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Abstract: The method of the joint probability distribution function was applied in order to
estimate the normal structure factor amplitudes of the anomalous scatterer substructure in a FEL
experiment. The two-wavelength case was examined. In this, the prior knowledge of the moduli∣∣F+

1

∣∣, ∣∣F−1 ∣∣, ∣∣F+
2

∣∣, ∣∣F−2 ∣∣ was used to predict the value of
∣∣F0a

∣∣, which is the structure factor amplitude
arising from the normal scattering of the heavy atom anomalous scatterers. The mathematical
treatment provides a solid theoretical basis for the RIP (Radiation-damage Induced Phasing) method,
which was originally proposed in order to take the radiation damage induced by synchrotron
radiation sources into account. This was further adapted to exploit FEL data, where the crystal
damage is usually more massive.

Keywords: joint probability distribution function; FEL data; RIP method

1. Introduction

The properties of large tunability, high monochromaticity, small beam divergence and large power
of the modern synchrotron beamlines have made MIR, MAD and MIRAS popular tools for determining
the crystal structure solution of proteins. Such phasing procedures are usually organized into two steps.
In the first step, the amplitudes of the structure factors corresponding to the anomalous scatterers or to
the heavy atom substructure are estimated. After this, they are used to solve the substructure via the
Direct or Patterson methods [1–6]. In the second step, the full protein structure is identified using the
prior information of the substructure [7–13].

Despite the increased efficiency of the modern phasing methods, a bottleneck is still present,
which is related to the capacity of the method in growing sufficiently large and well-ordered crystals
for a large class of biologically important proteins (e.g., membrane proteins). We can use X-ray
free-electron lasers (FEL) to overcome the difficulty. Furthermore, due to their unprecedented high
X-ray fluence [14,15], the diffraction effects may be measured even in nanocrystals [15–19].

However, the extreme high fluence [20] causes severe radiation damage [21] although diffraction
before destruction is allowed as an effect of the ultrashort X-ray pulses. During femtosecond pulses,
an ionization process [15] occurs, with this effect usually described as diffraction during ionization [22].

Therefore, radiation damage is of major concern if FEL data are collected for phasing purposes.
According to Blake and Phillips [23], the induced damage quickly reduces the diffractive power of
the cryocooled crystals, increases the vibrational atomic parameters and consequently, increases the
cell volume. Local variations of the electron density are also generated. Heavy-atom substructures
seem to be particularly sensitive to damage and as a consequence, dispersive signals can be obscured
in SAD-MAD experiments.

More recently, the radiation damage has been used to phase macromolecular structures [24,25].
This method is mainly focused on synchrotron radiation sources and has been named RIP
(Radiation-damage Induced Phasing). The data collected before the damage and data collected
from a damaged crystal are used as the isomorphous data.
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The RIP approach has also been applied to FEL data, where the damage is usually more massive
and of a different nature. Indeed, the damage generated by a synchrotron source is mainly constituted
of the breaking of bonds and implies atomic movements. Due to the very short pulse-length, the FEL
damage takes the ionization of the atoms into account and does not imply atomic movement.

A detailed description of the physical phenomena occurring during the ultrashort X-ray pulses
has been described in recent papers [22,26–30]. These papers studied the evolution of different
electron populations for some selected state charges during an X-ray pulse and demonstrated how the
neutrality of heavy atoms may be depleted into high-charge states. The practical physical effects may
be condensed in a short statement. In a FEL experiment, nanocrystals may be used to provide different
sets of diffraction data, with one corresponding to the undamaged crystal (obtained via low fluence
pulses) and one or more with high fluence pulses.

The interaction X-ray pulse-crystal affects both the coherent atomic scattering factor and the
dispersion effects. Son et al. [22] suggested that a basic assumption may be made in order to ensure
that the FEL anomalous dispersion experiment is highly informative. This assumption is that the
contribution of the light atoms to the anomalous scattering may be neglected when the photon energy is
near to the inner-shell ionization threshold of the heavy atoms. They also showed that the K-shell edge
is shifted from the standard position by a certain quantity, which depends on the specific charge state of
the atom (accordingly, different configurations of the same heavy atom species may be simultaneously
present in the crystal). Furthermore, ∆ f j and f ′′j amplitudes also change according to the configuration
selected for the different charge states.

In this paper, we will consider a simplified model for both the damaged and undamaged crystals,
in which diffraction data with anomalous scattering effects are available. In the state 1, where radiation
damage is assumed to be absent, the jth scattering factor may be represented by:

[ f j]1
= f 0

j + [∆ f ′j ]1 + i[ f ′′j ]1 = [ f ′j ]1 + i[ f ′′j ]1

In the state 2, where radiation damage occurs, we obtain:

[ f j]2
= f 0

j + [∆ f 0
j ]2

+ [∆ f ′j ]2 + i[ f ′′j ]2 = f 0
j + [∆ f j]2 + i[ f ′′j ]2

In both cases, the scattering factor may be represented (see the definition at Section 1) by:

f j = f 0
j + ∆ f j + i f ′′j ,

where ∆ f j includes the variations of both the normal scattering factor and the real component of the
anomalous scatterer. Thus, we can conclude that:

for the state 1 ∆ f j = [∆ f ′j ]1 and f ′′j = [ f ′′j ]1;

for the state 2 ∆ f j = [∆ f 0
j ]2

+ [∆ f ′j ]2 and f ′′j = [ f ′′j ]2.

