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Abstract: A8Tl11 (A = alkali metal) compounds have been known since the investigations of
Corbett et al. in 1995 and are still a matter of current discussions as the compound includes one extra
electron referred to the charge of the Tl11

7− cluster. Attempts to substitute this additional electron by
incorporation of a halide atom succeeded in the preparation of single crystals for the lightest triel
homologue of the group, Cs8Ga11Cl, and powder diffraction experiments for the heavier homologues
also suggested the formation of analogous compounds. However, X-Ray single crystal studies on
A8Tl11X to prove this substitution and to provide a deeper insight into the influence on the thallide
substructure have not yet been performed, probably due to severe absorption combined with air and
moisture sensitivity for this class of compounds. Here, we present single crystal X-Ray structure
analyses of the new compounds Cs8Tl11Cl0.8, Cs8Tl11Br0.9, Cs5Rb3Tl11Cl0.5, Cs5.7K2.3Tl11Cl0.6 and
K4Rb4Tl11Cl0.1. It is shown that a (partial) incorporation of halide can also be indirectly determined
by examination of the Tl-Tl distances, thereby the newly introduced cdd/cdav ratio allows to evaluate
the degree of distortion of Tl11

7− clusters.

Keywords: thallide; intermetallics; single crystal; X-ray structure analysis

1. Introduction

Naked cluster anions of the main group elements are well-known for group 14 and 15 elements in
solid-state [1–4]. Most of these compounds can be described in terms of the Zintl-Klemm concept [5–7]
by formally transferring the valence electrons of the electropositive element to the electronegative
under formation of salt-like structures, so called polyanionic salts. Homoatomic group 14 or 15 element
polyanions are known since Zintl himself in 1930 stated the existence of Pb9

4− during potentiometric
titrations in liquid ammonia solutions [5]. In contrast, the existence of naked group 13 element clusters
is not self-evident due to lower values for the electron affinity of group 13 elements which results
in a predominantly metallic character of the analogous compounds [3,8]. The first naked thallium
cluster was described in 1967 by Hansen and Smith in the binary solid-state compound Na2Tl [9],
which contains Tl4 tetrahedra with a calculated formal charge of −8 by assuming complete electron
transfer. These tetrahedral assemblies are related to the structures of ATt (A: alkali metal, Tt: group
14 element) [10–12] and white phosphorus due to their formal iso-(valence)-electronic character. The
largest (empty) thallide cluster is represented by the Tl11

7− cluster which is present in binary materials
A8Tl11 [13,14] and A15Tl27 [15] (A = K, Rb, Cs). The A8Tr11 (Tr = group 13 element) structure type was
first described in 1991 for the lighter homologue indium in K8In11 [16], of which the crystal structure
proved the presence of a naked, pentacapped trigonal prismatic shaped In11 cluster, which was
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assigned a charge of −7. Additionally, one extra-electron per formula unit is present, being responsible
for the metallic character. The additional electron, referred to the charge of −7 of the cluster anion,
is not necessary for the stability of the clusters [17] and can be replaced by halide atoms, which are
located on a −3 void (Wyckoff position 6b) at the origin of the unit cell resulting in a diamagnetic
character of the compounds. Halide incorporation was proven for the lighter homologue of the group,
Cs8Ga11Cl by X-ray single crystal structure analysis [18]. Powder diffraction experiments suggested the
formation of the heavier homologues Rb8Ga11Cl, Cs8Ga11X (X = Br, I), Rb8In11Cl, Cs8In11Cl, Cs8Tl11X
(X = Cl, Br, I). Recently, continuative studies on halides A8Tr11 (Tr = Ga, In) have been reported [19].
However, the formation of Rb8Tl11Cl was termed as doubtful due to the lack of a significant change in
the lattice constants compared to the binary phase Rb8Tl11, which also is a common problem for the
remaining halide including thallides of this structure family. Therefore, well-resolved single crystal
X-ray diffraction studies should provide a deeper insight into the involvement and the role of halide
in A8Tl11X compounds. Thereby, we concentrated on the heavier alkali metals K, Rb and Cs as for
sodium no experimental evidence of Tl11 clusters is reported.

