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Abstract: In this paper, we report on the synthesis, crystal structure, and photomagnetic
properties of the spin-crossover salt of formula [Fe(bpp)2](C6H4NO2)2·4H2O (1·4H2O)
(bpp = 2,6-bis(pyrazol-3-yl)pyridine; C6H4NO2

− = nicotinate anion). This compound exhibits a
3D supramolecular architecture built from hydrogen bonds between iron(II) complexes, nicotinate
anions, and water molecules. As synthesized, the hydrated material is low-spin and desolvation
triggers a low-spin (LS) to high-spin (HS) transformation. Anhydrous phase 1 undergoes a partial
spin crossover (T1/2= 281 K) and a LS to HS photomagnetic conversion with a T(LIESST) value
of 56 K.
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1. Introduction

Switching magnetic materials represent a prominent avenue for the construction of
multifunctional materials with several applications in different fields, such as chemical and pressure
sensing [1], data storage [2], and spintronics [3,4]. The most studied spin-crossover (SCO) centres are
based on iron(II) complexes that exhibit labile electronic configurations switchable between 1A1

low-spin (LS; S = 0) and 5T2 high-spin (HS; S = 2) states as a consequence of a given external
perturbation, such as light irradiation, variation of temperature and/or pressure [5–11]. The response
to these external stimuli leads to different changes in magnetism, colour, and structure. In particular,
important variations of the Fe−N metal−ligand bond lengths (0.1–0.2 Å) and N−Fe−N angles (0.5–8◦)
are observed upon spin crossover [12]. Depending on the cooperativity of the system, the spin
transition may be abrupt with hysteretic behaviour (memory effect) and with drastic changes in optical
and magnetic properties. The appearance of hysteresis and thus cooperativity in a solid system can
be achieved when the geometrical distortion is propagated to the whole framework, providing the
material with a bistable character.

Therefore, under the same conditions, a bistable system can be localized either in the LS or in
the HS state and the possibility of finding a specific state depends on the history of the material.
This is a desirable situation for the development of technological applications such as quantum
logic operators or components in memory storage devices, mainly when the effects proceed at room
temperature [13–17]. In order to achieve high levels of cooperativity, various synthetic strategies have
been developed [18]. One way consists in the use of rigid bridging ligands as connectors between
the Fe2+ cations; this strategy has yielded a wide range of 1-3D SCO coordination polymers [19–22].
Another type of communication between the coordination centres is provided by hydrogen bonding,
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which is likely to be responsible for the dependence of magnetic properties on the extent of solvation
observed in many compounds [23,24].

In this context, the family of bis-chelated iron(II) complexes with the formula [Fe(bpp)2]X2

(bpp being the tridentate ligand 2,6-bis(pyrazol-3-yl)pyridine, Chart 1) is very interesting. In these
spin-crossover salts with pseudo C2v symmetry, the imine N atom coordinates to the Fe2+ cation and
the non-coordinating NH groups allow for interaction through hydrogen bonding between the bpp
ligands and anions or solvate molecules present in the lattice. The paramount role of the hydrogen
bonds on the SCO features is largely documented in molecular compounds [25,26] and has been
extensively studied in these salts [27].
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Chart 1. Structures of bpp and nicotinate anion.

In addition, these compounds are attractive due to the fact that the desolvated material usually
exhibits very abrupt transitions and presents light-induced excited spin-state trapping (LIESST)
effects [28], with long-lived lifetimes of the photoinduced metastable phases [29–31].

In a recent report, we introduced a rational design of SCO materials exhibiting ferroelectricity [32].
This is based on the use of hydrogen bonds in the assembly of the [Fe(bpp)2]2+ complexes
with isonicotinate anions. From the point of view of the connectivity of the lattice, the iron(II)
complex acts as a 4-fold pseudotetrahedral H-bond donor, whereas the isonicotinate anion acts as a
non-centrosymmetric H-bond acceptor. This necessarily yields a non-centrosymmetric diamondoid
lattice. In the present work, the isonicotinate anion has been replaced with the nicotinate anion
(nic = 3-pyridinecarboxylate, Chart 1) in order to study the effect of the position of the nitrogen atom
on the properties of the resulting material. Herein, we report on the synthesis, crystal structure,
and photomagnetic properties of the title compound, [Fe(bpp)2](nic)2·4H2O (1·4H2O).

