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Abstract: The coordination polymer, namely, [Cd(H2L)(nobda)]n (1) was prepared by
the reaction of Cd(NO3)2·4H2O with 4-amino-1,2-benzenedicarboxylic acid (H2nobda) and
1,4-di(1H-imidazol-4-yl)benzene (H2L), and characterized by single-crystal X-ray diffraction,
elemental analysis, infrared (IR) spectroscopy, thermogravimetric analysis, and powder X-ray
diffraction (PXRD). The carboxylic acid of H2nobda ligands was completely deprotonated to be
nobda2− anions, which act as tridentate ligand to connect the Cd2+ to form two-dimensional (2D)
network, while the neutral H2L ligands serve as a linear didentate bridge to connect two adjacent
Cd2+ ions upper and down the 2D layer. The adjacent 2D layers were further linked into the
three-dimensional (3D) supramolecular polymer by the weak interactions such as hydrogen bonds
and π−π stacking interactions. The ultraviolet-visible (UV-vis) absorption spectra and luminescent
properties in the solid state at room temperature have been investigated.
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1. Introduction

In the past decades, the crystalline material of coordination polymers (CPs) has become
an expanding research topic, not only due to their fascinating architectures and captivating
topologies [1–3], but also for their potent applications in the fields of luminescence [4], gas
adsorption/separation [5], chemical sensors [6], heterogeneous catalysis [7], and so on. Because
the coordination polymers are composed of the metal ion and organic ligands, that is, the nature
of metal ion and organic ligands are most important factors for constructing targeted CPs with
desired properties [8–10]. Especially, the design of organic ligands is the key factor to build CPs.
O-donor carboxylic acids are extensively employed to build diverse CPs, due to their versatile
coordination modes. For example, the Yaghi group has designed a series of carboxylic acid with
expanded and variously functionalized organic linkers, and has made a prominent contribution
for the construction of porous CPs by reticular synthesis based on metal paddle-wheel building or
infinite metal-carboxylate secondary building units (SBUs) [11,12]. Significantly, the surface area of
CPs have great values ranging from 1000 to 10,000 m2/g, which have exceeded those of traditional
porous materials, such as carbons and zeolites [11]. Moreover, CPs with functional modifications
exhibit favorable gas adsorption, which are typically selective gas adsorption properties for CO2 or
alkanes, and they can potentially alleviate the greenhouse effect or be employed as carriers to store
energy gas [13,14]. Meanwhile, polyazaheteroaromatic ligands, another series of N-donor ligands,
including the imidazole, trizole and tetrazole, are also successfully used to construct coordination
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polymers [15–17]. In our previous work, we have designed 4-imidazoly-containing ligands such as
1,3,5-tri(1H-imidazol-4-yl)benzene and,1,4-di(1H-imidazol-4-yl)benzene, and we use them to assemble
porous metal–imidzolate complexes that show excellent gas adsorption or selective adsorption for
CO2 gas [18,19]. Moreover, the polycarboxylates and N-donors ligands have different coordination
preferences owing to the N and O atoms possessing different electron configurations. Due to their
favorable compatibility for mixed polycarboxylates and N-donors ligands, we have synthesized a
number of CPs with diverse structures by the reaction of mixed 4-imidazolyl and different carboxylate
ligands, together with varied metal salts [20–22]. Taking the favorable adjustability for the mixed
4-imidazolyl and carboxylate ligands, we have chosen 1,4-di(1H-imidazol-4-yl)benzene (H2L) and
4-amino-1,2-benzenedicarboxylic acid (H2nobda) as mixed ligand, to react with Cd(NO3)2·4H2O, and
we have obtained a new Cd(II) coordination polymer [Cd(H2L)(nobda)]n (1) as an extension of our
previous work. The UV-vis absorption spectra and luminescent properties in the solid state at room
temperature have been investigated.

2. Experimental Section

2.1. Materials and Instrumentation

All the reagents were of reagent grade in this experiment. IR spectra were carried out on a
Bruker Vector 22 FT-IR spectrophotometer (Bruker, Billerica, MA, USA) using KBr pellets. Elemental
analyses were analyzed on a Perkin-Elmer 240C Elemental Analyzer (Perkin-Elmer, Waltham, MA,
USA). Power X-ray diffraction (PXRD) patterns were performed on a Shimadzu XRD-6000 X-ray
diffractometer (Shimadzu, Kyoto, Japan) with CuKα (λ = 1.5418 Å) radiation at room temperature.
Thermogravimetric analyses (TGA) were carried on a simultaneous SDT 2960 thermal analyzer
(Thermal Analysis Instrument Inc., New Castle, DE, USA). Photoluminescence spectra for the solid
samples were recorded with a HORIBA FluoroMax-4 fluorescence spectrophotometer (Horiba, Kyoto,
Japan) at room temperature. FLS920P fluorescence spectrometer (Edinburgh Instruments, Edinburgh,
UK) was adopted to measure the decay lifetimes.