The questions we wanted to answer were: (1) How does the geometry of the thallide cluster
change on halide incorporation; (2) Is there a Rb8Tl11Cl? (3) How do mixed cation sites affect the
amount of halide incorporation?

In Section 3 (Results), we report on the first single crystal X-Ray structure determination
of halide including thallides, Cs8Tl11Cl0.8, Cs8Tl11Br0.9, Cs5Rb3Tl11Cl0.5, Cs5.7K2.3Tl11Cl0.6 and
K3.98Rb4.02Tl11Cl0.1. Subsequently, (Section 4, Discussions), the crystal structures are investigated
according to the questions listed above.

2. Materials and Methods

All compounds have been synthesized via a stoichiometric approach using high temperature
solid state techniques. Cesium and rubidium were produced by the reduction of the corresponding
alkali metal halide with elemental calcium [20] and distilled twice, potassium was segregated for
purification. Thallium lumps have been stored under inert atmosphere and were used without further
purification. The starting materials were enclosed in tantalum crucibles (for stoichiometric approaches
see Appendix A) which were subsequently placed in quartz glass ampoules and sealed under argon
atmosphere. The same temperature program was used for all compounds: Heating to 700 ◦C with a
heating rate of 50 ◦C/h, holding for 24 h, cooling to room temperature with a cooling rate of 3 ◦C/h to
allow for crystallization.

All compounds are very sensitive towards moisture and oxygen and degeneration of the crystals
was observed (gassing) in dried mineral oil within few hours. Suitable single crystals for X-ray
structure analysis were isolated in dried mineral oil and mounted on a Rigaku SuperNova (Rigaku
Polska Sp. Z o. o. Ul, Wroclaw, Poland) (Mo-source, Eos detector) using MiTeGen loops. Thereby, the
transfer needed to be very quick as the crystals started to decompose as soon as the mineral oil film
became too thin. Once being placed on the diffractometer in the nitrogen stream at 123 K the crystals
remained stable and data collection was possible.

Powder diffraction samples were measured in sealed capillaries (0.3–0.5 mm) on a Powder on
a STOE Stadi P diffractometer (STOE, Darmstadt, Germany) (monochromatic Mo-Kα1 radiation
λ = 0.70926 Å) equipped with a Dectris Mythen 1 K detector.

3. Results

All compounds crystallize in the K8In11 structure type (rhombohedral, spacegroup R−3c) and
especially for the mixed alkali metal compounds many of the crystals happened to form typical
“multicrystals”. Due to the presence of reverse/obverse twinning a R(obv) filter was applied during
data reduction [21]. The materials naturally possess very high absorption coefficients (µ > 60 mm−1),
therefore small single crystals have been chosen for the X-ray analyses. However, the data sets
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still suffer from severe absorption effects which could be reduced by carefully applying numerical
absorption correction [21]. Thereby, the adjustment of the correct shape played a dominant role.

Table 1 lists the data for the structure determination. For the chloride including compounds two
additional, unresolved but several times reproduced residual electron density peaks (≈1.5 Å beside the
chlorine atom, ≈2.2 Å beside cesium; along the c-axis) are present, which we attribute to unresolved
absorption effects as this direction is along the thinnest direction of the plate like crystals. For the
bromine including compound this effect is not as dominant as for the chlorine including ones but still
is observed.

Table 1. Crystal data and structure refinement details.

