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Abstract: We report the synthesis and characterization of a 3D Cu(II) coordination polymer,
[Cu3(L1)2(H2O)8]·8H2O (1), with the use of a glycine-based tripodal pseudopeptidic ligand
(H3L1 = N,N′,N′ ′-tris(carboxymethyl)-1,3,5-benzenetricarboxamide or trimesoyl-tris-glycine).
This compound presents the first example of a 12-fold interpenetrated ThSi2 (ths) net. We attempt
to justify the unique topology of 1 through a systematic comparison of the synthetic parameters
in all reported structures with H3L1 and similar tripodal pseudopeptidic ligands. We additionally
explore the catalytic potential of 1 in the A3 coupling reaction for the synthesis of propargylamines.
The compound acts as a very good heterogeneous catalyst with yields up to 99% and loadings as low
as 3 mol %.
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1. Introduction

Ever since their popularization in the last decade, coordination polymers (CPs), also known as
metal–organic frameworks (MOFs), have become one of the most prominent branches of inorganic
and materials chemistry, in no small part due to the extensive variety of their applications [1–8]. A key
factor for the rise of CPs as functional materials has been the development of rational synthetic routes
towards the optimization of their application potential [9–12]. As a result, the strategic selection of
a suitable ligand for the synthesis of CPs during the design of a new system is critical.

In recent years, a surge towards biologically derived CPs has been observed [13]. This type of
compounds is typically constructed from bioligands such as amino acids, peptides, or nucleobases,
which can offer a large variety for exploitation regarding possible coordination sites, the presence of
functional groups, the degree of flexibility, and the potential formation of strong and weak interactions.
This plethora of options has led to multiple reports of biologically related CPs with interesting
applications: for example, porous CPs with adenine- [14], serine- [15], and dipeptide-based [16]
ligands have been used successfully for the selective capture of CO2. Furthermore, several ligands
with amino acids or peptides have been employed with transition metals to induce chirality in various
catalytic procedures [17–19]. Finally, CPs containing adenine have also been reported to have potential
sensing [20] and drug storage [21] capabilities.

Pseudopeptidic ligands are another interesting type of biologically related linkers. In this case,
a scaffold, which may be aromatic or nonaromatic, has amino acids or oligopeptides attached to it
(Scheme 1). This type of ligands can offer multiple positions for coordination, as well as unlimited
choices in flexibility, aromaticity, and hydrogen bond formation.
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that the resulting compounds could have an interesting activity as heterogeneous catalysts. 
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Scheme 1. General motif of pseudopeptidic ligands.

Our group [22–27] and others [28,29] have focused specifically on the coordination chemistry of
pseudopeptidic ligands which retain a rigid aromatic scaffold, and introduced to it flexible amino
acids. This strategy has produced a great variety of coordination polymers with many applications,
such as luminescence [30], reversible water loss [27,30,31], magnetism [29], homochirality [18],
and catalysis [26]. Additionally, this type of pseudopeptidic ligands are of great interest from a crystal
engineering point of view and can lead to fascinating topologies due to: (a) the varying nature of
the aromatic scaffold; (b) the possible formation of strong and weak hydrogen bonds as well as pi
interactions; (c) the length of the amino acids; (d) the coordination abilities of the metal ion used.

Our most recent work in this project studied the influence of the Cu(II) salt on the resulting
CPs when the pseudopeptidic ligand isophthaloylbis-β-alanine (H2IBbA) was used [25]. Encouraged
by the obtained result, we opted to investigate this effect on additional pseudopeptidic ligands.
Having also in mind (a) our ongoing interest on CPs and their catalytic properties [32–34]
and (b) the commonly limited solubility of these bulky pseudopeptidic CPs in organic solvents,
we theorized that the resulting compounds could have an interesting activity as heterogeneous catalysts.
Therefore, we herein present the synthesis, characterization, and topological evaluation of a novel
compound formulated as [Cu3(L1)2(H2O)8]·8H2O (1), where H3L1 is N,N′,N′ ′-tris(carboxymethyl)-
1,3,5-benzenetricarboxamide [35], also commonly known as trimesoyl-tris-glycine (Scheme 2).
Furthermore, we report the catalytic activity of 1 in the metal-catalyzed multicomponent reaction
(MCR) of an aldehyde, an amine, and an alkyne, also known as the A3 coupling, towards the synthesis
of propargylamines.
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2. Experimental Section