2.2. Synthesis of [Cd(H2L)(nobda)]n (1)

A reaction mixture of H2L (0.021 g, 0.1 mmol), H2nobda (0.0181 g, 0.1 mmol), Cd(NO3)2·4H2O
(0.0308 g, 0.1 mmol) and NaOH (0.008 g, 0.2 mmol) in 15 mL H2O was sealed in a 25 mL Teflon-lined
stainless steel container, and heated at 120 ◦C for 48 h. Colorless block crystals of 1 were collected
with a yield of 62%. Analytically calculated (%) for C20H15CdN5O4: C, 47.87; H, 3.01; N, 13.96. Found
(%): C, 47.56; H, 2.92; N, 14.11. IR(KBr): 3341−2535(m), 1602(vs), 1549(vs), 1508(m), 1388(vs), 1302(m),
1186(m), 1168(m), 1131(s), 1061(w), 956(m), 862(s), 830(m), 790(s), 702(m), 653(m), 508(m) cm−1.

2.3. Crystal Structure Determination

The single crystal data of [Cd(H2L)(nobda)]n (1) was collected on a Bruker Smart APEX CCD
diffractometer (Bruker, Billerica, MA, USA) The structure was solved by a direct method, and refined
by full-matrix least squares on F2 using the SHELX-97 program [23]. The crystallographic data is listed
in Table 1.
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Table 1. Crystallographic data and structure refinement for 1.

Empirical Formula C20H15CdN5O4

Formula weight 501.77
Temperature/K 296(2)
Crystal system Monoclinic

Space group C2/c
a/Å 19.587(5)
b/Å 13.514(3)
c/Å 15.459(4)
α/◦ 90
β/◦ 118.297(3)
γ/◦ 90

Volume/Å3 3602.8(16)
Z 8

ρcalcmg/mm3 1.850
µ/mm−1 1.254

S 1.008
F(000) 2000

Index ranges
−24 ≤ h ≤ 24,
−16 ≤ k ≤ 16,
−19 ≤ l ≤ 19

Reflections collected 13368
Independent reflections 3731

Data/restraints/parameters 3731/0/271
Goodness-of-fit on F2 1.008

Final R indexes [I ≥ 2σ(I)] R1 = 0.0393, wR2 = 0.1165
Final R indexes [all data] R1 = 0.0583, wR2 = 0.1342

Largest diff. peak/hole/e Å−3 0.938/−0.685

Crystallographic data for the structure has been deposited with the Cambridge Crystallographic Data Centre No.
CCDC 1864626 for 1.

3. Results and Discussion

3.1. Structural Description of [Cd(H2L)(nobda)]n (1)

The result of X-ray diffraction analysis revealed that [Cd(H2L)(nobda)]n (1) crystallizes in
monoclinic C2/c space group. The asymmetric unit of 1 consists of one crystallographically
independent Cd(II) atom, one H2L ligand, and one completely deprotonated nobda2−. As shown
in Figure 1, the Cd1 had a distorted octahedral coordination geometry with N3O3 binding set, in
which the equatorial plane contains N4B and O3A from two distinct H2L and nobda2− ligands
respectively, and a pair of O1, O2 atoms from one chelating carboxylate group of nobda2− ligand. The
atoms N1 and N5C from two distinct H2L ligands occupy the axial positions with an N1–Cd1–N5C
angle of 159.79(15)◦ (Table 2). The Cd–N distances are 2.264(4), 2.274(4), and 2.443(4) Å while the
Cd–O distance is 2.340(3), 2.364(3), 2.424(4) Å, and the coordination angles around Cd(1) are in the
range of 54.72(12)◦~159.79(15)◦ (Table 2). In this complex, two carboxyl groups from nobda2− adopt
µ1-η1:η1-chelating and µ1-η1:η0-monodentate coordination modes to coordinate with two Cd(II) atoms,
while the amino from nobda2− ligand also participate in coordination with another Cd(II) atom in this
context; each nobda2− ligand acts as a µ3-bridge to link the three Cd(II) atoms. Two such carboxylate
groups from different nobda2− ligands bridge two Cd(II) atoms to give a binuclear [Cd2(COO)2] motif,
with a Cd···Cd distance of 6.14 Å. Each Cd2(COO)2 binuclear unit acts as a 4-connected node to link
other four identical motifs without considering the connection from H2L ligands. In this connection
mode, the Cd(II) atoms are linked by nobda2− ligands to form a two-dimensional (2D) Cd(II)(nobda)2−