2. Materials and Methods

2.1. Physical Measurements

Magnetic susceptibility measurements were performed on polycrystalline samples using a
magnetometer (Quantum Design MPMS-XL-5, San Diego, CA, USA) equipped with a SQUID
(Superconducting Quantum Interference Device) sensor. Variable temperature measurements were
carried out in the temperature range 2-400 K in a magnetic field of 0.1 T. The temperature sweeping
rates were as follows: 1 K·min−1 (2–20 K), 2.25 K·min−1 (20–200 K), and 1.25 K·min−1 (200–400 K).
A dehydrated sample of 1 was obtained in situ by maintaining the sample in the SQUID at 400K for
1 h (until a constant magnetic signal was obtained) and on plastic capsules perforated in order to
favour solvent loss. For photomagnetic measurements, the sample was prepared in a thin layer to
promote full light penetration. First, the sample was dehydrated in situ in the SQUID device at 400 K
for 1 h. After slow cooling to 10 K, the sample was irradiated with green light (λ = 532.06 nm) and
the magnetization was measured. When the saturation point was reached, the laser was switched off
and the temperature increased at a rate of 0.3 K min−1 to determine the T(LIESST) value given by the
minimum of the δ(χT)/δT versus T curve for the relaxation process.

Thermogravimetric (TG) measurements of Ag(C6H4NO2) were carried out under O2 atmosphere
in a Setsys TGA-ATD16/8 apparatus (Setaram Instrumentation, Caluire, France) the 298–1000 K
temperature range at a scan rate of 10 K min−1. TG analysis of 1·4H2O was performed in a
TGA/SDTA/851e apparatus (Mettler Toledo, Columbus, OH, USA) under N2 atmosphere in the
298–973 K range at a scan rate of 10 K min−1.
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Differential scanning calorimetry (DSC) measurements under nitrogen atmosphere were
performed in a DSC 821e apparatus (Mettler Toledo, OH, USA) ith warming and cooling rates equal to
10 K·min−1. A correction from the sample holder was automatically applied.

Infrared (IR) transmission measurements of potassium bromide pellets were recorded at room
temperature with a Nicolet Avatar 320 FT-IR spectrophotometer (Thermo Electron, Waltham, MA,
USA) in the range 4000–400 cm−1. CHN elemental analyses were carried out in a EA 1110 CHNS
analyser (CE Instruments, Wigan, United Kingdom).

Powder X-ray diffraction measurements were collected using Cu Kα radiation (λ = 1.54056 Å)
at room temperature in a 2θ range from 2 to 40◦. A polycristalline sample of 1·4H2O was lightly
ground in an agate mortar and filled into a 0.5 mm borosilicate capillary prior to being mounted and
aligned on an Empyrean powder diffractometer (Pananalytical, Cambridge, United Kingdom) The
simulated diffractogram was obtained from single crystal X-ray data using the CrystalDiffract software
(CrystalMaker Software Ltd., Begbroke, United Kingdom).

2.2. Synthesis

Ligand bpp was prepared using the previously published procedure [33]. All other reagents and
solvents were purchased from commercial sources, with no further purification being undertaken.

Ag(C6H4NO2)

A suspension of nicotinic acid (1.230 g, 10 mmol) in 25 ml of a mixture 3:2 EtOH/H2O was
treated with a suspension of silver carbonate (1.371 g, 5 mmol) in 25 ml H2O. Then, the mixture was
refluxed for 3 h and 30 min until CO2 ceased to evolve. There was a change in the colour of the
solid from yellow-brown to white. The product was collected using filtration and washed with water
and acetone to yield 1.988 g (87 %) of the desired compound. We found: C, 30.58; H, 1.80; N, 6.01.
C6H4AgNO2 requires C, 31.33; H, 1.75; N, 6.09 (the sample contained some humidity, equivalent to
0.25 H2O molecules per formula). Thermogravimetric analysis (Figure S1) confirmed the anhydrous
character of this salt. νmax/cm−1: 3400.4, 3042.9, 1593.9, 1549.3, 1387.4, 1196.0, 1088.4, 1022.2, 840.4,
758.4, 704.3, 511.2.