2.1. Materials

Chemicals (reagent grade) were purchased from Sigma Aldrich (Gillingham, UK), Acros Organics
(Loughborough, UK), and Alfa Aesar (Lancashire, UK). All experiments were performed under aerobic
conditions using materials and solvents as received. Ligand H3L1 was synthesized according to the
reported procedure [23].
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2.2. Instrumentation

IR spectra of the samples were recorded over the range of 4000–650 cm−1 on a Perkin Elmer
Spectrum One FT-IR spectrometer (Seer Green, UK) fitted with a UATR polarization accessory. EI-MS
was performed on a VG Autospec Fissions instrument (EI at 70 eV, SIS, Ringoes, NJ, USA). TGA analysis
was performed on a TA Instruments Q-50 model (TA, Surrey, UK) under nitrogen and at a scan rate of
10 ◦C/min. NMR spectra were measured on a Varian VNMRS solution-state spectrometer (Agilent,
Stockport, UK) at 30 ◦C. Chemical shifts were quoted in parts per million (ppm). Coupling constants
(J) were recorded in Hertz (Hz).

2.3. X-ray Crystallography

Data for compound 1 were collected (ω-scans) at the University of Sussex using an Agilent
Xcalibur Eos Gemini Ultra diffractometer (Agilent, Stockport, UK) with a CCD plate detector (Agilent,
Stockport, UK) under a flow of nitrogen gas at 173(2) K and Mo Kα radiation (λ = 0.71073 Å).
CRYSALIS CCD and RED software (version 1.171.38.41) were used, respectively, for data collection and
processing. Reflection intensities were corrected for absorption by the multiscan method. The structure
was determined using Olex2 [36], solved using SHELXT (version 2015) [37,38], and refined with
SHELXL-2014 [39]. All non-H atoms were refined with anisotropic thermal parameters, and H-atoms
were introduced at calculated positions and allowed to ride on their carrier atoms. For certain
water lattice molecules, the introduction of H atoms at calculated positions led to an unsatisfactory
structure solution with certain short intramolecular D–H···H–D distances. Because of the poor quality
of the crystallographic data in three different datasets, we were unable to locate these H atoms
manually. For this reason, bond distances and angles regarding these atoms were not mentioned
further. Additional measurements of elemental and TGA analysis were performed to conclusively
validate the suggested formula and structure. Crystal data and structure refinement parameters for 1
are given in Table S1. The geometric and crystallographic calculations were performed using PLATON
(version 1.18) [40], Olex2 (version 1.2) [36], and WINGX [41] packages (version 2014.1). The graphics
were prepared with Crystal Maker and MERCURY [42], CCDC 1586912.

2.4. Synthetic Procedures

2.4.1. Synthesis of [Cu3(L1)2(H2O)8]·8H2O (1)

Method 1: 0.5 mmol (0.190 g) of H3L1 and 0.75 mmol (110 µL) of Et3N were dissolved in 15 mL of
H2O while stirring to produce a colourless solution. To this, 1 mmol (0.232 g) of Cu(NO3)2·2.5H2O
was added. The resulting light blue solution was stirred for a further 20 min at room temperature.
After the end of the reaction, the solution was filtrated and then carefully layered over Me2CO at
a respective ratio of 1:2. After 6 days, large blue block crystals of 1, as well as colourless needles of
H3L1 were formed. Yield: 27% (based on Cu). Method 2: the same procedure as above was followed,
but a solution of H2O/MeOH (10:1) was used instead of H2O to produce only crystals of 1. Yield: 18%
(based on Cu). Selected IR peaks (cm−1): 3253 (br), 1626 (m), 1557 (m), 1499 (w), 1434 (m), 1403 (m),
1304 (w), 1003 (w), 909 (w), 733 (m). Elemental analysis for C30H62Cu3N6O34: calcd. C 43.89, H 5.04,
N 6.78; found C 43.84, H 5.06, N 6.89.

