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Abstract: A zero-gap state with a Dirac cone type energy dispersion was discovered in an organic
conductor α-(BEDT-TTF)2I3 under high hydrostatic pressures. This is the first two-dimensional (2D)
zero-gap state discovered in bulk crystals with a layered structure. Moreover, the Dirac cones are
highly tilted in a k-space. This system, thus, provides a testing ground for the investigation of physical
phenomena in the multilayered, massless Dirac electron system with anisotropic Fermi velocity.
Recently, the carrier injection into this system has been succeeded. Thus, the investigations in this
system have expanded. The recent developments are remarkable. This effect exhibits peculiar
(quantum) transport phenomena characteristic of electrons on the Dirac cone type energy structure.
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1. Introduction

The realization of the graphene opened the physics of the Dirac electron in a solid [1,2]. A rich
variety of material with Dirac electrons has been discovered, and the recent progress of the physics for
Dirac electrons has been brilliant [3–16]. However, the zero-gap material with the Fermi level at the
Dirac point is limited. The physics at the vicinity of the Dirac point is the most significant. Among them,
we have discovered the zero-gap material with Dirac-type energy dispersion in α-(BEDT-TTF)2I3

(BEDT-TTF = bis(ethylenedithio) tetrathiafulvalene) [17] (Figure 1) at high pressure. This is the first
bulk (multilayered) 2D zero-gap system with Dirac electrons. Thus, this material has led the studies of
the specific heat [18] and the nuclear magnetic resonance (NMR) [19] for the Dirac electron system.
Another significant feature is that the Dirac cones are highly tilted as shown in Figure 1d,e [13–16].
Thus, this system has led to the peculiar transport characteristic of the electrons on the Dirac cone
type energy structure [8–12,16,20–23]. This Dirac electron system, on the other hand, is next to the
charge-ordered insulator phase in the temperature-pressure phase diagram. Therefore, strongly correlated
Dirac electrons constitute one of the interesting recent studies [19,24,25].

The recent success of carrier injection helped the development of physics with regard to
this system. In this review, the effects of carrier doping on the peculiar (quantum) transport phenomena
are described. In the following, the electronic structure of α-(BEDT-TTF)2I3 and the experimental
evidence of massless Dirac electron systems are briefly mentioned in this section. The methods of the
carrier doping in Section 2 and those effects on the transport phenomena in Sections 3–5 are revealed.
In Section 6, the Dirac type energy structure of this system is corrected.
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Figure 1. (a) BEDT-TTF molecule and I3− anion, crystal structure of α-(BEDT-TTF)2I3 viewed from (b) 
a-axis and (c) c-axis, (d) band structure, and (e) energy contours near a Dirac point. Note that we take 
the origin to the position of the Dirac point. 

1.1. Electronic Structure of α-(BEDT-TTF)2I3 

α-(BEDT-TTF)2I3 is a member of the (BEDT-TTF)2I3 family [17]. The crystals consist of conductive 
layers of BEDT-TTF molecules and insulating layers of I3− anions as shown in Figure 1a–c [26–28]. 
The difference of the arrangement of BEDT-TTF molecules gives rise to variations in the transport 
phenomena. Most are 2D metals with large Fermi surfaces, and some of them show a 
superconducting transition [26–28]. α-(BEDT-TTF)2I3, however, is different from other members. The 
band calculation indicated a semimetal with small Fermi pockets of the electron character and the 
hole character [8]. 

This material behaves as a metal down to 135 K, where it undergoes a phase transition to an 
insulator [17]. At temperatures below 135 K, an abrupt drop of the magnetic susceptibility suggests 
that a nonmagnetic state with a spin gap is realized [29]. The theory by Kino and Fukuyama [30] and 
Seo [31], the NMR study by Takano et al. [32], the Raman study by Wojciechowski et al. [33], and the 
spectroscopy study by Moldenhauer et al. [34] indicated that the origin of this transition was due to 
the charge disproportionation. Each BEDT-TTF molecule with approximately 0.5 ݁ has formed the 
horizontal charge stripe patterns for +1 ݁ and 0 at temperatures below 135 K [33,35]. This phase 
transition is suppressed by the pressure above 1.5 GPa at room temperature [8,9,16].  

The resistivity at high pressure is very peculiar. It is almost constant over the whole temperature 
range like dirty metals. The carrier mobility in dirty metals should be low, because the impurity 
scattering dominates the conduction. Thus, the resistance in dirty metals is temperature independent. 
However, the present situation is different. The large magnetoresistance at low temperatures 
indicated that the carrier mobility was extremely high. It was estimated to be approximately 10ହ 
cm/V·s at low temperatures [9,16,35–37]. The high carrier mobility led to the observation that the 
magnetic field warped the path of the electric currents [8]. So, this system is clean. 