[Fe(bpp)2](C6H4NO2)2·4H2O (1·4H2O)

FeCl2·4H2O (0.0994 g, 0.5 mmol) was added as a solid to a degassed solution of bpp (0.212 g,
1.0 mmol) in 20 ml of a mixture 4:1 MeOH/H2O. A deep red colour appeared. After complete
dissolution of the iron reagent, a mixture of Ag(C6H4NO2) (230 mg, 1 mmol) in 20 ml H2O was added.
After stirring for 1 h at 65 ◦C, the yellowish precipitate of AgCl was filtered through a low-porosity frit.
The filtrate was left undisturbed. Red prisms suitable for X-ray analysis appeared after a few days,
yielding 246.3 mg (62%). We found: C, 51.63; H, 4.13; N, 21.83. C34H34FeN12O8 requires C, 51.40; H,
4.31; N, 21.15 (the sample was partially dehydrated, losing 0.55 H2O molecules per formula prior to
analysis). νmax/cm−1: 3422.8, 1601.0, 1560.3, 1438.4, 1385.0, 1281.1, 1234.5, 1146.1, 1094.1, 1028.3, 897.0,
831.3, 756.8, 697.9, 619.8.

2.3. X-ray Crystallography

A suitable crystal of 1·4H2O was coated with Paratone N oil, suspended on a small fiber loop,
and placed in a stream of cold nitrogen (120 K) on an Oxford Diffraction Supernova diffractometer
equipped with a graphite-monochromated Enhance Mo X-Ray Source (λ = 0.71073 Å). The data
collection routines, unit cell refinements, and data processing were carried out using the CrysAlisPro
v38.46 software package (Rigaku, The Woodlands, TX, USA). The structure was solved using the
SHELX package [34]. The asymmetric unit of 1·4H2O contains one [Fe(bpp)2]2+ cation, two nicotinate
anions, and four water molecules, all in general positions. H atoms bonded to carbon atoms were
included at calculated positions and refined with a rigid model. H atoms of bpp amino groups were all
found in Fourier difference maps and refined positionally with the geometrical restraint N–H = 0.89 Å.
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Moreover, all H atoms on water molecules were found in difference maps and refined using geometrical
restraints (O–H = 0.82 Å and H···H = 1.30 Å). The chemical formula of this compound includes the total
number of hydrogen atoms and all non-hydrogen atoms were refined anisotropically. CCDC1832023
contain the supplementary crystallographic data for 1·4H2O at 120 K. These data were provided free
of charge by the Cambridge Crystallographic Data Centre.

3. Results

3.1. Synthesis and Thermal Properties

In order to avoid the inclusion of undesired counterions in the spin-crossover network, it is
necessary to obtain a solution without any other hydrogen-bond acceptors that could be in competition
with the nicotinate anions. To achieve this goal, it has been shown that the use of a metathesis reaction
gives excellent results [32,35–37]. Based on this, we performed a metathesis reaction of silver nicotinate
with [Fe(bpp)2]Cl2 that resulted in the precipitation of AgCl, yielding a solution free from the undesired
chloride anions.

TG analysis of 1·4H2O under nitrogen atmosphere (Figure S2) was performed in order to
determine at which temperature the dehydration of the sample starts and the temperature range of the
stability of the compound. This will determine the most suitable thermal conditions for magnetism
experiments. The first loss of water molecules takes place at 327 K with a weight decrease of 6.3 %,
which is related to the loss of about three water molecules per iron cation. The fourth water molecule
comes off at temperatures near the thermal decomposition of the sample (2.2%, in the 443–493 K
temperature range). These results show a good agreement with the formulation determined from the
X-ray crystal structure experiment and elemental analysis. The fact that the loss of water molecules
takes place in two separate steps indicates the existence of different types of water molecules in the
crystal structure.