Compound Cs8Tl11Cl0.80 Cs8Tl11Br0.92 Cs5.13Rb2.87Tl11Cl0.49 Cs5.67K2.33Tl11Cl0.60 K3.98Rb4.02Tl11Cl0.1

CSD number * 434541 434540 434539 434538 1856564
Mr [g·mol−1] 3339.71 3385.20 3192.52 3114.02 2751.04

Crystal system Trigonal Trigonal Trigonal Trigonal Trigonal
Space group R-3c R−3c R-3c R-3c R-3c

a [Å] 10.4691 (4) 10.5608 (3) 10.3791 (5) 10.3291 (9) 10.0948 (4)
b [Å] 10.4691 (4) 10.5608 (3) 10.3791 (5) 10.3291 (9) 10.0948 (4)
c [Å] 53.297 (3) 53.401(2) 52.437 (3) 51.909 (5) 51.0274 (18)
α [◦] 90 90 90 90 90
β [◦] 90 90 90 90 90
γ [◦] 120 120 120 120 120

V [Å3] 5058.8 (5) 5157.9 (4) 4892.0 (5) 4796.3 (9) 4503.3 (4)
Z 6 6 6 6 6

F(000) 8068.0 8180.0 7726.0 7544.0 6703.0
ρcalc [g·cm−3] 6.578 6.539 6.502 6.469 6.087
µ [mm−1] 60.902 60.745 64.052 61.908 65.822

2θ-range for data
collection [◦] 7.59 to 58.982 7.558 to 69.266 7.694 to 54.202 7.758 to 54.198 7.91 to 69.18

Reflections
collected/independent 79177/1473 12097/2374 3174/1194 3394/1176 5040/1934

Data/restraints/parameters 1473/0/36 2374/0/36 1194/0/34 1176/0/34 1934/1/37
Goodness-of-fit on F2 1.244 1.136 1.089 1.148 1.033

Final R indices [I > 2σ(I)] R1 = 0.0280
wR2 = 0.0619

R1 = 0.0242
wR2 = 0.0528

R1 = 0.0392
wR2 = 0.0928

R1 = 0.0456
wR2 = 0.0996

R1 = 0.0242
wR2 = 0.0461

R indices (all data) R1 = 0.0309
wR2 = 0.0629

R1 = 0.0280
wR2 = 0.0541

R1 = 0.0466
wR2 = 0.0970

R1 = 0.0566
wR2 = 0.1034

R1 = 0.0292
wR2 = 0.0478

Rint 0.0497 0.0385 0.0446 0.0449 0.0280
Largest diff. peak/hole

[e·Å−3] 2.96/−1.38 1.83/−3.38 4.82/−2.29 3.62/−2.21 1.48/−1.67

* Further details of the crystal structure investigation(s) may be obtained from The Cambridge Crystallographic
data centre CCDC on quoting the deposition number CSD-xxxxxx or the the deposition number CCDC-xxxxxxx at
https://www.ccdc.cam.ac.uk/structures/?

With only cesium being present in Cs8Tl11Cl0.8 and Cs8Tl11Br0.9 we obtained phase pure materials
according to the powder diffraction pattern of the bulk material (Figure 1; refined cell contstants at
room temperature: Cs8Tl11Cl0.8: a = 10.566 (5) Å, c = 53.67 (3) Å, R−3c; Cs8Tl11Br0.9: a = 10.613 (3) Å,
c = 53.680 (19) Å).

The well-crystallized Cs8Tl11X crystals and the resulting good quality single crystal diffraction
data allowed the splitting of one alkali metal position according to the site occupancy factor (s.o.f.) of
the halide atom (see Section 4.3).

For the mixed alkali metal compounds, we always additionally observed less reduced A15Tl27

phases as a side product. This observation became reasonable when we determined the NE value
(number of electrons per thallium atom) which sums up to a value of 8/11 = 0.72 for A8Tl11,
15/27 = 0.55 for A15Tl27 and 7/11 = 0.63 for A8Tl11X. The formation of less reduced A15Tl27 were
completely comprehensible if the higher reduced A8Tl11Xx (x << 1) phases would have formed when
the halide content was significantly less than 1, because the overall degree of reduction was given by
the stoichiometric approach for A8Tl11X. If less halide was incorporated, this is according to a higher
degree of reduction and consequently, a less reduced phase was formed in addition. The remaining
halide re-crystallized as (mixed) AX, of which we also could observe single crystals. The crystals for
the mixed alkali metal compounds A8Tl11Xx happened to form multicrystals together with A15Tl27