This is the motive with which this study has started. To clarify this mechanism, the Hall effect 
was investigated. Surprisingly, in the region from 300 to 2 K, the carrier (hole) density and the 
mobility change by approximately six orders of magnitude as shown in Figure 2. At low 
temperatures, the state of extremely low density of approximately 8 × 10ଵସ cm−3 and extremely high 
mobility of approximately 3 × 10ହ cm2/V·s is realized [10,16]. The independent resistance is due to 
the effects of changes in the density, and the mobility just cancels out [8–10,16]. 

According to the band calculations by Kobayashi et al. and first-principles band calculations by 
Kino and Miyazaki, this material under high pressures is in the zero-gap state of which the bottom 
of the conduction band and the top of the valence band touch each other at two points (we call these 
“Dirac points”) in the first Brillouin zone [13–15]. The Fermi energy is located exactly on the Dirac 
point.  
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Figure 1. (a) BEDT-TTF molecule and I3
− anion, crystal structure of α-(BEDT-TTF)2I3 viewed from

(b) a-axis and (c) c-axis, (d) band structure, and (e) energy contours near a Dirac point. Note that we
take the origin to the position of the Dirac point.

1.1. Electronic Structure of α-(BEDT-TTF)2I3

α-(BEDT-TTF)2I3 is a member of the (BEDT-TTF)2I3 family [17]. The crystals consist of conductive
layers of BEDT-TTF molecules and insulating layers of I3

− anions as shown in Figure 1a–c [26–28].
The difference of the arrangement of BEDT-TTF molecules gives rise to variations in the
transport phenomena. Most are 2D metals with large Fermi surfaces, and some of them show a
superconducting transition [26–28]. α-(BEDT-TTF)2I3, however, is different from other members.
The band calculation indicated a semimetal with small Fermi pockets of the electron character and the
hole character [8].

This material behaves as a metal down to 135 K, where it undergoes a phase transition to an
insulator [17]. At temperatures below 135 K, an abrupt drop of the magnetic susceptibility suggests
that a nonmagnetic state with a spin gap is realized [29]. The theory by Kino and Fukuyama [30]
and Seo [31], the NMR study by Takano et al. [32], the Raman study by Wojciechowski et al. [33],
and the spectroscopy study by Moldenhauer et al. [34] indicated that the origin of this transition was
due to the charge disproportionation. Each BEDT-TTF molecule with approximately 0.5e has formed
the horizontal charge stripe patterns for +1e and 0 at temperatures below 135 K [33,35]. This phase
transition is suppressed by the pressure above 1.5 GPa at room temperature [8,9,16].

The resistivity at high pressure is very peculiar. It is almost constant over the whole temperature
range like dirty metals. The carrier mobility in dirty metals should be low, because the impurity
scattering dominates the conduction. Thus, the resistance in dirty metals is temperature independent.
However, the present situation is different. The large magnetoresistance at low temperatures indicated
that the carrier mobility was extremely high. It was estimated to be approximately 105 cm/V·s at low
temperatures [9,16,35–37]. The high carrier mobility led to the observation that the magnetic field
warped the path of the electric currents [8]. So, this system is clean.

This is the motive with which this study has started. To clarify this mechanism, the Hall effect
was investigated. Surprisingly, in the region from 300 to 2 K, the carrier (hole) density and the mobility
change by approximately six orders of magnitude as shown in Figure 2. At low temperatures, the state
of extremely low density of approximately 8× 1014 cm−3 and extremely high mobility of approximately
3× 105 cm2/V·s is realized [10,16]. The independent resistance is due to the effects of changes in
the density, and the mobility just cancels out [8–10,16].

According to the band calculations by Kobayashi et al. and first-principles band calculations by
Kino and Miyazaki, this material under high pressures is in the zero-gap state of which the bottom
of the conduction band and the top of the valence band touch each other at two points (we call
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these “Dirac points”) in the first Brillouin zone [13–15]. The Fermi energy is located exactly on the
Dirac point.

In the picture of 2D zero-gap energy structure with a linear dispersion, the peculiar transport
phenomena were naturally understood. The carrier density proportional to the temperature squared
is explained. When the Fermi energy EF located at the Dirac point is temperature-independent,
it is written as n =

∫
D(E) f (E)dE ∝ T2, in which D(E) is the density of state and f (E) is the Fermi

distribution function. According to Mott’s argument [38], on the other hand, the mean free path l of a
carrier can never be shorter than the wavelength λ of the carrier, so l ≥ λ. For the cases of high density
of scattering centers, l ∼ λ ( lk ∼ 1). As the temperature is decreased, l becomes long, because λ

becomes long (k becomes small) with the decreasing energy of the carriers. The Boltzmann transport
equation gives the temperature-independent quantum conductivity as σxx = 8e2