The DSC measurement (Figure S3) is in accordance with the thermogravimetric data. The as
synthesized material does not show any feature upon cooling down to 133 K (black line). In the
first heating process (curve 1), there is a very intense endothermic peak around 334 K that fits in the
temperature range where the loss of three water molecules is observed. Therefore, this endothermic
peak has been associated with the dehydration of the sample. The subsequent cooling plot (curve
2) shows a broad feature between 373 and 323 K and three very week exothermic peaks at 282, 262,
and 218 K. The intensities ascribed to these peaks are very low, meaning that this might be either a
result of a partial spin-crossover process and/or evidence of a phase transition. The second heating
process (curve 3) presents three endothermic peaks centred at 229, 264, and 289 K, indicating that these
processes are reversible and proceed with thermal hysteresis. Values of enthalpy and entropy changes
associated with them are gathered in Table S1. Summing up the contributions of the three peaks gives
a total enthalpy change ∆H = 4.8 KJ·mol−1 and entropy change ∆S = 20.6 J·K−1·mol−1 (average values
obtained from the cooling and warming curves). These parameters are weak but lie within the range
expected for spin crossover.

3.2. Structural Description

1·4H2O crystallizes in the non-centrosymmetric and polar Pc monoclinic space group (Table 1).
The crystal structure contains only one crystallographically independent (Figure 1) Fe(II) centre, Fe1,
and two inequivalent anions in the structure. The independent Fe2+ site is located in a general position
and is bound to two bpp tridentate ligands in mutual perpendicular orientations. Therefore, the iron(II)
coordination environment is the well-known octahedral FeN6 with the highest possible D2d local
symmetry of the [Fe(bpp)2]2+ cations. The Fe-N(pyridine) bond distances (mean value ≈ 1.9264(25))
are slightly shorter than those corresponding to the Fe–N(pyrazole) bonds (mean value ≈ 1.964(8)).
In any case, the Fe–N bond distances are lower than 2.0 Å, thus revealing a low-spin ground state for
the Fe2+ cation, which is the expected stable spin state observed in similar hydrated compounds [37–39].
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With respect to the second iron coordination sphere, each [Fe(bpp)2]2+ complex is hydrogen-bonded to
only two nicotinate anions and two water molecules. The N atoms of the isonicotinate anion do not
establish interactions with the bpp ligand and are hydrogen-bonded to crystallization water molecules
present in the network.

Table 1. Summary of crystal data.

Compound 1·4H2O

Formula C34H34FeN12O8
Formula weight 794.58
Crystal system Monoclinic

Space group Pc
a/Å 8.17633(10)
b/Å 8.15854(9)
c/Å 26.9671(3)
α/◦ -
β/◦ 92.0138(10)
γ/◦ -

V/Å3 1797.78(4)
Z 2

T/K 120(2)
ρcalcd/g·cm−3 1.468

λ/Å 0.71073
θ-range/◦ 2.870–29.963

No. of rflns. collected 84313
No. of indep. rflns./Rint 9867/0.0635
Restraints/parameters 18/532

R1/wR2 (I > 2σ(I)) 1 0.0324/0.0664
R1/wR2 (all data) 1 0.0398/0.0711

∆ρmax and ∆ρmin /e·Å−3 0.265/−0.395
Absolute structure parameter −0.016(5)