The above two states are usually generated in a FEL experiment by two different fluences, although
the same wavelength is used. This situation has no counterpart in a SAD experiment and is closer to a
two-wavelength MAD experiment, where the two different states correspond to two different pairs
(∆ f ′, f ′′ ). The substantial difference between FEL and the two-wavelength MAD case is not due to the
use of a different number of wavelengths (the final MAD formulas do not depend on the number of
wavelengths but on the states corresponding to them), but this is attributed to the fact that the crystal
damage at high fluence involves the use of f 0

j + [∆ f 0
j ]2

rather than f 0
j in a FEL experiment.

The continuous ionization of the heavy atoms during FEL experiments makes it difficult to directly
apply MAD techniques to FEL data [22]. Indeed, the present theory cannot take into account the large
number of electronic states accessible to heavy atoms during a high-fluence FEL experiment and the
dynamics of these states during measurements. Our model is static. In other words, we assume that
the structure factors do not change during measurements taken from the damaged crystal. The model
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would be certainly more representative of the dynamic nature of the damage if it might include a
time-dependent term, but this is outside of our present capacity.

However, the fact that many protein structures have been solved using FEL data obtained by
Molecular Replacement techniques suggests that data collected from an undamaged crystal (low
fluence) and data collected from a damaged crystal (high fluence) have sufficient internal consistency
to be useful in attempts to determine the protein crystal structure. This was the main reason that
encouraged us to describe a probabilistic theory integrating FEL damage into the framework of the
anomalous dispersion techniques [12].

This work focuses on the first step of a phasing procedure, which involves finding the heavy atom
positions according to the diffraction data.

2. The Mathematical Model

A necessary condition for finding the heavy atom substructure from the diffraction amplitudes
of undamaged and damaged crystals involves having sufficiently accurate estimates of the R0H
amplitudes. Once available, the Direct or Patterson methods can use these estimates to locate the
heavy atom positions. The most general approach for estimating R0H involves the calculation of the
joint probability distribution function:

P
(
E0H , E+, E+

d , E−, E−d
)
. (1)

From this (see below), we can derive the conditional estimate as follows:

< R0H
∣∣ R+, R+

d , R−, R−d > .

where the superscripts + and − indicate that the structure factors are calculated for the reflections h
and −h, respectively.

The use of Equation (1) requires the preliminary modelling of the structure factors. Their algebraic
form should reflect the physical phenomena occurring in a FEL experiment. According to Section 1,
the isomorphous derivatives created in such experiments are similar, although they are not identical
to those available in traditional MAD or MIRAS cases. Thus, it may be worthwhile to compare
these derivatives in order to discover similarity and differences in addition to profiting from the
mathematical theories already developed for treating the usual MAD and MIRAS cases [5,13,31].

Our FEL model involves the following assumptions:

(1) For light atoms, ∆ f j is assumed to be negligible both for the damaged and for the undamaged
crystals. In our model, we set ∆ f j = 0 for j = 1, . . . , L. Furthermore, f 0

j is assumed to be the same
for the jth atom independently of whether this refers to the undamaged or damaged crystal.

(2) For heavy atoms, the scattering factor of the jth atom f 0
j is described by two different functions

according to whether the atom is considered in the undamaged or in the damaged crystal. As a
result, ∆ f j will assume different values.

(3) The atomic positions in the damaged and in the undamaged crystals coincide [26,32]. Indeed,
there is no evidence so far that the pulse duration (about a few femtoseconds) produces detectable
changes in the heavy atom positions in femtosecond X-ray nanocrystallography even if the
simulations of radiation dynamics in proteins suggests some correlated movement of the heavy
atoms [33].

(4) The observed amplitudes F+, F+
d , F−, F−d are affected by errors, which are calculated as:

µ+ =
∣∣µ+

∣∣exp
(
iϑ+
)

and µ− =
∣∣µ−∣∣exp

(
iϑ−
)

,

µ+
d =

∣∣µ+
d

∣∣exp
(
iϑ+

d
)

and µ−d =
∣∣µ−d ∣∣exp

(
iϑ−d
)
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These represent the measurement errors relative to the undamaged and the damaged crystal,
respectively. The errors are assumed to be complex quantities because they influence both the real and
the imaginary components of the structure factors. Since R0H is not measured and is instead estimated
using the probabilistic approach, no error will be associated with it. Furthermore, the errors will be
assumed to be uncorrelated and thus, we can obtain:

< µ+ >=< µ+
d >=< µ− >=< µ−d >= 0

and
< µ+µ+

d >=< µ+µ− >=< µ−µ−d >=< µ+
d µ−d >= 0

According to Equations (1)–(4), the following mathematical model will be adopted:

A+ =

{
L

∑
j=1

f o
j cos

(
2πhrj

)
+

H

∑
j=1

f ′j cos
(
2πhrj

)
−

H

∑
j=1

f ′′j sin
(
2πhrj

)
+
∣∣∣µ+

∣∣∣cosϑ+

}
/

(
ε ∑

N

)1/2

,

B+ =

{
L

∑
j=1

f o
j sin

(
2πhrj

)
+

H

∑
j=1

f ′j sin
(
2πhrj

)
+

H

∑
j=1

f ′′j cos
(
2πhrj

)
+
∣∣∣µ+

∣∣∣sin ϑ+

}
/

(
ε ∑

N

)1/2

,

A− =

{
L

∑
j=1

f o
j cos

(
2πhrj

)
+

H

∑
j=1

f ′j cos
(
2πhrj

)
+

H

∑
j=1

f ′′j sin
(
2πhrj

)
+
∣∣∣µ−∣∣∣cosϑ−

}
/

(
ε ∑

N

)1/2

B− =

{
−

L

∑
j=1

f o
j sin

(
2πhrj

)
−

H

∑
j=1

f ′j sin
(
2πhrj

)
+

H

∑
j=1

f ′′j cos
(
2πhrj

)
+
∣∣∣µ−∣∣∣sinϑ−

}
/

(
ε ∑

N

)1/2

,

A+
d =

{
L

∑
j=1

f o
j cos

(
2πhrj

)
+

H

∑
j=1

f ′djcos
(
2πhrj

)
−

H

∑
j=1

f ′′djsin
(
2πhrj

)
+
∣∣∣µ+

d

∣∣∣cosϑ+
d

}
/

(
ε ∑

Nd

)1/2

,

B+
d =

{
L

∑
j=1

f o
j sin

(
2πhrj

)
+

H

∑
j=1

f ′dj sin
(
2πhrj

)
+

H

∑
j=1

f ′′dj cos
(
2πhrj

)
+
∣∣∣µ+

d

∣∣∣sin ϑ+
d

}
/

(
ε ∑

Nd

)1/2

,

A−d =

{
L

∑
j=1

f o
j cos

(
2πhrj

)
+

H

∑
j=1

f ′djcos
(
2πhrj

)
+

H

∑
j=1

f ′′djsin
(
2πhrj

)
+
∣∣∣µ−d ∣∣∣cosϑ−d

}
/

(
ε ∑

Nd

)1/2

,

B−d =

{
−

L

∑
j=1

f o
j sin

(
2πhrj

)
−

H

∑
j=1

f ′djsin
(
2πhrj

)
+

H

∑
j=1

f ′′djcos
(
2πhrj

)
+
∣∣∣µ−d ∣∣∣sinϑ−d

}
/

(
ε ∑

Nd

)1/2

.

It is important to notice that for heavy atoms:

f ′j = f 0
j + ∆ f ′j , (2a)

f ′dj = f 0
dj + ∆ f ′dj, (2b)

where
∆ f ′dj = ∆ f0j + ∆ f ′j . (2c)

[∆ f ′j ]1 and [∆ f ′j ]2 are the real components of the anomalous scattering of the jth heavy atom for
the undamaged and damaged crystals, respectively.

We then considered the mathematical model adopted for the usual two-wavelength MAD
experiment by Giacovazzo and Siliqi [12]. In order to facilitate an easier comparison with the
above FEL model, we slightly changed the original Giacovazzo and Siliqi notation. We denoted
E+ ≡ (A+ + iB+), E− ≡ (A− + iB−) as the normalized structure factors corresponding to the
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first wavelength. E+
d ≡ (A+

d + iB+
d ), E−d ≡ (A−d + iB−d ) is denoted as the normalized structure

factor corresponding to the second MAD wavelength, while E0H is denoted as the structure factor
corresponding to the anomalous scatterer substructure (anomalous scattering is not included). L and
H is the number of non-hydrogen light atoms and the number of the anomalous scatterers in the unit
cell, respectively. Thus, the Giacovazzo and Siliqi model may be rewritten as follows:

A+ =

{
L

∑
j=1

f o
j cos

(
2πhrj

)
+

H

∑
j=1

f ′j cos
(
2πhrj

)
−

H

∑
j=1

f ′′j sin
(
2πhrj

)
+
∣∣∣µ+

∣∣∣cosϑ+

}
/

(
ε ∑

N

)1/2

,

B+ =

{
L

∑
j=1

f o
j sin

(
2πhrj

)
+

H

∑
j=1

f ′j sin
(
2πhrj

)
−

H

∑
j=1

f ′′j cos
(
2πhrj

)
+
∣∣∣µ+

∣∣∣sinϑ+

}
/

(
ε ∑

N

)1/2

,

A− =

{
L

∑
j=1

f o
j cos

(
2πhrj

)
+

H

∑
j=1

f ′j cos
(
2πhrj

)
−

H

∑
j=1

f ′′j sin
(
2πhrj

)
+
∣∣∣µ−∣∣∣cosϑ−

}
/

(
ε ∑

N

)1/2

,

B− =

{
L

∑
j=1

f o
j sin

(
2πhrj

)
+

H

∑
j=1

f ′j sin
(
2πhrj

)
−

H

∑
j=1

f ′′j cos
(
2πhrj

)
+
∣∣∣µ−∣∣∣sinϑ−

}
/

(
ε ∑

N

)1/2

,

A+
d =

{
L

∑
j=1

f o
j cos

(
2πhrj

)
+

H

∑
j=1

f ′djcos
(
2πhrj

)
−

H

∑
j=1

f ′′djsin
(
2πhrj

)
+
∣∣∣µ+

d

∣∣∣cosϑ+
d

}
/

(
ε ∑

Nd

)1/2

,

B+
d =

{
L

∑
j=1

f o
j sin

(
2πhrj

)
+

H

∑
j=1

f ′djsin
(
2πhrj

)
−

H

∑
j=1

f ′′djcos
(
2πhrj

)
+
∣∣∣µ+

d

∣∣∣sinϑ+
d

}
/

(
ε ∑

Nd

)1/2

,

A−d =

{
L

∑
j=1

f o
j cos

(
2πhrj

)
+

H

∑
j=1

f ′djcos
(
2πhrj

)
−

H

∑
j=1

f ′′djsin
(
2πhrj

)
+
∣∣∣µ−d ∣∣∣cosϑ−d

}
/

(
ε ∑

Nd

)1/2

,

B−d =

{
L

∑
j=1

f o
j sin

(
2πhrj

)
+

H

∑
j=1

f ′djsin
(
2πhrj

)
−

H

∑
j=1

f ′′djcos
(
2πhrj

)
+
∣∣∣µ−d ∣∣∣sinϑ−d

}
/

(
ε ∑

Nd

)1/2

where
f ′j = f 0

j + ∆ f ′j (3a)

and
f ′dj = f 0

j + ∆ f ′dj. (3b)

Now f 0
j does not vary when considered for the first or for the second wavelength independently

of whether Equation (3) refers to heavy or to light atoms.
Comparing Equation (3) with Equation (2) reveals the main difference between the FEL and the

usual two-wavelength MAD mathematical model. The FEL data imply a supplementary decay of the
scattering factor of the heavy atoms, which is generated by the crystal damage when passing from the
first to the second wavelength. However, there is significantly similarity between the two models so
thus, most of the mathematics developed for MAD by Giacovazzo and Siliqi [12] may also be used for
FEL with small modifications, which is shown in Section 3.

3. The Joint Probability Distribution P(E0H,E+,E+
d ,E−,E−d )

The characteristic function of

P
(

A0H , A+, A+
d , A−, A−d , BoH , B+, B+

d , B−, B−d
)
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may be written down as:

C
(
u0H , u+, u+

d , u−, u−d , v0H , v+, v+d , v−, v−d
)
≈

exp
{
− 1

4
[
k11
(
u2

0H + v2
0H
)
+ k22

(
u+2 + v+2)+ k33

(
u+2

d + v+2
d

)
+ k44

(
u−2 + v−2)

+ k55

(
u−2

d + v−2
d

)
+ 2k24(u+u− − v+v−) + 2k35

(
u+

d u−d − v+d v−d
)

+ 2k29(u+v− + v+u−) + 2k3,10
(
u+

d v−d +v+d u−d
)
+ 2k34

(
u+

d u− − v+d v−
)

+ 2k23
(
u+u+

d + v+v+d
)
+ 2k25

(
u+u−d − v+v−d

)
+ 2k2,10

(
u+v−d + v+u−d

)
+ 2k28

(
u+v+d − v+u+

d
)
+ 2k12

(
u0Hu+ + v0Hv+

)
+ 2k14

(
u0Hu− − v0Hv−

)
+2k17

(
u0Hv+ − v0Hu+

)
+ 2k19

(
u0Hv− + v0Hu−

)
+ 2k13

(
u0Hu+

d + v0Hv+d
)

+ 2k15
(
u0Hu−d − v0Hv−d

)
+ 2k18

(
u0Hv+d − v0Hu+

d
)
+ 2k1,10

(
u0Hv−d + v0Hu−d

)
(4)

where u0H , u+, u+
d , u−, u−d , v0H , v+, v+d , v−, v−d are the carrying variables associated with

A0H , A+, A+
d , A−, A−d , BoH , B+, B+

d , B−, B−d , respectively.
Equation (4) can also be written as:

C = exp
{
−1

4
(
UKU

)}
(5)

where
U =

[
u0H , u+, u+

d , u−, u−d , v0H , v+, v+d , v−, v−d
]

and K is the symmetric square matrix. The elements of K are specified as follows:

k11 = k66 = 1

k22 = k77 = e+ = 1 + σ+2 with σ+2 = <
∣∣µ+

∣∣2 >/

(
ε ∑

N

)

k33 = k88 = e+d = 1 + σ+2
d with σ+2

d = <
∣∣µ+

d

∣∣2 >/

(
ε ∑

Nd

)

k44 = k99 = e− = 1 + σ−2 with σ−2 = <
∣∣µ−∣∣2 >/

(
ε ∑

N

)

k55 = k10,10 = e−d = 1 + σ−2
d with σ−2

d = <
∣∣µ−d ∣∣2 >/

(
ε ∑

Nd

)