∫
v2

xτ(−∂ f/∂E)dk = 2e2/h,
in which vx is the velocity of Dirac electrons when the electric field along x-axis is applied and τ is
the lifetime. The constant sheet resistance (resistivity per layer) Rs close to the value of the quantum
resistance, h/e2 = 25.8 kΩ, is derived. Many realistic theories for the sheet resistance in the zero-gap
system give Rs = gh/e2, in which g is a parameter of order unity [39–41]. Combining the temperature
dependences of the carrier density and the resistivity with σ = neµ, on the other hand, the temperature
dependence of the carrier mobility µ ∝ T−2 was led as shown in Figure 2.
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We can see the remarkable characteristic transport of 2D Dirac electron systems in the magnetic 
field normal to the 2D plane. In the 2D massless Dirac electron system, the particles obeyed to the 
Weyl equation ܪ = ࣌ிݒ ∙  is the momentum. In the magnetic ࢖ is the Pauli matrix and ࣌ in which ,࢖
field, the gauge transformation from ࢖ into ࢖ + ேܧ  ே asܧ derives the energy of Landau levels ࡭݁ =  (1) |ܤ||ܰ|ிඥ2݁ℏݒ±

in which ࡭ is the vector potential, ݒி  is the Fermi velocity, ܰ is the Landau index, and ܤ is the 
magnetic field strength. This energy depends on the square root of ܤ and ܰ, which is different from 

1 5 10 50 100
10-2

10-1

100

101

102

103

104

105

106

1014

1015

1016

1017

1018

1019

1020

1021

1022

T (K)

μ e
ff
 &

 μ
M

 (c
m

2 /V
s)

n e
ff
 &

 n
M

 (c
m

-3
)

μeff 

neff

∝T 2

μM 

nM

Figure 2. The carrier density and the mobility under the pressure of p = 1.8 GPa against
the temperature. Close circles show the effective carrier density ne f f and the mobility µe f f estimated
from the Hall coefficient (RH = 1/ne) and the conductivity (µ = σ/ne). The magnetoresistance
mobility µM and the density nM, on the other hand, is shown by open square. The carrier density
obeys n ∝ T2 from 10 K to 50 K (indicated by broken lines). Reproduced with permission from [9].

1.2. Experimental Evidence of Massless Dirac Electron System

We can see the remarkable characteristic transport of 2D Dirac electron systems in the magnetic
field normal to the 2D plane. In the 2D massless Dirac electron system, the particles obeyed to the Weyl
equation H = vFσ·p, in which σ is the Pauli matrix and p is the momentum. In the magnetic field,
the gauge transformation from p into p + eA derives the energy of Landau levels EN as

EN = ±vF

√
2e}|N||B| (1)
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in which A is the vector potential, vF is the Fermi velocity, N is the Landau index, and B is the magnetic
field strength. This energy depends on the square root of B and N, which is different from that of
the conventional conductors. At the Dirac point (E = 0), N = 0, and the Landau level, called the
zero-mode, always appears [42].

For kBT < E±1, the system is in the state of the quantum limit so that the zero-mode carriers
dominate the conduction. In this situation, the carrier density per spin and per valley is given by
D(B) = B/2φ0, in which φ0 = h/e is the quantum flux and the Fermi distribution function at EF is 1/2.
Strong magnetic fields induced the zero-mode carrier with high density.

Tajima et al. succeeded in detecting this effect in the longitudinal inter-layer magnetoresistance
Rzz [11]. In this experiment, the Lorentz force is weak, because the electrical current and the magnetic
field are parallel to each other. Thus, the effect of the magnetic field only gives rise to the change in
the zero-mode carrier density. It leads to the remarkable negative interlayer magnetoresistance in
the magnetic field above 0.2 T, as shown in Figure 3 [11]. An analytical formula for Rzz by Osada
reproduced well the field and the angle dependences of Rzz [43].

Since each Landau level is broadened by the scattering of carriers and/or thermal energy,
the zero-mode is sure to overlap with the other Landau levels at a low magnetic field. In such
a region, the relationship of Rzz ∝ B−1 loses its validity. We can recognize this region in Figure 3,
in which a positive magnetoresistance is observed. At Tp = 4 K, for example, this critical field Bp

is approximately 0.2 T. At the magnetic field above Bp, the overlap between the zero-mode and
the N = ±1 Landau levels E1 will be sufficiently small so that the negative magnetoresistance is
observed there. Thus, E1 ∼ kBTp at Bp. The Fermi velocity vF was estimated to be approximately
4× 104 m/s [44,45].

Thus, the detection of zero-mode has demonstrated that this material under high pressure
was composed of truly massless Dirac electron systems. The recent progress of this system has
been remarkable. One example of this is the success of the carrier doping to this system. In the
next section, the effects of the carrier doping on the transport phenomena are described.
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Figure 3. Field dependence of the interlayer magnetoresistance for p = 1.7 GPa at 4 K [11].
Remarkable negative magnetoresistance is observed at B > 0.2 T. Fitting curve (red line) is an Equation
Rzz ∝ (|B|+ B0)

−1 in the negative magnetoresistance region, in which B0 is a fitting parameter that
depends on the purity of a crystal [36].