1 R1 = Σ(Fo − Fc)/Σ(Fo); wR2 = [Σw(Fo
2 − Fc

2)2/Σw(Fo
2)2]1/2.Crystals 2018, 8, x  5 of 13 
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Figure 1. Thermal ellipsoid plot of the crystal structure of 1·4H2O showing the [Fe(bpp)2]2+ complex,
the two crystallographically independent nicotinate anions, and the two water molecules present in
the second coordination sphere of the iron site. Dashed lines refer to H bonds. Thermal ellipsoids are
drawn at a 50% probability level. H atoms are not shown.
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The crystal structure is best described as a packing of layers of [Fe(bpp)2]2+ cations and
nicotinate anions that alternate along the c axis (Figure 2). These cationic and anionic layers are
held together thanks to the existence of hydrogen bonds, either directly or involving water molecules
of crystallization.Crystals 2018, 8, x  6 of 13 
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Figure 2. A view of the crystal structure of 1·4H2O along the a axis, showing the alternation of
[Fe(bpp)2]2+ cationic layers and nicotinate anionic layers. The iron complexes are illustrated in red
whereas the two independent nicotinate anions are depicted in orange and green. The dashed lines
refer to hydrogen bonds. Only the H atoms of water molecules are shown.

The nicotinate anions and water molecules occupy the space between the [Fe(bpp)2]2+ cationic
layers. A view parallel to the sheets (Figure 2) shows the two independent nicotinate anions depicted
in different colours. The first one (illustrated in orange in Figure 2) is hydrogen-bonded to three
water molecules (O1W, O2W and O3W) and one [Fe(bpp)2]2+ cation (N5). The other nicotinate anion
(depicted in green) is also hydrogen-bonded to three water molecules (O1W, O2W and O4W) and
one [Fe(bpp)2]2+ cation (N10). Therefore, the common feature is that they are connected to only one
Fe2+ centre using one oxygen atom that is simultaneously hydrogen-bonded to one water molecule,
the other oxygen atom and the nitrogen of the pyridine unit being engaged in hydrogen bonding
with additional water molecules. Both anions alternate in the interlayer space along the y direction.
Relevant hydrogen-bonding parameters are gathered in Table S2.

The cationic layers exhibit the typical pseudotetragonal terpyridine embrace motif, in which each
[Fe(bpp)2]2+ cation interacts with four neighbouring iron units via π-π stacking interactions (Figure 3).
Equivalent bpp ligands form stacks along the a and b axes with the shortest distances between adjacent
pyrazolyl mean planes equal to 3.256(3) Å (C11···N1) and 3.284(3) Å (C22···N6), respectively. Across
the third direction, the iron complexes of consecutive layers are twisted with respect to each other and
shifted along the y direction, resulting in an alternated packing of the type AA’AA’.

A projection of the crystal packing onto the ab plane (Figure 4) shows the presence of two different
types of water molecules: the ones that form the layers through direct hydrogen bonds with the bpp
ligands (O3W and O4W), and the ones that fill the voids within the layers (O1W and O2W).
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Powder X-ray diffraction (PXRD) experiments have been performed and Figure 5 shows the
comparison between the X-ray diffractogram measured at room temperature of the bulk sample and
the simulated diffractogram from the single crystal data recorded at 120 K. It can be seen that there
is a good agreement between both patterns, discarding the presence of impurities and excluding the
existence of a phase transition between 120 K and room temperature.

Temperature-dependent PXRD data (Figure S4) show that the sample maintained the same
diffraction pattern upon heating from 298 K to 353 K, where at least three H2O molecules were
lost. Instead, heating up to 400 K resulted in amorphization. We attribute this change to complete
dehydration (loss of the fourth water molecule). The discrepancy between this behaviour and the
thermogravimetric data comes from the fact that TGA is performed at a high-temperature sweeping
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rate, whereas PXRD is done in static conditions. We also used PXRD to check the integrity of the
sample after dehydration. For that purpose, a sample of 1·4H2O was placed in a Schlenk tube and
heated under vacuum at 400 K for 2 h. Then, the sample was allowed to rehydrate. An identical
diffractogram to the one recorded for the original sample was obtained (Figure S5), even after another
dehydration-rehydration cycle, confirming both the integrity of the sample and the reversibility of the
dehydration process.

Crystals 2018, 8, x  8 of 13 

 

 
Figure 5. Comparison of the powder diffractogram of 1·4H2O (in red) with the simulation obtained 
from single crystal data (in black). 