k12 = k14 = k67 = −k69 = S9/

(
0

∑
H

∑
N

)1/2

k13 = k15 = k68 = −k6,10 = S11/

(
0

∑
H

∑
Nd

)1/2

k16 = k27 = k38 = k49 = k5,10 = 0

k17 = k19 = k46 = −k26 = S10/

(
0

∑
H

∑
N

)1/2

k18 = k1,10 = −k36 = k56 = S12/

(
0

∑
H

∑
Nd

)1/2

k23 = k45 = k9,10 = k78 =

(
0

∑
L
+S5 + S6

)
/

(
∑
N

∑
Nd

) 1/2
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k24 = −k79 =

(
0

∑
L
+S1

)
/ ∑

N

k25 = k34 = −k7,10 = −k89 =

(
0

∑
L
+S5 − S6

)
/

(
∑
N

∑
Nd

) 1/2

k28 = −k37 = +k4,10 = −k59 = (S7 − S8)/

(
∑
N

∑
Nd

) 1/2

k29 = k47 = S3/ ∑
N

k2,10 = k39 = k48 = k57 = (S7 + S8)/

(
∑
N

∑
Nd

)1/2

k35 = −k8,10 =

(
0

∑
L
+S2

)
/ ∑

Nd

k3,10 = k58 = S4/ ∑
Nd

,

where
S1 = ∑

H

(
f ′2j − f

′′2
j

)
, S2 = ∑

H

(
f ′2dj − f

′′2
dj

)
, S3 = 2 ∑

H
f ′j f ′′j

S4 = 2 ∑
H

f ′dj f ′′dj, S5 = ∑
H

f ′j f ′dj, S6 = ∑
H

f ′′j f ′′dj

S7 = ∑
H

f ′j f ′′dj, S8 = ∑
H

f ′′j f ′dj, S9 = ∑
H

f o
j f ′j

S10 = ∑
H

f o
j f ′′j , S11 = ∑

H
f o
j f ′dj, S12 = ∑

H
f o
j f ′′dj

The formal expressions of the k and S parameters coincide with those obtained by Giacovazzo
and Siliqi for the usual two-wavelength MAD experiments. However, the f ′dj, according to Equation
(2b), implies a change in the normal jth heavy atoms scattering factor, which will influence the values
of all the S parameters that involves f ′dj.

In our mathematical treatment, ∆ f0j is implicitly assumed to be negative (it describes the passage
from a neutral to an ionic state). As ∆ f ′j is also usually negative, the value of ∆ f ′dj = ∆ f0j + ∆ f ′j is
expected to be largely negative, particularly for high ionization states. This effect may strongly reduce
the f ′dj values. As a result, the S parameters f ′dj are expected to be smaller for FEL data than for standard
MAD data.

In accordance with the above considerations, the joint probability distribution function
P
(

AoH , A+, A+
d , A−, A−d , BoH , B+, B+

d , B−, B−d
)

may be obtained by the Fourier inversion of the
characteristic function of Equation (5). Through the change of variables, we can obtain:

A0H = R0Hcosϕ0H , B0H = R0Hsin
↔
ϕ0H

A+ = R+cosϕ+, B+ = R+sinϕ+

A− = R−cosϕ−, B− = R−sinϕ−

A+
d = R+

d cosϕ+
d , B+

d = R+
d sinϕ+

d

A−d = R−d cosϕ−d , B−d = R−d sinϕ−d .
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The following joint probability distribution function is obtained:

P
(

R0H , R+, R−, R+
d , R−d , ϕa, ϕ+, . . . , ϕ−d

)
≈ π−5R0H R+R−R+

d R−d [det K]−1/2

exp
{
−
[
λ11(R0H)

2 + λ22(R+)
2
+ λ33(R+

d )
2
+ λ44(R−)2

+ λ55(R−d )
2

+ 2λ23R+R+
d cos

(
ϕ+ − ϕ+

d
)
− 2λ28R+R+

d sin
(

ϕ+ − ϕ+
d
)

+ 2λ24R+R−cos(ϕ+ + ϕ−) + 2λ29R+R− sin(ϕ+ + ϕ−)
+ 2λ25R+R−d cos

(
ϕ+ + ϕ−d

)
+ 2λ2,10R+R−d sin

(
ϕ+ + ϕ−d

)
+ 2λ34R−R+

d cos
(

ϕ− + ϕ+
d
)
+ 2λ39R−R+

d sin
(

ϕ− + ϕ+
d
)

+ 2λ35R+
d R−d cos

(
ϕ+

d + ϕ−d
)
+ 2λ3,10R+

d R−d sin
(

ϕ+
d + ϕ−d

)
+ 2λ45R−R−d cos

(
ϕ− − ϕ−d

)
− 2λ4,10R−R−d sin

(
ϕ− − ϕ−d

)
+ 2λ12R0H R+cos

(
ϕ0H − ϕ+

)
− 2λ17R0H R+ sin

(
ϕ0H − ϕ+

)
+ 2λ13R0H R+

d cos
(

ϕ0H − ϕ+
d
)
− 2λ18R0H R+

d sin
(

ϕ0H − ϕ+
d
)

+ 2λ14R0H R−cos
(

ϕ0H + ϕ−
)
− 2λ19R0H R− sin

(
ϕ0H + ϕ−

)
+ 2λ15R0H R−d cos

(
ϕ0H + ϕ−d

)
+ 2λ1,10R0H R−d sin

(
ϕ0H + ϕ−d

)
]},

(6)

where λpq are the elements of the matrix K−1.
The distribution found in Equation (6) is the main result of this paper.
In accordance with Giacovazzo and Siliqi and based on Equation (6), the conditional probability

may be obtained:
P
(

R0H
∣∣R+, R−, R+

d , R−d
)

(7)

From this, the conditional mean value is:

<
(

R0H
∣∣R+, R−, R+

d , R−d
)
>≈ 1

2
(π/λ11)

1/2
(

1 +
4
π

X2

λ11

) 1
2

, (8)

where:
X2 = Q1

2+ Q2
2

Q1 = λ12R1 + λ13R2 + λ14G1 + λ15G2

Q2 = λ17R1 + λ18R2 − λ19G1 − λ1,10G2.