2. Methods of Carrier Doping

In the Dirac electron systems, the Berry phase, which is fundamental concept for the geometry of
the Bloch particles, plays an important role in quantum transport. In 2D massless Dirac electron system,
the particles obey the Weyl equation H = vFσ·p has π Berry phase. π Berry phase has yielded the new
type of quantum Hall effect (half integer quantum Hall effect), which was first discovered in graphene.
The success of the carrier doping (control of EF) by the field effect transistor (FET) method led to
this discovery.
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Here, the detection of the Berry phase is briefly mentioned. The semiclassical quantization
condition for a cyclotron orbit is written as SN = 2π(N + γ)/l2

B, in which SN is the cross-section area
of the Nth Landau level, lB =

√
}/eB is the magnetic length, and γ (0 ≤ γ < 1) is the Onsager phase

factor that is related to the Berry phase φB as γ = 1/2− φB/2π. In a conventional electron system,
φB and γ are expected to be 0 and 1/2. Dirac particles, on the contrary, prefer φB = π and γ = 0.
Dirac particles in a solid thus had been identified from the phase analysis of quantum oscillation
(Shubnikov-de Haas oscillations: SdH) in a magnetic field.

In order to detect the quantum Hall effect (QHE) characterized by the electrons on the Dirac
cones in α-(BEDT-TTF)2I3 under high pressure, the Fermi level should be moved from the Dirac point.
However, control of the Fermi level by the field effect transistor (FET) method is much more difficult,
because this crystal has a multilayered structure with high conductivity. Moreover, the conductivity in
each layer is high.

Cannot we inject carriers to α-(BEDT-TTF)2I3 under high pressure? Cannot we detect the QHE
experimentally in this system? The answer is “NO”. One of the breakthroughs for the carrier injection
to α-(BEDT-TTF)2I3 was suggested. Important results are that the SdH oscillations and the QHE
associated with the special Landau level structure of Equation (1) were detected at low temperature [16,46].
In this section, we mention some unique methods of carrier doping in this system.

2.1. Effects of Dopant

Because of the characteristic energy spectrum, slight dopant brought a strong effect on the
transport phenomena. The instability of I3

− anions is the main origin of the dopant. Depending on
the dopant, there are two types of samples according to which the electrons or holes were doped.
Moreover, sample (dopant) dependence of the resistivity and the Hall coefficient is strong at
low temperatures. This characteristic feature provided experimentally an anomalous Hall conductivity
caused by the inter-band effects of the magnetic field [12]. In the magnetic field, the vector
potential plays an important role in the inter-band excitation of electrons [47]. In this situation,
large diamagnetism and the anomalous Hall conductivity is derived by the orbital motion of virtual
electron-hole pairs. This is the inter-band effect of the magnetic field. This effect is strongest when the
chemical potential is located at the Dirac point. In Section 3, inter-band effects of magnetic field on the
transport properties are described.

2.2. Electron Doping by the Annealing

Annealing of the crystals in a vacuum at high temperature gives rise to the lack of I3
− anions [48,49].

It yields mobile electrons. Annealing time and temperature are the control parameters of the density [50].
Recently, Tisserond et al. succeeded in injecting electrons and observed SdH oscillation at low
temperature [51]. Effects of electron doping by the annealing on the transport properties are roughly
mentioned in Section 4.

2.3. Hole Doping by Contact Electrification

The carrier density per layer of α-(BEDT-TTF)2I3 under a high pressure at low temperatures
is estimated to be approximately 108 cm−2 [10]. Thus, the effects of hole doping can be detected
on the transport phenomena by fixing a crystal onto a substrate weakly that is negatively charged.
This is called the contact electrification method. The effects of hole doping on the quantum transport
phenomena were detected by fixing a thin crystal onto a poly (ethylene naphthalate) (PEN) substrate
(Figure 4) [46]. Positively charged substrate, on the other hand, dopes electrons. Effects of hole doping
by the contact electrification on the transport phenomena are described in Section 5.
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Figure 4. (a) Crystal structure of α-(BEDT-TTF)2I3 viewed from the a-axis; (b) schematic diagram of
this system. The thickness of the crystal measured with a step profiler was approximately 100 nm;
(c) optical image of a single crystal on a PEN substrate in the processed form. The crystal was cut using
a pulsed laser beam with a wavelength of 532 nm. The scale bar is approximately 0.2 mm.