layer structure with (4, 4) topology (Figure 2), where the [Cd2(COO)2] motif is considered as a
4-connected node. The linear H2L ligands employ two-connector linkers to connect adjacent Cd(II)
atoms of the same 2D layer, forming the Cd(II)(H2L)(nobda)2− layer structure (Figure 3), which
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expands the 4-connected node of [Cd2(COO)2] motif into a 6-connected node (Figure 4). According
to the simplification principle, the resulting 2D layer structure of 1 can be considered as a uninodal
6-connected net with a Schläfli symbol (33·410·5·6) by taking the Cd2(COO)2 binuclear motifs as
network nodes and the H2L and nobda2− ligands as 2-connected linkers (Figure 4) [24]. Particularly, the
carboxyl group can easily act as a hydrogen bonding acceptor, while the NH or N atom of the imidazolyl
groups act as hydrogen bonding donors, and their interaction can easily benefit the construction of
coordination polymers. As a result, the structure built from the mixed ligands exists rich hydrogen
bonding interaction, and the C−H···O and N−H···O (C(12)···O(2) 3.406(7) Å, C(12)–H(12)···O(2)
166◦; N(3)···O(3) 2.806(6) Å, N(3)–H(3)···O(3) 142◦; N(2)···O(4) 2.816(6) Å, N(2)–H(2A)···O(4) 169◦)
hydrogen bond exist between the 2D layers (Table 3). In addition to the hydrogen bond interaction,
the π−π weak stacking interactions also exist between neighboring 2D structures. It could be found
that the imidazole rings of H2L ligands from the neighboring 2D layers are parallel, showing the π−π
stacking interactions with the centroid−centroid distance of 3.57 Å [25]. In this context, the weak
interactions including the π−π stacking and hydrogen bonding interactions extend 2D structure into a
three-dimensional (3D) coordination polymer (Figure 5).
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Table 2. Selected bond lengths (Å) and bond angles (◦) for 1.

Bond d Bond d

Cd(1)–N(1) 2.264(4) Cd(1)–N(4) i 2.274(4)
Cd(1)–O(3) ii 2.340(3) Cd(1)–O(1) 2.364(3)
Cd(1)–O(2) 2.424(4) Cd(1)–N(5) iii 2.443(4)

Angle ω Angle ω

N(1)–Cd(1)–N(4) i 100.72(15) N(1)–Cd(1)–O(3) ii 81.50(13)
N(4) i–Cd(1)–O(3) ii 112.25(15) N(1)–Cd(1)–O(1) 93.06(14)
N(4) i–Cd(1)–O(1) 148.56(15) O(3) ii–Cd(1)–O(1) 97.58(12)
N(1)–Cd(1)–O(2) 98.50(15) N(4) i–Cd(1)–O(2) 95.05(15)

O(3) ii–Cd(1)–O(2) 152.30(11) O(1)–Cd(1)–O(2) 54.72(12)
N(1)–Cd(1)–N(5) iii 159.79(15) N(4) i–Cd(1)–N(5) iii 93.36(15)

O(3) ii–Cd(1)–N(5) iii 79.77(13) O(1)–Cd(1)–N(5) iii 82.00(14)
O(2)–Cd(1)–N(5) iii 94.59(14)

Symmetry codes: i x, y + 1, z; ii –x + 1/2, −y + 1/2, −z; iii x, −y + 1, z − 1/2.

Table 3. Hydrogen bond lengths (Å) and bond angles (◦) for 1.

D–H···A d(D–H) d(H···A) d(D···A) ∠∠∠DHA

N(2)–H(2A)···O(4) a 0.8600 1.9700 2.816(6) 169.00
N(3)–H(3)···O(3) b 0.8600 2.0800 2.806(6) 142.00

N(5)–H(5B)···O(4) c 0.9000 2.0900 2.830(5) 138.00
C(11)–H(11)···O(1) d 0.9300 2.4200 3.351(8) 174.00
C(12)–H(12)···O(2) a 0.9300 2.5000 3.406(7) 166.00
C(13)–H(13)···O(3) c 0.9300 2.4800 3.277(5) 144.00

Symmetry codes: a 1 − x, y, 1/2 − z; b 1/2 + x, −1/2 + y, z; c 1/2 − x, 1/2 + y, 1/2 − z; d 1/2 − x, 1/2 − y, −z.