The details of the mathematical derivation may be found in the referenced paper. In this paper,
the standard deviation associated with the estimate of Equation (8) was calculated to be:

σR0a =
[
< R2

oa

∣∣∣.. > − < Roa

∣∣∣.. >2
]1/2

=
[(

1− π

4

)
λ−1

11

]1/2

so that
< Roa|.. >

σRoa

=

[
π/4+X2/λ11

1− π/4

]1/2

. (9)

Since λ11 is always expected to be positive, the expected values of < Roa > and σRoa are always
positive. The reflections with the largest values of the ratio found in Equation (9) are likely to be the
most useful ones.

4. Conclusions

We have described a probabilistic approach for modelling the crystal structure factors when the
crystal is damaged due to the strong impact of FEL radiation on the crystal sample. This involves
using corresponding data to solve the crystal structure. The calculations show that the mathematical
formulation described by Giacovazzo and Siliqi [12] may also be applied to FEL data, provided that
suitable modifications are introduced in the parameters depending on the scattering factors.



Crystals 2018, 8, 175 9 of 11

Author Contributions: Benedetta Carrozzini, Giovanni Luca Cascarano and Carmelo Giacovazzo conceived the
theory; Carmelo Giacovazzo wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviation

ε
statistical Wilson coefficient (corrected for expected
intensities in reciprocal lattice zones).

L , H
number of non-hydrogen light and heavy atoms in the
unit cell, respectively. Their values do not vary when
considered in the undamaged or damaged crystals.

N = L + H
number of non-hydrogen atomic positions in the unit cell,
for the undamaged and the damaged crystals.

f j = f 0
j + ∆ f j + i f ′′j = f ′j + i f ′′j

scattering factor of the jth atom. f ′ is its real and f ” is its
imaginary part. The thermal factor is included.

∑N =
N
∑

j=1

(
f ′2j + f

′′2
j

)
, the summation is calculated for the undamaged crystal

and is extended to all the atoms in the unit cell.

∑Nd =
N
∑

j=1

(
f ′2dj + f

′′2
dj

)
, the summation is calculated for the damaged crystal and

is extended to all the atoms in the unit cell.

∑0
L =

L
∑

j=1

(
f o
j

)2 the summation is extended to all the light atoms in the
unit cell.

∑0
H =

H
∑

j=1

(
f o
j

)2 the summation is extended to all the heavy atoms in the
unit cell.

F = |F|exp(iϕ) =
N
∑

j=1
f jexp

(
2πihrj

)
structure factor of the undamaged crystal

E =
∣∣∣F∣∣∣exp(iϕ)/(ε ∑N)1/2 = Rexp(iϕ) = A + iB normalized structure factor of the undamaged crystal.

Fd =
∣∣Fd

∣∣exp
(
iϕd
)
=

Nd
∑

j=1
fdjexp

(
2πihrj

)
structure factor of the damaged crystal.

Ed =
∣∣Fd

∣∣exp(iϕ)/(ε ∑dN)1/2 = Rdexp
(
iϕd
)
= Ad + iBd normalized structure factor of the damaged crystal

F0H = |F0H | exp(iϕ0H) =
H
∑

j=1
f o
j exp

(
2πhrj

) normal structure factor for the heavy atom substructure
(anomalous scattering excluded).

E0H =
∣∣F0H

∣∣exp(iϕ0H)/(ε ∑0H)1/2 = R0Hexp
(
iϕ0H

)
= A0H + iB0H

normalized structure factor of the normal heavy atom
substructure (anomalous scattering excluded).

FH = |FH | exp(iϕH) =
H
∑

j=1
f j exp

(
2πhrj

)
structure factor of the heavy atom substructure.

MIR, MAD, MIRAS

multiple isomorphous replacement, multiple anomalous
dispersion, multiple isomorphous replacement combined
with anomalous scattering techniques, respectively. For
brevity, we include into the above definitions the
particular cases of SIR (single isomorphous replacement),
SAD (single anomalous dispersion) and SIRAS (single
isomorphous replacement combined with anomalous
scattering techniques).

References

1. Blow, D.M.; Crick, F.H.C. The treatment of errors in the isomorphous replacement method. Acta Cryst. 1959,
12, 794–802. [CrossRef]

2. Blow, D.M.; Rossmann, M.G. The single isomorphous replacement method. Acta Cryst. 1961, 14, 1195–1202.
[CrossRef]

3. North, A.C.T. The combination of isomorphous replacement and anomalous scattering data in phase
determination of non-centrosymmetric reflexions. Acta Cryst. 1965, 18, 212–216. [CrossRef]

4. Mathews, B.W. The extension of the isomorphous replacement method to include anomalous scattering
measurements. Acta Cryst. 1966, 20, 82–86. [CrossRef]

5. Burla, M.C.; Carrozzini, B.; Cascarano, G.L.; Giacovazzo, C.; Polidori, G.; Siliqi, D. MAD phasing:
Probabilistic estimate of |Foa|. Acta Cryst. 2002, D58, 928–935. [CrossRef]