2.4. Experiments of the Transport Phenomena in α-(BEDT-TTF)2I3 Under High Pressure

A sample on which six to eight gold wire with a diameter of 15 µm is attached by the carbon paste
and is put in a Teflon capsule filled with the pressure medium (DN-oil 7373, Idemitsu, Tokyo, Japan),
and then the capsule is set in a clamp-type pressure cell made of hard alloy MP35N cell or BeCu/NiCrAl
dual-structure cell. The pressure was examined by change in the resistance of Manganin wire at
room temperature. Resistance of a crystal was measured by a conventional dc method with six to
eight probes. An electrical current between 0.1 µA and 10 µA was applied in the 2D plane. The magneto
transport phenomena were investigated at temperatures from 0.1 K to 300 K in the magnetic field up
to 12 T.

3. Effects of Dopant: Inter-Band Effects of Magnetic Field

The sample (dopant) dependence of the resistivity and the Hall coefficient is strong at
low temperatures, as shown in Figure 5, because this system has the characteristic energy spectrum.
This fact is very important, because the dopant will throw light on the structure and the characteristic
properties in the vicinity of Dirac point. In this section, anomalous Hall conductivity that originated
from the inter-band effects of the magnetic field at the vicinity of Dirac point is examined [12]. Moreover,
electron-hole symmetry of this system is revealed.

As mentioned in Section 1, RH is proportional to T2 at temperatures below 50 K. It was explained
based on a single Dirac cone type energy structure. In the present system, however, two cones that
touched at a Dirac point exclude such a simple situation. In the case that the two Dirac cones are
strictly symmetric, the Hall coefficient will be zero, because the signals of the Hall effect due to carriers
on the top and bottom of the Dirac cones cancel out. To detect the signal, the energy structure should
be asymmetrical. The measurements of RH should detect the signal that depends on the strength
of asymmetry.

Tajima et al. examined the temperature dependence of RH for seven samples (n1–n7) and found
that the samples were classified into two groups. First group (n4 and n6) is that RH is positive over
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the whole temperature range, as shown in Figure 5b. In another group (n1, n2, n3, n5, and n7), on the
other hand, the polarity of RH changes at a certain temperatures below 10 K, as shown in Figure 5c.
The dopant with a low level of density in the sample leads to this difference. It plays an essential role in
the polarity of RH at low temperatures. The density and the kind of dopants were determined by RH
at the lowest temperature, in which the thermal excitation of carriers between the cones is negligible.
The kind of dopant of the first group (n4 and n6) is hole. On the other hand, electron is the character
of dopant in another group (n1, n2, n3, n5, and n7). Here, we have a deep interest in the change in
the polarity of RH in the second group (electron doped samples: n1, n2, n3, n5, and n7), as shown
in Figure 5c. We find strong sample dependence of the temperature in which the polarity changes.
Note that above 10 K, the curve of RH for all samples is a single. It indicates that doping does not
affect the electron energy structure. Thus, the effect of the dopant results in changes in EF. The change
in the polarity of RH is understood as follows.

Strong temperature dependence of RH indicates that the symmetry of the present Dirac cones
is low. In this situation, the chemical potential µ should vary with the temperature. At the temperature
at which µ = 0, the polarity of RH changes [12,20]. This fact is very important, because the temperature
dependence of the transport phenomena provides its chemical potential dependence in the vicinity of
the Dirac point. Here, let us detect the inter-band effects of the magnetic field in the Hall conductivity.
The inter-band effect is strongest at µ = 0 [47]. In the following, we examine the inter-band effect in
the vicinity of RH = 0 (µ = 0).
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Figure 5. (a) Temperature dependence of Rs for seven samples under pressure of 1.8 GPa. Rs at
temperature below 10 K is shown in the inset; (b,c) is the temperature dependence of RH for
hole-doped-type and electron-doped-type samples. Note that the absolute value of RH is plotted.
Thus, the dips in (c) indicate a change in the polarity. The inset of (b,c) shows the schematic illustration
of the Fermi levels.

First, let us express µ as a function of T. The dopant density ns was determined from ns = 1/RHe
at low temperature. Thus, EF was calculated from the relationship EF = }vF

√
ns/π with vF = 3.5× 104 m/s.

Note that the value of vF for all samples is almost the same, because sample dependence of RH is
very weak at temperatures of above 7 K. For example, EF/kB for samples n1 and n7 are estimated to
be 1.35 and 0.35 K, respectively. Kobayashi et al. theoretically demonstrated that µ is varied with
the temperature as approximately µ/kB = EF/kB = EF/kB − AT at low temperatures, in which a
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parameter A depends on the symmetry of the Dirac cone (vh
F/ve

F: vh
F and ve

F are the Fermi velocities for
lower and upper Dirac cones) and is independent of EF. At RH(T) = 0, µ/kB = 0. Thus, A = EF/kBT0

is estimated to be approximately 0.24 at RH(T = 0) = 0. This experimental formula is consistent
with the theoretical curve well [20]. Hence, vh

F/ve
F is estimated to be approximately 1.2 [12]. This is

the electron-hole symmetry of this system. The detail for asymmetric Dirac cones in this system is
described in Section 6.