https://www.ccdc.cam.ac.uk/structures/?
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and for the reported single crystals (except K4Rb4Tl11Cl0.1) the data quality was worse compared
to Cs8Tl11X phases. Therefore, the splitting of the alkali metal position could only be observed for
K4Rb4Tl11Cl0.1, for the remaining mixed alkali compounds splitting positions could not be reasonably
introduced. In these cases, we only refined the s.o.f. of the halide (see Section 4.3).
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Figure 1. Measured (a) and calculated (c) powder diffraction patterns of Cs8Tl11Cl0.8; Measured (b) and
calculated (d) powder diffraction patterns of Cs8Tl11Br0.9 (diffractograms generated by the program
STOE WinXPOW [22]).

4. Discussions

4.1. How Does the Geometry of the Thallide Cluster Change on Halide Incorporation?

All A8Tl11 and A8Tl11Xx compounds include Tl11
7− clusters, which are best described as a very

compressed, fivefold-capped trigonal prism (Figure 2). Three symmetry independent thallium atoms
are located on three different Wyckoff positions of space group R-3c: Tl1(12c; 3-fold rotational axis),
Tl2 (36f ; general position) and Tl3 (18e; 2-fold rotational axis) build a cluster consisting of 11 Tl atoms
with point group D3. The deviations from point group D3h are very small and are represented by a
distortion of the height of the trigonal prism built by Tl3-atoms. This distortion is also reflected in
the distances of Tl2–Tl3 (d(Tl2–Tl3): = cd) as there are two crystallographic independent distances
present (d(Tl2–Tl3) = d(Tl2–Tl3#5); d(Tl3#3–Tl2) = d(Tl3#2–Tl2)). The degree of distortion decreases
with increasing similarity of the capping distances (cd).
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7− cluster which results in the point group D3 for the cluster; Symmetry operations for the
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In Tables 2 and 3 the distances as well as the distortion angles are listed and the dependence
on the amount of halide incorporation is clearly evident. In contrast, the height of the trigonal
prism (Tl3–Tl3) as well as the distance of the capping atom Tl2 to the mean plane built by Tl3 atoms
[d(Tl2-plane) = 0.5 Å in all compounds] do not significantly change. Based on these observations
we introduced a cdd/cdav ratio (cdd: capping distance difference; cdav: average capping distance;
(Equation (1)) which allowed for a quick estimation of the degree of distortion. The dependence of the
cdd/cdav ratio on the amount of halide is conspicuous and therefore allows for the evaluation of the
involvement of halide atoms by solely analyzing the distances between heavy atom positions.

Table 2. Selected distances in [Å] (numbering scheme according to, values taken from [1,15]), tilt angle
and cdd/cdav value for K8Tl11 and Rb8Tl11.

Atom 1 Atom 2 K8Tl11 Rb8Tl11

Tl2 Tl3 3.0476 (4) 3.060
Tl2 Tl33 3.1396 (4) 3.157
Tl1 Tl31 3.1304 (4) 3.147
Tl3 Tl33 3.2054 (7) 3.219

Tilt [◦] 4.69 (2) 4.90
cdd/cdav [%] 2.97 3.12

Table 3. Selected distances in [Å] (numbering scheme according to), tilt angle and cdd/cdav value for
Cs8Tl11Cl0.8, Cs8Tl11Br0.9, Cs5Rb3Tl11Cl0.5 and Cs5.7K2.3Tl11Cl0.6 and K4Rb4Tl11Cl0.1.

