1731.6330.030.071.30.20.8651.4820.070.0510.90.170.9221.5380.050.0351.00.110.8631.5660.050.0410.70.240.9891.5780.040.051.30.190.8351.5140.060.0480.80.290.9641.5410.040.0420.60.251.0761.6070.030.0290.501.0741.2510.03	$\begin{array}{c c c c c c c } \hline \rho & \nabla^2 \rho & \epsilon & d_{\text{H}\cdots\text{bcp}} & d_{\text{A}\cdots\text{bcp}} & G/\text{Eh} & V/E_h \\ \hline (e\begin{minipage}{0.6mm} (e\begin{minipage} (e\begin{minipage}{0.6mm} (e$	$\begin{array}{c c c c c c c c } \hline \rho & \nabla^2 \rho & \varepsilon & d_{H\cdots bcp} & d_{A\cdots bcp} & G/E_h & V/E_h & H/E_h \\ \hline (eÅ^{-3}) & (eÅ^{-5}) & & & & & & & & & & & & & & & & & & &$	$ \begin{array}{c c c c c c c } \hline \rho & \nabla^2 \rho & \bar{\epsilon} & d_{\rm H^{bcp}} & d_{\rm A^{bcp}} & G/E_h & V/E_h & H/E_h & G/r \\ (eÅ^{-3}) & (eÅ^{-5}) & & (Å) & (Å) & (eÅ^{-3}) & (eÅ^{-3}) & (eÅ^{-3}) \\ \hline & (eÅ^{-3}) & (eÅ^{-3}) & (eÅ^{-3}) & (eÅ^{-3}) & (eÅ^{-3}) \\ \hline & & & & & & & & \\ \hline & & & & & & & &$

Symmetry operators: ^ax, y, z-1; ^bx-1, y+1, z; ^cx+1, y-1, z+1

Figure S4: Hirshfeld surfaces for (1).

(c)

Figure S6: Hirshfeld surfaces for (3).

Table S33: Atomic charges (e) from multipole refinement (1). Standard uncertainties have been omitted for clarity.

Name	$\Omega(Exp)$	Ω (DFT)
O(01)	-1.19	-1.11
O(02)	-1.09	-1.14
N(01)	-1.21	-1.20
C(01)	0.40	0.50
C(02)	0.07	-0.02
C(03)	0.03	-0.01
C(04)	0.26	0.34
C(05)	-0.05	0.01
C(06)	0.03	0.00
C(07)	1.14	1.42
C(08)	-0.13	0.03
H(01)	0.67	0.57
H(01A)	0.48	0.38
H(02)	-0.01	0.02
H(03)	0.09	0.01

H(05)	0.15	0.10
H(06)	-0.01	0.05
H(08A)	0.16	0.03
H(08B)	0.12	-0.02
H(08C)	0.14	0.05

Table S34: Atomic charges (e) from multipole refinement (2). Standard uncertainties have been omitted for clarity.

Name	$\Omega(Exp)$	$\Omega \left(\mathbf{DFT} \right)$
N(1')	-0.74	-1.12
N(2')	-0.77	-1.12
N(1)	-0.80	-1.10
N(2)	-0.81	-1.14
C(1)	-0.11	-0.03
C(2)	0.27	0.51
C(3)	0.40	0.51
C(4)	-0.04	-0.03
C(5)	-0.08	0.00
C(6)	0.04	0.00
C(7)	-0.06	-0.03
C(8)	0.44	0.51
C(9)	0.51	0.52
C(10)	-0.15	-0.03
H(1)	0.17	0.04
H(2)	-0.05	0.05
H(3)	-0.01	0.05
H(4)	0.21	0.03
H(7)	0.15	0.04
H(8)	-0.06	0.04
H(9)	-0.16	0.04
H(10)	0.15	0.04
C(1')	-0.05	-0.05
C(2')	0.38	0.50
C(3')	0.29	0.51
C(4')	-0.07	-0.04
C(5')	-0.01	-0.01
C(6')	-0.04	0.00

C(7')	-0.09	-0.04
C(8')	0.32	0.52
C(9')	0.30	0.50
C(10')	-0.01	-0.03
H(1')	0.14	0.09
H(2')	-0.04	0.03
H(3')	0.07	0.04
H(4')	0.12	0.04
H(7')	0.16	0.04
H(8')	0.00	0.04
H(9')	0.02	0.03
H(10')	0.06	0.06

Table S35: Atomic charges (e) from multipole refinement (**3**). Standard uncertainties have been omitted for clarity.

Name	$\Omega(Exp)$	Ω (DFT)
N(1')	-0.74	-1.12
N(2')	-0.77	-1.12
N(1)	-0.80	-1.10
N(2)	-0.81	-1.14
C(1)	-0.11	-0.03
C(2)	0.27	0.51
C(3)	0.40	0.51
C(4)	-0.04	-0.03
C(5)	-0.08	0.00
C(6)	0.04	0.00
C(7)	-0.06	-0.03
C(8)	0.44	0.51
C(9)	0.51	0.52
C(10)	-0.15	-0.03
H(1)	0.17	0.04
H(2)	-0.05	0.05
H(3)	-0.01	0.05
H(4)	0.21	0.03
H(7)	0.15	0.04

H(8)	-0.06	0.04
H(9)	-0.16	0.04
H(10)	0.15	0.04
C(1')	-0.05	-0.05
C(2')	0.38	0.50
C(3')	0.29	0.51
C(4')	-0.07	-0.04
C(5')	-0.01	-0.01
C(6')	-0.04	0.00
C(7')	-0.09	-0.04
C(8')	0.32	0.52
C(9')	0.30	0.50
C(10')	-0.01	-0.03
H(1')	0.14	0.09
H(2')	-0.04	0.03
H(3')	0.07	0.04
H(4')	0.12	0.04
H(7')	0.16	0.04
H(8')	0.00	0.04
H(9')	0.02	0.03
H(10')	0.06	0.06

References

- 1. D. Oxford, Oxford Diffraction Ltd, Abingdon, England, 1.171.37.31b edn., 2006.
- 2. K. Meindl and J. Henn, *Acta Crystallographica Section A*, 2008, 64, 404-418.
- 3. K. Meindl and J. Henn, in *Electron Density and Chemical Bonding II: Theoretical Charge Density Studies*, ed. D. Stalke, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, DOI: 10.1007/430_2010_26, pp. 143-192.