Temperature-dependent PXRD data (Figure S4) show that the sample maintained the same 
diffraction pattern upon heating from 298 K to 353 K, where at least three H2O molecules were lost. 
Instead, heating up to 400 K resulted in amorphization. We attribute this change to complete 
dehydration (loss of the fourth water molecule). The discrepancy between this behaviour and the 
thermogravimetric data comes from the fact that TGA is performed at a high-temperature sweeping 
rate, whereas PXRD is done in static conditions. We also used PXRD to check the integrity of the 
sample after dehydration. For that purpose, a sample of 1·4H2O was placed in a Schlenk tube and 
heated under vacuum at 400 K for 2 h. Then, the sample was allowed to rehydrate. An identical 
diffractogram to the one recorded for the original sample was obtained (Figure S5), even after another 
dehydration-rehydration cycle, confirming both the integrity of the sample and the reversibility of 
the dehydration process. 

3.3. Magnetic Properties 

The temperature dependence of the χT product (χ = molar magnetic susceptibility; T = absolute 
temperature) is shown in Figure 6. At low temperatures, the sample is diamagnetic, as expected for 
a low-spin ground state for this Fe(II) complex. Above room temperature, χT increases continuously 
on heating up to 400 K, where it equals 3.21 emu·K·mol–1. This value is the one expected for a high-
spin Fe2+ cation per formula (≥ 3.0 emu·K·mol–1), indicating a complete spin crossover triggered by 
the dehydration of the sample. Upon cooling, χT decreases continuously and reaches a critical point 
at 283 K (corresponding to the first transition seen in DSC, cooling mode), where χT = 2.21 emu·K·mol–

1 (fraction of high-spin centres γHS ≈ 2/3). Then, it decreases more abruptly until T = 273 K, and then 
smoothly to reach a plateau below 83 K, where χT = 0.41 emu·K·mol–1 (fraction of high-spin centres 
γHS ≈ 1/8). Below 15 K, χT decreases sharply due to zero-field splitting effects. 

The second heating curve matches the cooling plot until 245 K, when a hysteresis loop opens 
(ΔT ≈ 30 K). The hysteretic behaviour disappears above a critical point located at 307 K, where the 
cooling and heating curves merge and both reach practically a saturation value corresponding to a 
100% HS material. The width of the thermal hysteresis loop is highly dependent on the thermal 
treatment at 400 K. If this annealing is avoided, a very similar χT = f(T) plot is obtained (showing two 
discontinuities around 280 K and 290 K, and a limiting low-temperature value corresponding to γHS 
≈ 1/8), but now the hysteresis disappears. It is thus important to ensure the complete dehydration and 
thermal annealing of the sample to obtain reproducible results. 

Figure 5. Comparison of the powder diffractogram of 1·4H2O (in red) with the simulation obtained
from single crystal data (in black).

3.3. Magnetic Properties

The temperature dependence of the χT product (χ = molar magnetic susceptibility; T = absolute
temperature) is shown in Figure 6. At low temperatures, the sample is diamagnetic, as expected for a
low-spin ground state for this Fe(II) complex. Above room temperature, χT increases continuously on
heating up to 400 K, where it equals 3.21 emu·K·mol−1. This value is the one expected for a high-spin
Fe2+ cation per formula (≥3.0 emu·K·mol−1), indicating a complete spin crossover triggered by the
dehydration of the sample. Upon cooling, χT decreases continuously and reaches a critical point at
283 K (corresponding to the first transition seen in DSC, cooling mode), where χT = 2.21 emu·K·mol−1

(fraction of high-spin centres γHS ≈ 2/3). Then, it decreases more abruptly until T = 273 K, and then
smoothly to reach a plateau below 83 K, where χT = 0.41 emu·K·mol−1 (fraction of high-spin centres
γHS ≈ 1/8). Below 15 K, χT decreases sharply due to zero-field splitting effects.