2.4.2. General Catalytic Protocol for A3 Coupling

A mixture of aldehyde (0.5 mmol), amine (0.55 mmol), alkyne (0.6 mmol), Cu catalyst 1 (3 mol%,
based on aldehyde amount), and 2-propanol (2 ml) was added into a sealed tube and stirred at 90 ◦C
for 12 h. After completion of the reaction, the mixture was allowed to cool down. The slurry was
then filtered to withhold the catalyst, and the filtrate was evaporated under vacuum. The yield of the
propargylamine products were then determined by their 1HNMR spectra, which were compared with
the data reported in the corresponding literature [34].
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3. Results

3.1. Crystal Structure Description

Compound 1 crystallizes in the noncentrosymmetrical monoclinic Pn space group. X-ray
determination of the crystal structure reveals the formation of an interpenetrated neutral
three-dimensional coordination polymer (Figures 1 and 2). The asymmetric unit of 1 consists of
3 copper centres, 2 fully deprotonated ligand (L1)3− molecules, and a total of 16 water molecules;
out of these, 8 act as terminal ligands and 8 are present in the lattice. In both (L1)3− molecules, each of
the three carboxylate groups coordinate to each of the three Cu centers. Additionally, in both ligands,
the three amido groups exist in a trans conformation and all of them are in anti conformation (Figure 3).
Cu1 is coordinated to six atoms and exhibits a distorted octahedral geometry (s/h = 1.04, φ = 52.9◦ [43]).
The equatorial positions of this octahedron are occupied by four carboxylate oxygen atoms deriving
from two different ligands. Cu2 and Cu3 are each coordinated to five atoms and exhibit a square
pyramidal geometry (τ = 0.06 for Cu2, 0.17 for Cu3 [44]). In the coordination environment of both
metal centers, the basal plane consists of two oxygen atoms from two different ligand molecules,
as well as two oxygen atoms from terminal water molecules. An oxygen atom from another terminal
water molecule occupies the apical position in both cases. Selected bond lengths are listed in Table 1.
The Cu–Cu distances between the metal centers range from 11.400(3) to 14.176(3) Å. Furthermore,
the crystal structure of 1 is stabilized by strong intermolecular O–H···O hydrogen bonds, which involve
the oxygen atoms of all 16 water molecules as donors. The atoms involved as acceptors in these bonds
are oxygen atoms of either water molecules or the carbonyl group of the amide.
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Table 1. Selected bond lengths (Å) for 1.

Bond Å

Cu1–O1 1.932(11)
Cu1–O2 2.668(11)

Cu1–O10 1.964(10)
Cu1–O11 2.611(11)
Cu1–O19 1.938(11)
Cu1–O20 1.931(10)
Cu2–O8 1.942(11)

Cu2–O28 1.991(9)
Cu2–O29 2.191(11)
Cu2–O30 1.959(10)

Cu2–O14 1 1.927(11)
Cu3–O5 1.928(10)

Cu3–O22 1.925(12)
Cu3–O23 2.005(11)
Cu3–O24 2.343(11)

Cu3–O18 2 1.943(10)
Cu1–Cu2 11.400(3)
Cu1–Cu3 14.176(3)
Cu2–Cu3 12.554(3)

Symmetry Operators: 1 −3/2 + X, 2 − Y, 1/2 + Z; 2 +X, −2 + Y, 1 + Z.

3.2. Topological Analysis

The complicated structure of compound 1 can be simplified into a net considering each ligand as
a three-connected node and each metal center as a two-connected node; therefore, the two-connected
nodes are not further considered for the classification. The final outcome of the topological analysis
of the three-dimensional coordination polymer 1, with the use of the TOPOS software [45] and the
standard representation methodology, is a three-connected, 12-fold interpenetrated symmetric ths net
(Figure 4). According to a literature survey in the TOPOS and CCDC databases, compounds EJISAS [46]
and KOBFEN [47] can be also represented as 12-fold ths nets; however, this simplification derives
when a standard representation is selected. The topological analysis of the latter two compounds
using the standard cluster representation and considering the Cu(O2)Cu as nodes [48], yields a 12-fold
interpenetrated diamond (dia) net, therefore compound 1 represents the first example of a standard
12-fold interpenetrated ths net.
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3.3. TGA and IR Studies