6. Burla, M.C.; Carrozzini, B.; Cascarano, G.L.; Giacovazzo, C.; Polidori, G. SAD or MAD phasing: Location of
the anomalous scatterers. Acta Cryst. 2003, D59, 662–669. [CrossRef]

7. Terwilliger, T.C.; Eisenberg, D. Isomorphous replacement: Effects of errors on the phase probability
distribution. Acta Cryst. 1987, A43, 6–13. [CrossRef]

http://dx.doi.org/10.1107/S0365110X59002274
http://dx.doi.org/10.1107/S0365110X61003454
http://dx.doi.org/10.1107/S0365110X65000488
http://dx.doi.org/10.1107/S0365110X6600015X
http://dx.doi.org/10.1107/S0907444902004195
http://dx.doi.org/10.1107/S0907444903002129
http://dx.doi.org/10.1107/S0108767387099987


Crystals 2018, 8, 175 10 of 11

8. Miller, R.; Gallo, S.M.; Khala, M.G.; Weeks, C.M. SnB: Crystal structure determination via shake-and-bake.
J. Appl. Cryst. 1994, 27, 613–621. [CrossRef]

9. Sheldrick, G.M.; Gould, R.G. Structure solution by iterative peaklist optimization and tangent expansion in
space group P1. Acta Cryst. 1995, B51, 423–431. [CrossRef]

10. Pähler, A.; Smith, J.L.; Hendrickson, W.A. A probability representation for phase information from
multiwavelength anomalous dispersion. Acta Cryst. 1990, A46, 537–540. [CrossRef]

11. Terwilliger, T.C. MAD phasing: Bayesian estimates of FA. Acta Cryst. 1994, D50, 11–16. [CrossRef]
12. Giacovazzo, C.; Siliqi, D. The method of joint probability distribution functions applied to SIR-MIR and to

SIRAS-MIRAS cases. Acta Cryst. 2002, A58, 590–597. [CrossRef]
13. Giacovazzo, C.; Siliqi, D. Phasing via SAD/MAD data: The method of the joint probability distribution

functions. Acta Cryst. 2004, D60, 73–82. [CrossRef]
14. Gaffney, K.J.; Chapman, H.N. Imaging atomic structure and dynamics with ultrafast X-ray scattering. Science

2007, 316, 1444–1448. [CrossRef] [PubMed]
15. Neutze, R.; Wouts, R.; van der Spoel, D.; Weckert, E.; Hajdu, J. Potential for biomolecular imaging with

femtosecond X-ray pulses. Nature 2000, 406, 752–757. [CrossRef] [PubMed]
16. Chapman, H.N.; Barty, A.; Bogan, M.J.; Boutet, S.; Frank, M.; Hau-Riege, S.P.; Marchesini, S.; Woods, B.W.;

Bajt, S.; Benner, W.H.; et al. Femtosecond Diffractive Imaging with a Soft-X-ray Free-Electron Laser. Nat. Phys.
2006, 2, 839–843. [CrossRef]

17. Chapman, H.N.; Nugent, K.A. Coherent lensless X-ray imaging. Nat. Photonics 2010, 4, 833–839. [CrossRef]
18. Mancuso, A.P.; Schropp, A.; Reime, B.; Stadler, L.M.; Singer, A.; Gulden, J.; Streit-Nierobisch, S.; Gutt, C.;

Grübel, G.; Feldhaus, J.; et al. Coherent-Pulse 2D Crystallography Using a Free-Electron Laser X-ray Source.
Phys. Rev. Lett. 2009, 102, 035502. [CrossRef] [PubMed]

19. Chapman, H.N.; Fromme, P.; Barty, A.; White, T.A.; Kirian, R.A.; Aquila, A.; Hunter, M.S.; Schulz, J.;
DePonte, D.P.; Weierstall, U.; et al. Femtosecond X-ray protein nanocrystallography. Nature 2011, 470, 73–77.
[CrossRef] [PubMed]

20. Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution
microscopy of unstained biological molecules. Q. Rev. Biophys. 1995, 28, 171–193. [CrossRef] [PubMed]

21. Howells, M.R.; Beetz, T.; Chapman, H.N.; Cui, C.; Holton, J.M.; Jacobsen, C.J.; Kirz, J.; Lima, E.; Marchesini, S.;
Miao, H.; et al. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction
microscopy. J. Electron Spectrosc. Relat. Phenom. 2009, 170, 4–12. [CrossRef] [PubMed]

22. Son, S.-K.; Young, L.; Santra, R. Impact of hollow-atom formation on coherent X-ray scattering at high
intensity. Phys. Rev. 2011, A83, 033402. [CrossRef]

23. Blake, C.; Phillips, D.C. Effects of X-irradiation on single crystals of myoglobin. In Proceedings of the
Symposium on the Biological Effects of Ionising radiation at the Molecular Level, Brno, Czechoslovakia,
2–6 July 1962; pp. 183–191.