The calculation of the Hall conductivity σxy = ρyx/(ρ2
xx + ρ2

yx) is the second step. The temperature
dependence of σxy for samples n1 and n7 is shown in Figure 6a. In this calculation, it was assumed as
ρxx = ρyy. The last step is that σxy is drawn in Figure 6b as a function for µ by replacing T by T(µ).

We should compare this with the theoretical curve σ
theory
xy . Experimental data roughly reproduce the

relation σxy ∼ gσ
theory
xy , in which g is a parameter that depends on the temperature. It is significant

that there is a peak and a dip structure in each curve at the vicinity of the point at which σxy = 0.
In the magnetic field, the orbital motion of virtual electron-hole pairs by the vector potential plays
an important role in σxy. The peak structure of σxy shown in Figure 6 is the characteristic feature due
to the inter-band effects of the magnetic field [20]. The energy between two peaks is the damping,
which depends on the density of scattering centers in the crystal. The intensity of the peak, on the
other hand, depends on the damping and the tilt of the Dirac cones [20]. Note that σxy without the
inter-band effects, on the other hand, has no peak structure.

Another important finding is a smooth change in the polarity of σxy. This is evidence that this
material has an intrinsic zero-gap energy structure.
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a crystal. In a sense, this is the natural doping. Annealing in a vacuum at high temperature, on the 
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Figure 6. (a) Temperature dependence of the Hall conductivity for n1 and n7 in Figure 5;
(b) chemical-potential dependence of the Hall conductivity for n1 and n7. Solid lines and dashed
lines are the theoretical curves with and without the inter-band effects of the magnetic field by
Kobayashi et al., respectively [20]. Reproduced with permission from [11].

4. Electron Doping by the Annealing

As mentioned in the previous section, the dopant with the density of ppm order gave rise to the
intense effects on the transport phenomena. The origin of the dopant is the instability of I3

− anions
in a crystal. In a sense, this is the natural doping. Annealing in a vacuum at high temperature,
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on the other hand, enhances the lack of I3
− anions so that the mobile electrons are yielded.

In this section, the effects of annealing on the transport phenomena in α-(BEDT-TTF)2I3 under the
pressure are mentioned.

The density of the doped electron by the annealing depends on the parameters of its time
and temperature. The annealing at temperature above 80 ◦C, however, changes the crystal structure
from α- to β-types [48]. Thus, Miura et al. investigated the resistivity of a crystal with a parameter
of the time with 10 min steps of annealing in a vacuum of 10−3 Pa at 70 ◦C [50]. The effects of
anneal (doping) were clearly seen in the value of resistivity and its temperature dependence as shown
in Figure 7a. The effects of annealing lead this crystal to a metal. At 4.2 K, for example, the resistivity
is decreased by about two orders of magnitude in duration of 40 min annealing. It is expected that
electrons were doped to this system.
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(b) annealing time dependence of electron density at 4.2 K and 1.6 K. Reproduced with permission
from [50,51].

Here we note that this experiment was performed by a single crystal. First step was to investigate
the resistivity of α-(BEDT-TTF)2I3 under the pressure of 1.3 GPa. As the second step, the crystal was
annealed in the duration of 10 min in a vacuum about 10−3 Pa at 70 ◦C after pressure was removed.
Then, the resistivity of this crystal under the pressure of 1.3 GPa was investigated again. For the
after steps, the doping of electrons by the annealing was repeated in the same way.

The polarity of the Hall coefficient indicated the electron doping successes. At low temperature,
the variation in the electron density estimated from the Hall coefficient is almost same as that in
the resistivity. It is increased by about two orders of magnitude in a 40 min of anneal at 4.2 K as shown
in Figure 7b.

Here, let us return to Figure 7a. The resistivity per layer in the case without annealing expressed
as Rs ∼ h/e2 in a wide temperature region is the characteristic transport in the massless Dirac electron
system in which EF is located close to Dirac point as mentioned in Section 1. However, the system
with EF far from the Dirac point lacks validity of this law. The resistivity of the case with annealed
duration of 40 min shows the metallic behavior.

Figure 8 is the recent highlight. Tisserond et al. succeeded in detecting SdH oscillation in a thick
crystal under pressure of 2.2 GPa at 200 mK. [51]. Note that it is doped as a side effect of the elaboration
of the gold electrical contacts deposited by Joule evaporation, with an unintentional annealing.
Careful analysis of SdH oscillations, however, conduced the correction of the Dirac cones in this system.
In Section 6, this will be disclosed.
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5. Hole Doping by Contact Electrification

By fixing a thin crystal onto a substrate weakly negatively charged as shown in Figure 4, the effects
of carrier doping by contact electrification can be detected in the transport. The polarity of Hall
resistance Rxy indicates that the hole doping is successful. Note that holes should be injected into a few
layers (pairs of BEDT-TTF molecular layers and I3

− anion layers). Main is the first from the interface.