To examine the thermal behavior and stability of 1, TGA was carried out between room
temperature and 800 ◦C under N2 atmosphere. This analysis (Figure S1) shows that the first mass loss
is continuous, as it begins in the region of 50◦C and is completed at approximately 150 ◦C. This is
attributed to the loss of eight lattice and eight ligated water molecules, in good agreement with the
theoretical value (calc.: 23.60%, theor.: 23.25%). The remaining framework is then relatively stable up
to ~310 ◦C, where it is subjected to a further mass loss due to decomposition to CuO (calc.: 63.14%,
theor.: 65.14%). The reported peaks in the IR spectrum of 1 (Figure S2) are in good agreement
with the crystallographic data. A broad absorption peak is found at 3253 cm−1 and is attributed
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to the stretching vibration of the O–H bonds. The peak at 1622 cm−1 is due to the presence of the
noncoordinated carbonyl group of the amide, in good agreement with previously reported values for
similar [23] compounds. Furthermore, peaks at 1557 and 1403 cm−1 can be attributed to the ν(CO2)as

and symmetric ν(CO2)s bands of coordinated carboxylate groups, respectively. Finally, some peaks
related possibly to C–H bending vibrations appear at 909 and 733 cm−1.

3.4. Synthetic Aspects

Our initial efforts for the synthesis of 1 involved experiments in various ratios of water/alcohol
media, based on our previous experiences with H3L1 [23] as well as the related literature [30]. However,
no crystals were obtained in this case. The protocol was therefore modified with various techniques
and ratios in order to facilitate crystallization. After extensive screening, liquid diffusion in acetone was
found to be the only effective technique amongst the tested ones. The use of other suitable secondary
crystallization solvents (e.g., acetonitrile) led, instead, to amorphous material. It is worth noting that
the water/alcohol mix seems to be critical for the pure synthesis of 1, as a similar experiment in H2O
also yielded crystals of the organic ligand; however, no MeOH molecules were found in the structure,
despite their potential participation in H-bonding.

While the topology of 1 has not been observed before, the afforded compound is not the only
structure which contains a Cu(II) source and the H3L1 ligand. In fact, a search in the CCDC [49]
revealed a variety of structures, but all of these show a different topology. To shed more light into
this as well as attempt to rationalize the synthesis, we opted to perform a more systematic search
in the literature for similar tripodal pseudopeptidic ligands. This narrowed our results to a total of
28 reported coordination compounds, with 3 different ligands depending on the varying amino acid:
either Glycine (H3L1), L-Alanine (H3L2), or D-Alanine (H3L3) (Scheme 3). To provide a full insight,
we included a full list of factors that could point towards the resulting differences. These parameters
included the metal ion, the synthetic conditions including solvent and temperature, and the presence
of a base or a second organic linker. These are listed in detail in Table 2.
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In regard to the H3L1 glycine-based ligand, a comparison between our result (Entry 1) and
the rest of the reported Cu(II) compounds (entries 2–5) already revealed major influences of these
parameters. Compound 1 was synthesized using Cu(NO3)2·2.5H2O, while, in the rest of the relevant
entries, CuCl2·2H2O was used as the metal source. The role of the metal ion in the resulting
structure has already been reported, especially for Cu(II) sources in similar pseudopeptidic ligands.
Therefore, our result further confirmed this effect. The rest of the parameters revealed additional
interesting information: a comparison of entries 2–4 showed that the presence and amount of base
(and as a consequence, the tuning of pH) led to different structures; in the case of entry 4, the base
(pyridine) actually coordinated to the metal center, which led to a 2D coordination polymer instead
of a 3D, and to a less exciting topology. Regarding the synthetic conditions between these entries,
a possible temperature effect over time could be observed. Efforts to obtain a crystal structure using
CuCl2·2H2O and the synthetic method of 1, or Cu(NO3)2·2.5H2O and solvothermal conditions were
unfortunately unsuccessful. However, we could obtain a wider scope for conclusions by bringing
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also the glycine-based compounds with other metals (entries 6–20) into the comparison. Through
this, it is worth noting the following: (a) the compounds of entries 2 and 6–9 had a general formula
of [M(L1)(H2O)3]2[M(H2O)6]·(H2O)3 regardless of the synthetic method; (b) our attempts to utilize
our synthetic method with other metals (Co, Zn, Mn) resulted in the same crystal structures in
entries 2 and 6–9, conclusively proving that the synthetic procedures were not the prevalent factor
in order to get structures with the 12-fold topology; (c) as expected, the presence of a second organic
linker led to even more unpredictable structures. Interestingly, a comparison between entries 5 and
12 (Cu- and Co-based respectively), in which the same linker (bpp) and similar synthetic methods
were employed, revealed significant differences in the resulting products, further pointing to the
lesser importance of the conditions compared to the choice of metal; (d) a comparison between
Ca(II)-based compounds [Ca6(L1)4(H2O)14](H2O)3 and [Ca2(HL1)2(µ-H2O)(H2O)5]·3H2O (entries 18
and 19 respectively), which were synthesized under very similar methods but with a different Ca(II)
source (chloride for entry 18, nitrate for 19), further pointed towards the metal ion influence; (e) only
the metals with flexibility in their coordination environment and geometry (copper, alkaline earth
metals, lanthanides) provided any cases of structural variety. Interestingly, the largest variety of
compounds was observed when Cu(II) sources were employed.