Atom 1 Atom 2 Cs8Tl11Cl0.8 Cs8Tl11Br0.9 Cs5Rb3Tl11Cl0.5 Cs5.7K2.3Tl11Cl0.6 K4Rb4Tl11Cl0.1

Tl2 Tl3 3.0656 (4) 3.0743 (2) 3.0605 (6) 3.0554 (7) 3.0564 (2)
Tl2 Tl33 3.0632 (4) 3.0766 (2) 3.0896 (6) 3.0656 (4) 3.1298 (3)
Tl1 Tl31 3.0894 (4) 3.1006 (2) 3.1049 (7) 3.0884 (8) 3.1274 (3)
Tl3 Tl33 3.2019 (11) 3.2102 (4) 3.2025 (11) 3.1873 (11) 3.2104 (4)

Tilt [◦] 0.12 (2) 0.069 (7) 0.94 (2) 0.34 (5) 2.352 (7)
cdd/cdav [%] 0.08 0.07 0.95 0.32 2.38

cdd
cdav

=
|cd2 − cd1|(

cd2+cd1
2

) ; cd1 ≤ cd2 (1)
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4.2. Is There a Rb8Tl11Cl?

Despite numerous efforts we did not succeed in producing crystals of Rb8Tl11Cl of sufficient
quality for a reliable determination of halide incorporation directly from the electron density maps.
The incorporation of halide cannot be completely ruled out at this point as there is some residual
electron density at Wyckoff position 6b according to the position of the halide atom in the previously
discussed compounds. The s.o.f. for a chlorine atom at this position refined to a value of 0.08. However,
the cdd/cdav ratio of 2.4% compared to 3.0% (K8Tl11) and 3.1% (Rb8Tl11) and a tilt angle of 2.4◦

(K8Tl11: 4.7◦, Rb8Tl11: 4.9◦) are very similar to the values found in K4Rb4Tl11Cl0.1 and suggest a
minimal involvement of chloride. Therefore, we assume that Rb8Tl11Cl does exist, but the amount of
incorporated chlorine is less than 10%, which also is in line with the stated observations of Corbett et
al. from powder diffraction experiments.

4.3. How Do Mixed Cation Sites Affect the Amount of Halide Incorporation?

It needs to be emphasized that for the preparation of all compounds the same stoichiometric
approach was employed and the dependence of the amount of halide incorporation on the cesium
content is conspicuous. Therefore, the cation positions needed to be examined more in detail. There
are two different cation positions in the asymmetric unit corresponding to Wyckoff position 36f for
A1 and Wyckoff position 12c for A2. For Cs8Tl11X the A2 position showed the previously mentioned
splitting. By taking this splitting as well as free s.o.f. values for the halide (later fixed at the s.o.f. value
for Cs2A) into account, a significantly improved model could be refined (Figure 3).
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Figure 3. Introduction of split positions and free s.o.f. values for the halide in Cs8Tl11Br0.9 results in an
improved model (residual electron density maps, generated by Olex2 [23]).

For Cs5Rb3Tl11Cl0.5 and Cs5.7K2.3Tl11Cl0.6 the position of A1 is mixed occupied by both alkali
metals and the s.o.f. values for cesium on the mixed position are very similar to the s.o.f. values of
the halide position. The position of A2 is only occupied by the heavier alkali metal cesium, which is
in accordance with the observations of Corbett et al. for the binary A8Tl11 phases [14]. In summary,
this would mean a favored halide incorporation when cesium is present on both crystallographically
independent alkali metal positions. To prove this assumption, we investigated the system K-Rb-Tl in a
stoichiometric approach to produce K4Rb4Tl11Cl which resulted in crystals of K4Rb4Tl11Cl0.1 (besides
the side products (K,Rb)15Tl27 and (K,Rb)Cl). Careful investigation of the data of K4Rb4Tl11Cl0.1

showed the splitting of the A2 position, whereby convergence of the refinement was achieved when
A1 and one splitting position are mixed occupied by Rb and K. The second splitting position Rb2A is
exclusively occupied by Rb. The overall s.o.f. for A2 was fixed at unity using a SUMP restraint. At the
max. peak of the residual electron density a chlorine atom was placed of which the s.o.f. refined at
0.103 (13) and was fixed according to the s.o.f. of Rb2A (Figure 4).