5.1. Resistivity of α-(BEDT-TTF)2I3 on PEN Substrate under High Pressure

Figure 9 shows the temperature dependence of the resistivity of α-(BEDT-TTF)2I3 on PEN
substrate under pressure of 1.7 GPa. We see clear effects of the hole-doping in the resistivity.
First, the value of resistivity of the thin crystal on the PEN substrate is lower than those of the
usual thick crystal. Most noticeable difference is seen at temperatures below 2 K. The resistivity for
the thin crystal on the PEN substrate behaves as ρ ∝ T2. This is the characteristic transport in the
Fermi liquid state.
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Thus, carrier injection into α-(BEDT-TTF)2I3 with a layered structure was successful. Note that
the resistivity depends on the crystal thickness, because the number of carrier-doped layers is small,
as mentioned before.

5.2. Observations of SdH Oscillations and Quantized Hall Resistance

The signature of the Dirac electrons is seen in the quantum transport. The magnetic field
dependence of resistance Rxx and the Hall resistance Rxy in the thin crystal on the PEN substrate
under pressure of approximately 1.7 GPa were investigated at 0.5 K. We find clear oscillation of Rxx as
shown in Figure 10a. The oscillation as a function of B−1 indicates the SdH signal with a frequency of
B f ∼9.18 T. The second-order differential of Rxx clearly depicts the oscillation in Figure 10b.

Here, we regard the origin of the SdH oscillation is 2D massless Dirac electrons. In the Dirac
electron systems, the circular orbit around the Dirac point in the magnetic field would yield Berry
phase π, as mentioned before. The effect of the phase of the SdH oscillation is further probed in
the semi-classical magneto-oscillation description. In general, the component of the SdH oscillation
written by

∆Rxx = A(B) cos
[
2π
(

B f /B + γ
)]

(2)

acquires the phase factor γ = 1/2 or 0 for normal electrons with φB = 0 and Dirac particles with
φB = π. Here, A(B) is the amplitude of the oscillation. We obtain phase factor γ by plotting the
values of B−1 at the oscillation minima of ∆Rxx as a function of their number, as shown in Figure 10c.
The linear extrapolated values of approximately 1/2 at B−1 = 0 determine the phase factors γ,
which are approximately 0. Thus, we identify the Dirac particles.
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Figure 10. (a) Magnetic field dependence of Rxx, Rxy, and (b) SdH oscillation (−d2Rxx/dB2) under
the pressure of 1.7 GPa at 0.5 K; (c) value of B−1 for the SdH oscillation minima. In the Dirac
electron systems, the linear extrapolation of the data to B−1 = 0 should be 1/2. For normal electrons,
on the other hand, it is shifted to 0.
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Here, we notice the split of the SdH oscillation at B−1 ∼ 0.25 T−1 in Figure 10b. The SdH
oscillation represents the density of states of the Landau levels. Thus, it indicates the Zeeman splitting
of N = −2 Landau level. The Landau level structure including its Zeeman splitting is written as

EN = ±vF

√
2e}|N||B| ± gµBB

2
(3)

in which g is the g factor and µB is the Bohr magneton. Combined this relation of N = 2 and g = 2 with
E2/vF = }k = }

√
4πB f /φ0 ∼ 1.7× 1.0−26 Jm−1s, the Fermi velocity is estimated to be vF ∼ 4.3 m/s,

in which g = 2 and φ0 = 4.14× 10−15 Tm−2 is the quantum flux.
The most significant finding is the quantum Hall state in this system. Two obvious Rxy plateaus

are observed at magnetic fields of approximately 3.5 and 5.5 T, which show Rxx minima (Figure 10a).
Based on the conventional 2D Dirac electron systems, the Rxy plateau is interpreted as follows.

Rxy quantization is in accordance with 1/Rxy = ν·e2/h, in which ν = ±s(n + 1/2) is the
quantized filling factor, and s = 4 is the fourfold spin/valley degeneracy. An outstanding effect
on the Dirac electron system is that the factor of half-integer exists. Thus, probes of the quantum Hall
plateaux for |ν| = 2, 6, 10, 14, · · · are expected. In the data in Figure 10a, based on this step rule,
ν = −6, −10, −14 for the first layer at Rxy plateau, or anomalies are required from SdH oscillations
against the Landau index shown in Figure 11.
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Figure 11. Landau index N or filling factor for first layer ν dependence of −d2Rxx/dB2 and σxy.
Reproduced with permission from [45].