Table 2. Overview of the synthetic parameters and topology of all reported compounds with tripodal
pseudopeptidic ligands.

Entry Metal Salt L Additive a Conditions Formula Ref.

1 Cu(NO3)2·2.5H2O H3L1 Et3N rt/H2O/MeOH (10:1)/Me2CO [Cu3(L1)2(H2O)8]·8H2O b

2 CuCl2·2H2O H3L1 None 100 ◦C/3 h/H2O/DMF (1:2) [Cu(L1)(H2O)3]2[Cu(H2O)6]·(H2O)3 [50]
3 CuCl2·2H2O H3L1 py c 100 ◦C/24 h/H2O/DMF (1:1) [Cu3(L1)2(H2O)3]·2H2O [50]
4 CuCl2·2H2O H3L1 py 90 ◦C/40 h/H2O/DMF (1:1) [Cu2(L1)(Py)2(µ3-OH)]·(H2O)2 [50]
5 CuCl2·2H2O H3L1 bpp d 100 ◦C/48 h/H2O/MeOH (1:1) [Cu2(L1)(bpp)(µ3-OH)]·6H2O [50]
6 Zn(NO3)2·2.5H2O H3L1 None 100 ◦C/48 h/H2O/MeOH (10:1) [Zn(L1)(H2O)3]2[Zn(H2O)6]·(H2O)3 [30]
7 Ni(NO3)2·2.5H2O H3L1 None 100 ◦C/48 h/H2O/MeOH (10:1) [Ni(L1)(H2O)3]2[Ni(H2O)6]·(H2O)3 [30]
8 Mn(OAc)2·4H2O H3L1 None 100 ◦C/48 h/H2O/MeOH (10:1) [Mn(L1)(H2O)3]2[Mn(H2O)6]·(H2O)3 [30]
9 Co(NO3)2·6H2O H3L1 None 100 ◦C/48 h/H2O/MeOH (10:1) [Co(L1)(H2O)3]2[Co(H2O)6]·(H2O)3 [30]

10 Co(NO3)2·6H2O H3L1 bpy e 100 ◦C/48 h/H2O [Co1.5(L1)(bpy)1.5(H2O)3]·(H2O)5 [51]
11 Co(NO3)2·6H2O H3L1 bpe f 100 ◦C/48 h/H2O [Co1.5(L1)(bpe)1.5(H2O)2] [51]
12 Co(NO3)2·6H2O H3L1 bpp 100 ◦C/48 h/H2O [Co2(L1)(bpp)2(NO3)(µ2-H2O)2]·(H2O)2 [51]
13 Tb(III) H3L1 None N/A g [Tb(L1)(H2O)3]·H2O [31]
14 Gd(III) H3L1 None N/A [Gd(L1)(H2O)3]·H2O [31]
15 Nd(III) H3L1 None N/A [Nd(L1)(H2O)3]·H2O [31]
16 La(III) H3L1 None N/A [La(L1)(EtOH)(H2O)2]·2.5H2O [31]
17 CaCl2 H3L1 py rt/H2O/MeOH (1:1) [Ca(HL1)(H2O)2] [52]
18 CaCl2 H3L1 py rt/H2O/MeOH (1:1) [Ca6(L1)4(H2O)14](H2O)3 [52]
19 Ca(NO3)2·3H2O H3L1 NaOAc rt/H2O/EtOH (1:1) [Ca2(HL1)2(µ-H2O)(H2O)5]·3H2O [23]
20 Sr(NO3)2 H3L1 NaOAc rt/H2O/EtOH (1:1) [Sr2(HL1)2(H2O)7]·H2O [23]
21 Cu(NO3)2·3H2O H3L2 KOH/am h 80 ◦C/48 h/MeOH/DMF (10:1) [Cu4(HL2)2(H2O)4(MeO)4] [53]
22 CuCl2·2H2O H3L2 KOH rt/EtOH/DMF (4:1) [Cu12(L2)8(H2O)12]·8EtOH·40H2O [54]
23 Zn(NO3)2·6H2O H3L2 bpy/KOH rt/H2O/MeOH (3:8) [Zn3(L2)2(bpy)4]·24H2O [55]
24 Ni(NO3)2·2H2O H3L2 bpy/KOH 95 ◦C/48 h/H2O/EtOH (1:1) [Ni3(L2)2(bpy)4]·2EtOH·14H2O [56]
25 Co(NO3)2·2H2O H3L2 bpy/KOH rt/H2O/MeOH (3:8) [Co3(L2)2(bpy)4]·28H2O [56]
26 Cd(NO3)2·4H2O H3L2 bpy/teda i 100 ◦C/72 h/H2O/DMF (1:1) [Cd8(L2)6(bpy)3(H2O)4](H3O)2 [18]
27 Ni(NO3)2·2H2O H3L3 bpy/KOH 95 ◦C/48 h/H2O/EtOH (1:1) [Ni3(L3)2(bpy)4]·2EtOH·14H2O [56]
28 Co(NO3)2·2H2O H3L3 bpy/KOH rt/H2O/MeOH (3:8) [Co3(L3)2(bpy)4]·28H2O [56]
29 Cd(NO3)2·4H2O H3L3 bpy/teda 100 ◦C/72 h/H2O/DMF (1:1) [Cd8(L3)6(bpy)3(H2O)4](H3O)2 [18]