Crystals 2018, 8, 319 7 of 10

Crystals 2018, 8, x FOR PEER REVIEW  7 of 10 

 

 
Figure 4. Introduction of split positions and free s.o.f. values for the halide in K4Rb4Tl11Cl0.1 results in 
an improved model (residual electron density maps, generated by Olex2 adapted from [23], with 
permission from © 2011 Olex2 Wiley. 

The resulting coordination sphere of the halide is best described as distorted cubic, where the 
longer distances are along the room diagonal of the cubic arrangement from the halide to the 
position of A2. This distance shortens significantly for X-A2 by introducing split positions (same s.o.f. 
as halide), resulting in a less distorted cubic arrangement (Figure 5). This cubic arrangement greatly 
resembles the coordination of the halide in the CsCl structure type (d(Cs-Cl) = 3.573 Å; d(Cs-Br) = 
3.718 Å). The distances within the the distorted cubic arrangements as well as the s.o.f. values for the 
halide/split position in Cs8Tl11X (X = Cl or Br) and K4Rb4Tl11Cl0.1 are listed in Tables 4 and 5 lists 
distances as well as s.o.f. values of the mixed occupied sites within Cs5Rb3Tl11Cl0.5 and 
Cs5.7K2.3Tl11Cl0.6. 

  
(a) (b) 

Figure 5. Distorted cubic arrangement around the halide (a); respectively void (b). Cs1: x, y, z; Cs1#1: 
1 − y, x − y, z; Cs1#2: 1−x + y, 1 − x. z; Cs1#3: 4/3 − x, 2/3 − y, 2/3 − z; Cs1#4: 1/3 + y, 2/3 – x + y, 273 − z; 
Cs1#5: 1/3 + x − y, -1/3 + x, 2/3 − z; Cs2A/B: x, y, z; Cs2A/B#1: 4/3 − x, 2/3 − y, 2/3 − z. 

Table 4. Distances in [Å] within the distorted cubic arrangement around the halide/void and s.o.f. 
values for the halide/Cs2A (split position) in Cs8Tl11X (X = Cl or Br) and K4Rb4Tl11Cl0.1. 

Position 1–Position 2 Cs8Tl11Br0.9 Cs8Tl11Cl0.8 Position 1–Position 2 K4Rb4Tl11Cl0.1 
Cs2A-X1 3.990 (2) 3.991 (9) Rb2A-X1 3.80 (2) 

Cs2B-void 4.388 4.354 K2B/Rb2B-void 4.096 (3) 
Cs1-X1/void 3.6705 (4) 3.5876 (7) K1/Rb1-X1/void 3.5994 (9) 

s.o.f. (X1/Cs2A) 0.924 (6) 0.76 (2) s.o.f. (X1/Rb2A) 0.103 (13) 

 

Figure 4. Introduction of split positions and free s.o.f. values for the halide in K4Rb4Tl11Cl0.1 results in
an improved model (residual electron density maps, generated by Olex2 [23]).

The resulting coordination sphere of the halide is best described as distorted cubic, where the
longer distances are along the room diagonal of the cubic arrangement from the halide to the position
of A2. This distance shortens significantly for X-A2 by introducing split positions (same s.o.f. as halide),
resulting in a less distorted cubic arrangement (Figure 5). This cubic arrangement greatly resembles
the coordination of the halide in the CsCl structure type (d(Cs-Cl) = 3.573 Å; d(Cs-Br) = 3.718 Å). The
distances within the the distorted cubic arrangements as well as the s.o.f. values for the halide/split
position in Cs8Tl11X (X = Cl or Br) and K4Rb4Tl11Cl0.1 are listed in Tables 4 and 5 lists distances as well
as s.o.f. values of the mixed occupied sites within Cs5Rb3Tl11Cl0.5 and Cs5.7K2.3Tl11Cl0.6.
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Figure 5. Distorted cubic arrangement around the halide (a); respectively void (b). Cs1: x, y, z; Cs1#1:
1 − y, x − y, z; Cs1#2: 1 − x + y, 1 − x, z; Cs1#3: 4/3 − x, 2/3 − y, 2/3 − z; Cs1#4: 1/3 + y, 2/3 – x + y,
273 − z; Cs1#5: 1/3 + x − y, −1/3 + x, 2/3 − z; Cs2A/B: x, y, z; Cs2A/B#1: 4/3 − x, 2/3 − y, 2/3 − z.