The second heating curve matches the cooling plot until 245 K, when a hysteresis loop opens
(∆T ≈ 30 K). The hysteretic behaviour disappears above a critical point located at 307 K, where the
cooling and heating curves merge and both reach practically a saturation value corresponding to
a 100% HS material. The width of the thermal hysteresis loop is highly dependent on the thermal
treatment at 400 K. If this annealing is avoided, a very similar χT = f (T) plot is obtained (showing
two discontinuities around 280 K and 290 K, and a limiting low-temperature value corresponding to
γHS ≈ 1/8), but now the hysteresis disappears. It is thus important to ensure the complete dehydration
and thermal annealing of the sample to obtain reproducible results.
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3.4. Photomagnetic Studies

Figure 7 shows the results of the photomagnetic experiments recorded using a SQUID
magnetometer. Before irradiation, the sample was dehydrated in situ in the SQUID device at 400 K
for 1 h. Then, at 10 K, the LS sample (initially with almost all the iron centres in their LS states) was
irradiated using green laser light (λ = 532.06 nm, no photomagnetic response was observed under red
light). There was an abrupt increase in magnetic susceptibility, which reached saturation at a value of ca.
2 emu·K·mol−1, indicating approximately a 2/3 conversion of the iron sites to the metastable HS state.
The fraction of iron sites that is reluctant to photoexcitation corresponds to the fraction of HS centres
undergoing SCO at high temperatures (higher than room temperature). The light was then turned
off and the sample warmed in the dark at a heating rate of 0.3 K/min, according to the standardised
T(LIESST) procedure [28]. The compound remains in its trapped HS state until T(LIESST) = 56 K
(calculated as the minimum of the derivative δ(χT)/δT). At higher temperatures, complete relaxation
of the metastable HS content is seen and χT reaches a minimum value of 0.5 emu·K·mol−1, close to
the residual fraction of HS centres (1/8) measured before irradiation.

A database containing more than sixty iron(II) spin-crossover materials with nitrogen-donor
ligands [28,40] made it possible to establish empirical correlations between T(LIESST) and the
thermal spin transition temperature, T1/2. Based on these data, it has been shown that the following
linear expression:

T(LIESST) = T0 − 0.3T1/2 (1)

governs the photomagnetic properties of most of these compounds, where T0 is an empirical
parameter that depends mainly on the distortion of the octahedral coordination sphere (for [Fe(bpp)2]2+

complexes: T0 = 150 K) [28].
Considering that T1/2 = 281 K (the average value between T↑1/2 and T↓1/2), Equation 1 yields

T(LIESST) = 66 K, which is in rough agreement with the experimental value.



Crystals 2018, 8, 439 10 of 13
Crystals 2018, 8, x  10 of 13 

 

 
Figure 7. Photomagnetic properties of 1. Curve 1 (green): Irradiation at 10 K. Curve 2 (orange): 
Thermal variation of χT upon heating at a scan rate of 0.3 K·min–1. The inset shows the first derivative 
plot of the T(LIESST) curve. 

4. Conclusions 

In this paper, we have described the synthesis, structure, and magnetic properties of a new 
hydrogen-bonded network that contains [Fe(bpp)2]2+ cations and nicotinate anions. It is tempting to 
compare 1·4H2O with the previously reported [Fe(bpp)2](isonic)2·2H2O [32]. In this compound, thanks 
to the linearity of the isonicotinate anion, robust hydrogen bonds can be established between the bpp 
ligands and the isonicotinate anions occupying the four available positions in the second iron 
coordination sphere. This provides a strong directionality and allows for the prediction of the 
connectivity of the resulting structure. Nevertheless, in the case of compound 1·4H2O, the angular 
character of the nicotinate anion makes the formation of these interactions more difficult, allowing 
for the presence of water molecules in the second iron coordination sphere. Another possible reason 
for the different behaviour of these similar salts could be the slightly different basicities of the 
nicotinate (pK = 4.77) and isonicotinate (pK = 4.90) anions, the latter being a stronger N-donor [41]. In 
any case, the final result is that π-π stacking interactions are predominant and the terpyridine embrace 
motif is stabilized. 