24. Ravelli, R.B.-G.; Leiros, H.K.; Pan, B.; Caffrey, M.; McSweeney, S. Specific radiation damage can be used to
solve macromolecular crystal structures. Structure 2003, 11, 217–224. [CrossRef]

25. Nanao, M.H.; Sheldrick, G.M.; Ravelli, R.B.G. Improving radiation-damage substructures for RIP. Acta Cryst.
2005, D61, 1227–1237. [CrossRef] [PubMed]

26. Galli, L.; Son, S.K.; Barends, T.R.; White, T.A.; Barty, A.; Botha, S.; Boutet, S.; Caleman, C.; Doak, R.B.;
Nanao, M.H.; et al. Towards phasing using high X-ray intensity. IUCrJ 2015, 2, 627–634. [CrossRef] [PubMed]

27. Galli, L.; Son, S.-K.; Klinge, M.; Bajt, S.; Barty, A.; Bean, R.; Betzel, C.; Beyerlein, K.R.; Caleman, C.; Doak, R.B.;
et al. Electronic damage in S atoms in a native protein crystal induced by an intense X-ray free-electron laser
pulse. Struct. Dyn. 2015, 2, 041703. [CrossRef] [PubMed]

28. Barty, A.; Caleman, C.; Aquila, A.; Timneanu, N.; Lomb, L.; White, T.A.; Andreasson, J.; Arnlund, D.;
Bajt, S.; Barends, T.R.M.; et al. Self-terminating diffraction gates femtosecond X-ray nanocrystallography
measurements. Nat. Photonics 2012, 6, 35–40. [CrossRef] [PubMed]

29. Lomb, L.; Barends, T.R.M.; Kassemeyer, S.; Aquila, A.; Epp, S.W.; Erk, B.; Foucar, L.; Hartmann, R.; Rudek, B.;
Rolles, D.; et al. Radiation damage in protein serial femtosecond crystallography using an X-ray free-electron
laser. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 84, 21411. [CrossRef] [PubMed]

30. Nass, K.; Foucar, L.; Barends, T.R.; Hartmann, E.; Botha, S.; Shoeman, R.L.; Doak, R.B.; Alonso-Mori, R.;
Aquila, A.; Bajt, S.; et al. Indications of radiation damage in ferredoxin microcrystals using high-intensity
X-FEL beams. J. Synchrotron Radiat. 2015, 22, 225–238. [CrossRef] [PubMed]

http://dx.doi.org/10.1107/S0021889894000191
http://dx.doi.org/10.1107/S0108768195003661
http://dx.doi.org/10.1107/S0108767390002379
http://dx.doi.org/10.1107/S0907444993008224
http://dx.doi.org/10.1107/S010876730201632X
http://dx.doi.org/10.1107/S0907444903022406
http://dx.doi.org/10.1126/science.1135923
http://www.ncbi.nlm.nih.gov/pubmed/17556577
http://dx.doi.org/10.1038/35021099
http://www.ncbi.nlm.nih.gov/pubmed/10963603
http://dx.doi.org/10.1038/nphys461
http://dx.doi.org/10.1038/nphoton.2010.240
http://dx.doi.org/10.1103/PhysRevLett.102.035502
http://www.ncbi.nlm.nih.gov/pubmed/19257367
http://dx.doi.org/10.1038/nature09750
http://www.ncbi.nlm.nih.gov/pubmed/21293373
http://dx.doi.org/10.1017/S003358350000305X
http://www.ncbi.nlm.nih.gov/pubmed/7568675
http://dx.doi.org/10.1016/j.elspec.2008.10.008
http://www.ncbi.nlm.nih.gov/pubmed/20463854
http://dx.doi.org/10.1103/PhysRevA.83.033402
http://dx.doi.org/10.1016/S0969-2126(03)00006-6
http://dx.doi.org/10.1107/S0907444905019360
http://www.ncbi.nlm.nih.gov/pubmed/16131756
http://dx.doi.org/10.1107/S2052252515014049
http://www.ncbi.nlm.nih.gov/pubmed/26594370
http://dx.doi.org/10.1063/1.4919398
http://www.ncbi.nlm.nih.gov/pubmed/26798803
http://dx.doi.org/10.1038/nphoton.2011.297
http://www.ncbi.nlm.nih.gov/pubmed/24078834
http://dx.doi.org/10.1103/PhysRevB.84.214111
http://www.ncbi.nlm.nih.gov/pubmed/24089594
http://dx.doi.org/10.1107/S1600577515002349
http://www.ncbi.nlm.nih.gov/pubmed/25723924


Crystals 2018, 8, 175 11 of 11

31. Giacovazzo, C.; Ladisa, M.; Siliqi, D. Crystal structure solution of proteins by direct methods: An automatic
procedure for SIR-MIR and SIRAS-MIRAS cases. Acta Cryst. 2002, A58, 598–604. [CrossRef]

32. Lomb, L.; Barends, T.R.; Kassemeyer, S.; Aquila, A.; Epp, S.W.; Erk, B.; Foucar, L.; Hartmann, R.; Rudek, B.;
Rolles, D.; et al. De novo protein crystal structure determination from X-ray free-electron laser data. Nature
2014, 505, 244–247. [CrossRef]

33. Hau-Riege, S.P.; Bennion, B.J. Reproducible radiation-damage processes in proteins irradiated by intense
X-ray pulses. Phys. Rev. 2015, E91, 022705. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1107/S0108767302016331
http://dx.doi.org/10.1038/nature12773
http://dx.doi.org/10.1103/PhysRevE.91.022705
http://www.ncbi.nlm.nih.gov/pubmed/25768529
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Mathematical Model 
	The Joint Probability Distribution P(E0H,E+,Ed+,E-,Ed-)  
	Conclusions 
	References