Table 4. Distances in [Å] within the distorted cubic arrangement around the halide/void and s.o.f.
values for the halide/Cs2A (split position) in Cs8Tl11X (X = Cl or Br) and K4Rb4Tl11Cl0.1.

Position 1–Position 2 Cs8Tl11Br0.9 Cs8Tl11Cl0.8 Position 1–Position 2 K4Rb4Tl11Cl0.1

Cs2A-X1 3.990 (2) 3.991 (9) Rb2A-X1 3.80 (2)
Cs2B-void 4.388 4.354 K2B/Rb2B-void 4.096 (3)

Cs1-X1/void 3.6705 (4) 3.5876 (7) K1/Rb1-X1/void 3.5994 (9)
s.o.f. (X1/Cs2A) 0.924 (6) 0.76 (2) s.o.f. (X1/Rb2A) 0.103 (13)
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Table 5. Distances in [Å] within the cubic arrangement around the halide/void in Cs5Rb3Tl11Cl0.5 and
Cs5.7K2.3Tl11Cl0.6. The s.o.f. values for Cs at the mixed occupied A1 site resemble the s.o.f. values for
the halide (numbering scheme according to Figure 5).

Position 1–Position 2 Cs5Rb3Tl11Cl0.5 Cs5.7K2.3Tl11Cl0.6

A2-X1/void 4.099 (2) 4.002
A1-X1/void 3.6160 (13) 3.5492 (2)

s.o.f. (A1 = Cs) 0.521 (12) 0.612 (9)
s.o.f. (X1) 0.50 (4) 0.60 (4)

The same stoichiometric approach to produce the hitherto presented compounds also was
employed by using solely potassium. Here, we only observed well crystallized halide-free K8Tl11

and K15Tl27 phases. The previously stated stability of the halide including A8Tr11X phases might not
exclusively be caused by the effect of charge balance due to halide incorporation but by the stabilization
of a preferably heavier halide atom in a distorted cubic arrangement including cesium preferentially
(Figure 6). If less (or no) cesium is involved, then less (or even no) halide will be incorporated. If
rubidium is involved as the heaviest alkali metal, then the amount of incorporated halide seems to
be limited to approximately 10%. In return, the Tl11 clusters themselves seem to tolerate any charge
between 7− and 8−.
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Appendix

Stoichiometric approaches
Cs8Tl11Cl0.8: 0.445 g Cs (3.3 mmol), 1.076 g Tl (5.3 mmol Tl) and 0.081 g CsCl (0.51 mmol)
Cs8Tl11Br0.9: 0.413 g Cs (3.1 mmol), 0.998 g Tl (4.9 mmol Tl) and 0.091 g CsBr (0.44 mmol)
Cs5Rb3Tl11Cl0.5: 0.246 g Cs (1.9 mmol), 0.128 g Rb (1.5 mmol), 1.124 g Tl (5.5 mmol) and 0.061 g RbCl
(0.5 mmol)
Cs5.7K2.3Tl11Cl0.6: 0.264 g Cs (2 mmol), 0.058 g K (1.5 mmol), 1.117 g Tl (5.5 mmol) and 0.037 g KCl
(0.5 mmol)
K3.98Rb4.02Tl11Cl0.1: 0.154 g Rb (1.8 mmol), 0,052 g K (1.3 mmol), 1.0134 g Tl (5 mmol) and 0.034 g KCl
(0.45 mmol)
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