Differential scanning calorimetry analysis and magnetic characterization of compound 1·4H2O 
show a conversion from the LS state to the HS state after the loss of water molecules. The anhydrous 
material obtained exhibits spin crossover with relatively high cooperativity and with an associated 
hysteretic behaviour. Furthermore, this compound presents an LIESST effect and can be partially 
switched from the diamagnetic LS state to the paramagnetic HS state using green light at 10 K. The 
value of T(LIESST) obtained (56 K) is consistent with those previously reported for other iron(II) 
complexes of bpp ligands [37]. Unfortunately, the compound loses its crystallinity upon dehydration 
and the lack of a structural characterization of the anhydrous phase precludes the establishment of 
structure-property correlations. 

Supplementary Materials: The following are available online at www.mdpi.com/link: Figure S1: 
Thermogravimetric analysis of Ag(C6H4NO2); Figure S2: Thermogravimetric analysis of 1·4H2O; Figure S3: 
Differential scanning calorimetry of 1·4H2O; Figures S4-S5: Powder X-ray diffractograms of 1·4H2O after 
dehydration and rehydration; Table S1: Entalphy and entropy values for peaks observed in the DSC curve; Table 
S2: Intermolecular hydrogen bonds in the crystal structure of 1·4H2O; CIF data. 

Acknowledgments: We wish to thank José M. Martínez-Agudo and Gloria Agustí for the magnetic 
measurements. We acknowledge financial support from the Spanish Ministerio de Ciencia, Innovación y 

Figure 7. Photomagnetic properties of 1. Curve 1 (green): Irradiation at 10 K. Curve 2 (orange):
Thermal variation of χT upon heating at a scan rate of 0.3 K·min−1. The inset shows the first derivative
plot of the T(LIESST) curve.

4. Conclusions

In this paper, we have described the synthesis, structure, and magnetic properties of a new
hydrogen-bonded network that contains [Fe(bpp)2]2+ cations and nicotinate anions. It is tempting
to compare 1·4H2O with the previously reported [Fe(bpp)2](isonic)2·2H2O [32]. In this compound,
thanks to the linearity of the isonicotinate anion, robust hydrogen bonds can be established between
the bpp ligands and the isonicotinate anions occupying the four available positions in the second
iron coordination sphere. This provides a strong directionality and allows for the prediction of the
connectivity of the resulting structure. Nevertheless, in the case of compound 1·4H2O, the angular
character of the nicotinate anion makes the formation of these interactions more difficult, allowing for
the presence of water molecules in the second iron coordination sphere. Another possible reason for
the different behaviour of these similar salts could be the slightly different basicities of the nicotinate
(pK = 4.77) and isonicotinate (pK = 4.90) anions, the latter being a stronger N-donor [41]. In any case,
the final result is that π-π stacking interactions are predominant and the terpyridine embrace motif
is stabilized.

Differential scanning calorimetry analysis and magnetic characterization of compound 1·4H2O
show a conversion from the LS state to the HS state after the loss of water molecules. The anhydrous
material obtained exhibits spin crossover with relatively high cooperativity and with an associated
hysteretic behaviour. Furthermore, this compound presents an LIESST effect and can be partially
switched from the diamagnetic LS state to the paramagnetic HS state using green light at 10 K.
The value of T(LIESST) obtained (56 K) is consistent with those previously reported for other iron(II)
complexes of bpp ligands [37]. Unfortunately, the compound loses its crystallinity upon dehydration
and the lack of a structural characterization of the anhydrous phase precludes the establishment of
structure-property correlations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/8/11/439/s1:
Figure S1: Thermogravimetric analysis of Ag(C6H4NO2); Figure S2: Thermogravimetric analysis of 1·4H2O;
Figure S3: Differential scanning calorimetry of 1·4H2O; Figures S4-S5: Powder X-ray diffractograms of 1·4H2O
after dehydration and rehydration; Table S1: Entalphy and entropy values for peaks observed in the DSC curve;
Table S2: Intermolecular hydrogen bonds in the crystal structure of 1·4H2O; CIF data.
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