The estimation of ν from the values of Rxy plateau in this system, however, is a serious problem.
The multilayered structure with a few hole-doped layers (mostly single layer) gives rise to the lack of
the validity of the estimation of ν from the values of Rxy plateau because it depends on the thickness.
On the other hand, the conductivities for the many undoped layers are finite. Hence, Rxx is not zero
but shows minima at Rxy plateaux. At magnetic field, for example, we can see this effect on Rxy.
In this magnetic field region, the polarity of Rxy is negative and yet holes are injected, as shown
in Figure 10a. This is a frequently observed behavior of the present material induced by electron-type
dopant (Section 3). However, detailed examination of the thickness (number of layer) dependence
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of the Hall conductivity revealed ν. For example, ν ∼ −6 at Rxy plateau of 5.5 T in Figure 10a [46].
This is expected ν shown in Figure 11.

6. Correction of Dirac Cones

In Section 5, the detection of SdH oscillations, whose phase was modified by π Berry phase,
is evidence that this system is a 2D Dirac electron system. This measurement was done in the magnetic
field below 7 T at 0.5 K. However, recent examination of the SdH oscillations at the magnetic field up
to 12 T by Tisserond et al. suggested the correction of the Dirac cones [51]. In this section, the SdH
signals in the high magnetic field are interpreted within the model of distorted Dirac cones.

The detections of the SdH oscillations were done by two carrier doping methods: anneal
(Sample A: Figure 8) and contact electrification (Sample B). Both the oscillations with the 1/B
periodicities and the phase factors of the Berry phase π indicate that the Dirac carriers are involved
at low magnetic field. At high magnetic field, however, both the SdH signals are very peculiar.
Both oscillations lost 1/B oscillations periodicity as shown in Figure 12 [51]. The detail structure of
Dirac cones shows up the non-periodic SdH oscillations of the high magnetic field [52].
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Figure 12. Construction of Landau plots from the analysis of the SdH oscillations. At low
magnetic fields, the oscillations are 1/B periodic; they are SdH oscillations. The determination of their
phase offset, connected to the Berry phase, indicates that the Dirac charge carriers are involved in the
measured oscillations. At higher magnetic fields, the 1/B oscillations periodicity loss. Reproduced
with permission from [51].
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Tisserond et al. interpreted the SdH signals shown in Figure 12 based on the picture of distorted
Dirac cones, of which the Hamiltonian is written as H = vFσ·p + p2/2m, in which mass m is the
curvature term. Figure 13 is the sketch of distorted Dirac cones. In the magnetic field, by the
gauge transformation from p into p + eA, the Landau level structure without Zeeman effect term is
calculated as

EN = }ωmN ± vF

√
2e}v2

F|N||B|+
(
}ωm

2

)2
(4)

in which ωm = eB/m and |N| ≥ 1. The positive part of this equation corresponds to the conduction
band contribution and the negative part to that of the valence band. The curves (solid lines) of Landau
index N against B−1 reproduced well the experimental curve as shown in Figure 13. The best fit mass
parameter for Sample A is |m| ∼ 0.03m0. For Sample B, on the other hand, it is to be |m| ∼ 0.022m0.
Note that others possible causes, such as a cone tilting or a Zeeman effect, are carefully ruled out in the
Reference [46] and its Supplementary Materials.

The proposed interpretation corrects the band structure from (a) massless Dirac cone to distorted
Dirac cone with (b) m > 0 or (c) m < 0 shown in Figure 13. This electron-hole asymmetry explains the
temperature dependence of the chemical potential mentioned in Section 3 [12,20]. It suggests distorted
Dirac cone shown in Figure 13b. Moreover, recent realistic calculations of the energy band and Landau
level structures in this system by Kishigi and Hasegawa support our experimental results and those
interpreted qualitatively [53].
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7. Summary

We summarize this review as follows.
The effects of carrier doping on the peculiar (quantum) transport phenomena in α-(BEDT-TTF)2I3

under high pressure were described. We presented three unique methods for the carrier doping of
this system. First, unstable I3

− anions yield the dopant in the crystal. This effect led to the detection
of anomalous Hall conductivity that originated from the inter-band effects of the magnetic field;
second, subjects that were annealed in a vacuum at high temperature enhanced the lack of I3

− anions
so that the mobile electrons were yielded. The effects of annealing on the transport phenomena
in α-(BEDT-TTF)2I3 under pressure were mentioned. Tisserond et al. succeeded in detecting SdH
oscillation in a thick crystal under pressure of 2.2 GPa at 200 mK [51]. Lastly, we presented the effects
of the carrier doping by the contact electrification on the transport phenomena. Only by fixing a thin
crystal onto a substrate weakly negatively charged by contact electrification, the effects of carrier
doping can be detected in the transport. A significant finding is the SdH oscillation and the quantum
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Hall effect characterized by the Dirac type energy structure. Moreover, the distortion of the band
structure Dirac cones was revealed.

The effects of carrier doping became more important for the organic Dirac electron system.
However, control of the Fermi energy has not been achieved yet. Control of the Fermi energy and
further investigations will lead us to interesting phenomena.
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