a Refers to the use of any base or secondary organic linker. b This work. c py = pyridine. d bpp = (1,3-di(4-pyridyl)propane).
e bpy = 4,4′-bipyridine. f bpe = [1,2-bi(4-pyridyl)ethane]. g N/A = Not available. h am = ammonium hydroxide,
i teda = Triethylenediamine.

In regard to the alanine-based compounds (entries 21–29), the presence of an additional methyl
group led to completely different compounds and topologies, as expected. However, the stark
difference in entries 21 and 22 (in which Cu(NO3)2·3H2O and CuCl2·2H2O were employed respectively)
once again strongly suggests a metal ion influence towards the resulting product. In summary,
when exploring the coordination chemistry of this type of pseudopeptidic ligands, the choice of the
metal ion seems to play an important role towards the resulting product and, as a consequence, in the
resulting topology and interpenetration.
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3.5. Catalytic Studies

The A3 coupling (Scheme 4) has been widely studied in recent years [57–61], as the resulting
propargylamines have been proposed as key intermediates in the synthesis of various N-containing
biologically active compounds [62–65]. Even though many metal sources and compounds, including
CPs [66–69], have been tested as catalysts for this reaction, Cu(II) CPs have been used very rarely [34].
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In order to test the possible catalytic activity of 1, initial studies were performed for the A3

coupling of cyclohexane carboxaldehyde, pyrrolidine, and phenylacetylene. After extensive screening,
optimal conditions were obtained when the mixture was stirred for 24 h in the presence of 2-propanol
(iPrOH) [70], at 90 ◦C, under air atmosphere, and by adding only 0.03 mmol of compound 1 (in 1 mmol
reaction scale of aldehyde). To our delight, these conditions accounted for quantitative yields of the
model propargylamine; this accumulated to a turnover number of 33.3 for the catalyst. Additionally,
no reaction was observed in the absence of 1, result that further supports the activity of the catalyst in
the studied multicomponent coupling.

We then employed a variety of aldehydes, amines, and alkynes as substrates in order to study
the scope of the reaction. Amine screening, as presented in Table 3, entries 1–6, indicated that
cyclic secondary amines afford the corresponding propargylamine products in excellent yields,
while acyclic secondary amines were found to be slightly less effective. Results of the aldehyde
screening (entries 7–10) revealed that aromatic aldehydes show slightly lower reactivity. Furthermore,
the reactivity and respective yields were affected by the presence of an electron-donating or
electron-withdrawing group in the aldehyde. In comparison, saturated aliphatic aldehydes displayed
high reactivity and afforded excellent yields. In regard to the alkyne selection, the employment of
either phenylacetylene or 1-hexyne resulted to the corresponding propargylamines in excellent yields
when the model aldehyde and amine substrates were also used. The relevant results can be found as
entries 1 and 11.

Table 3. Catalytic activity of 1 in the A3 coupling.