3.2. Thermal Analysis and Powder X-ray Diffraction Analysis

The thermal stability of the framework was investigated by thermogravimetric analysis (TGA) in
the N2 atmosphere from 20–700 ◦C. As shown in Figure 6, no weight losses were observed for complex
1, until the framework collapse at about 380 ◦C, which was well consistent with the crystal structural
composition of 1. The phase purity of the bulk sample of 1 can be confirmed by the powder XRD
experiment. As shown from Figure 7, the phase purity of the sample could be proven because the
experimental pattern of the as-synthesized sample was consistent with the simulated one.
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3.3. Diffuse Reflectance Spectra

The solid state optical diffuse reflection spectra at room temperature were investigated for
complex 1 (Figure 8). The compound showed absorption peaks at 305 nm, which is attributable to the
π→ π* transition of the conjugated organic ligand [26]. In order to study the semiconductivity of
the complexes, the diffuse reflectance data were measured and transformed into a Kubelka–Munk
function to obtain their band gaps (Eg). The band gap Eg of compound 1 can be determined based on
the theory of optical absorption for the direct band gap semiconductor: (Ahν)2 = B(hν − Eg), where
B is a constant corresponding to the material itself [26]. As shown in Figure 9, the optical band gap
of complex 1 obtained by extrapolation of the linear portion of the diffuse reflectance spectra are
estimated as approximately 3.12 eV, which exhibits the nature of semiconductivity, indicating that the
compound is optical semiconductor [27].
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3.4. Photoluminescent Property

Luminescent CPs, especially consisting of the d10 closed-shell metal center and π-conjugated
organic ligand system, have been proved to have the ability to adjust the emission because of their
interaction between metal and ligands [28,29]. Therefore, we carry out the solid-state photoluminescent
property of complex 1, and the organic ligands are depicted in Figure 10. The complex 1 shows strong
broad photoluminescence emission at 435 nm upon excitation at 359 nm. The intense emission band
at 455 nm was observed for a free H2L ligand upon excitation at 342 nm, which may be ascribed to
π*→ π transition because the conjugative effect of H2L ligand [30]. However, the H2nobda ligand
shows weak emission maxima at 420 nm upon excitation at 338 nm, much lower than that of the
π-conjugated H2L ligand, because the fluorescent emission of the π*→ n transition resulting from
benzene-dicarboxylate ligands could nearly be neglected in comparison with that arising from the
π*→ π transition of the π-conjugated H2L ligand. Therefore, benzene-carboxylate ligands made almost
no contribution to the fluorescent emission of supermolecular polymer [31,32]. In this compound,
the emission bands of complex 1 is 20 nm blue-shifted, and it shows intensive emission in comparison
to the free H2L ligand (Figure 11), which may be the intraligand fluorescence, since the free ligand
exhibited a similar emission under the same condition [33,34].
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Furthermore, we carried out the study of the corresponding quantum yield (QY) and decay
lifetimes for complex 1. The QY value of compound 1 is 0.86% (Figure 12). In addition, the luminescence
lifetime of complex 1 is 81.25 ns (Figure 13), that luminescence decay curves was fitted by exponential
function as I(t) = A exp(−t/τ). Therefore, the emissions of 1 should arise from a singlet state, because
the luminescence lifetime is much shorter than the ones resulting from a triplet state (>10−3 s) [35].Crystals 2018, 8, x FOR PEER REVIEW 9 of 11 
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4. Conclusions

In summary, a new coordination polymer [Cd(H2L)(nobda)]n has been successfully synthesized by
the reaction of the mixed N-donor imidazole and O-donor carboxylate ligands with Cd(NO3)2·4H2O.
The carboxy groups from H2nobda were completely deprotonated to nobda2− anions, linking the
Cd(II) atoms into an infinite 2D layer structure. Furthermore, classic weak hydrogen bond and π−π
stacking interactions further connected the adjacent 2D layers, forming a 3D supermolecular structure.
Compound 1 exhibits an emission band at 435 nm upon excitation at 359 nm. Moreover, the study of
the corresponding quantum yield and decay lifetimes of 1 were also performed.
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