Entry Aldehyde Amine Alkyne Yield a (%)

1 cyclohexane carboxaldehyde pyrrolidine phenylacetylene 99
2 cyclohexane carboxaldehyde piperidine phenylacetylene 99
3 cyclohexane carboxaldehyde azepane phenylacetylene 94
4 cyclohexane carboxaldehyde morpholine phenylacetylene 99
5 cyclohexane carboxaldehyde diethylamine phenylacetylene 77
6 cyclohexane carboxaldehyde N-methylaniline phenylacetylene 58
7 benzaldehyde pyrrolidine phenylacetylene 67
8 4-methyl benzaldehyde pyrrolidine phenylacetylene 61
9 4-methoxy benzaldehyde pyrrolidine phenylacetylene 36
10 4-chloro benzaldehyde pyrrolidine phenylacetylene 64
11 cyclohexane carboxaldehyde pyrrolidine 1-hexyne 95
12 cyclohexane carboxaldehyde pyrrolidine phenylacetylene 96 b

a NMR yields based on aldehyde. b After the fourth cycle of catalyst use.
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The characterization by TGA and IR spectroscopy pointed towards a similar identity of this
solid compared to bulk samples of 1 (Figures S3 and S4). The compound showed no solubility in
common organic solvents during our tests; therefore, the next step was to study the heterogeneous
nature and capabilities of the recycled compound. The catalyst could be easily recovered by filtration
after the end of the reactions and then be reused after treatment with acetone and diethyl ether to
remove any reagents or product. The simulated and the “as is” synthesized compound powder XRD
patterns were in good agreement, however the spectrum of the postcatalysis recovered solid (Figure S5)
appeared to be similar to the XRD pattern of the reported compounds with the general formula
[M(L1)(H2O)3]2[M(H2O)6]·(H2O)3 (Table 2, entry 2; CCDC entry SIDJIZ was selected for comparison).
This indicates that a phase transition or structure change of compound 1 to the corresponding SIDJIZ
probably took place during the catalytic procedure. This phenomenon could not to be detected by
TGA and IR measurements because of the similarities in the general formula. Experiments carried
out with the model reaction and the recovered material showed that it can be reused at least four
times with only a slight decrease in the catalytic activity (Table 3, entry 12). Because of the lack of
porous channels within the structure of 1, as well as the similar performance of the transformed
recovered material, we envisage that the observed catalytic activity was revealed on the surface of the
coordination polymer.

4. Conclusions

To summarize, in this work, we have continued our studies on the coordination chemistry of
pseudopeptidic ligands. We synthesized a new three-dimensional Cu(II) coordination polymer with the
tripodal trimesoyl-tris-glycine ligand. Compound 1 has a unique topological standard representation
and can be considered as the first example of a 12-fold interpenetrated ths network. Synthetic-wise,
a systematic study and comparison of all reported structures with this ligand and similar tripodal
pseudopeptidic ligands showed that the choice of the Cu(II) starting material can have a large influence
towards the self-assembly of the resulting product. Furthermore, 1 showed good catalytic activity
towards the multicomponent synthesis of propargylamines under mild conditions; it was anticipated
that the catalysis took place on the surface of the coordination polymer because of the lack of porosity.
The recovered material could be reused for at least four cycles, however, PXRD studies pointed
towards a structural change to a more favourable framework during the catalytic procedure. As such,
the catalytic activity of 1 does not appear extremely promising for further efforts. Nevertheless,
these initial results certainly demonstrate that coordination compounds with pseudopeptidic ligands
could be tested as potential catalysts in organic reactions, provided that their structural framework
remains stable. As a result of the above, our future efforts will thus focus on: (a) employing a variety of
Cu(II) sources in more pseudopeptidic ligands to further study the self-assembly effect; (b) attempting
to exploit the effect in order to get more interesting topologies; (c) identifying similar pseudopeptidic
coordination compounds with higher stability in order to study their catalytic potential.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4352/8/1/47/s1, Table S1:
Crystal data and structure refinement for 1; Figure S1: TGA graph for compound 1, Figure S2: The IR spectrum of
compound 1, Figure S3: TGA graph for the recycled catalyst, Figure S4: TGA overlay of 1 (green) and the recycled
catalyst (red), Figure S5: PXRD overlay of 1 pre- (red) and post- (black) catalysis. The simulated pattern of refcode
SIDJIZ (mauve) is included for comparison; 1H NMR of product propargylamines.
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