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Abstract: Two new three-dimensional (3D) coordination compounds, namely a lead(Il) coordination
polymer (CP) {[Pbs(us-cpta)(ng-cpta)(phen),]-2H,0}, (1) and a zinc(II) metal-organic framework
(MOF) {[Zny(ps-cpta)(n-OH)(u-4,4'-bipy)]-6H,On  (2), were hydrothermally assembled from
2-(5-carboxypyridin-2-yl)terephthalic acid (Hscpta) as an unexplored principal building block and
aromatic N,N-donors as crystallization mediators. Both products were isolated as air-stable
microcrystalline solids and were fully characterized by IR spectroscopy, elemental and thermogravimetric
analysis, and powder and single-crystal X-ray diffraction. Structural and topological features of CP 1
and MOF 2 were analyzed in detail, allowing to identify a topologically unique 4,5,5,6-connected
net in 1 or a very rare 4,4-connected net with the isx topology in 2. Thermal stability and
solid-state luminescent behavior of 1 and 2 were also investigated. Apart from revealing a notable
topological novelty, both compounds also represent the first structurally characterized Pb(II) and
Zn(Il) derivatives assembled from Hjcpta, thus opening up the application of this unexplored
pyridine-tricarboxylate block in the design of new metal-organic architectures.

Keywords: metal-organic frameworks; hydrothermal synthesis; crystal structure; coordination
chemistry; coordination polymers

1. Introduction

The research on metal-organic frameworks (MOFs) has become a very hot topic in materials
science, especially given their almost infinite structural diversity [1-3] and notable functional properties,
with significance in the areas of luminescent materials [4-6], molecular magnetism [7-10], gas
storage [11-13], sensing and separation [14-16], and catalysis [17-20]. A high diversity of factors
can affect the metal-organic architectures and functional properties of MOFs, such as, for example,
the nature and coordination preferences of metal nodes, types of organic spacers, and linkers,
and various reaction conditions [21-26].

More specifically, for the design of MOFs, it is interesting to explore different aromatic carboxylic
acids as flexible and stable building blocks with modifiable backbones and coordination preferences,
along with the metal nodes that can exhibit unusual coordination preferences [27-30]. Although
multicarboxylate building blocks are among the most common ones used in the synthesis of MOFs,
different aromatic N,N-donors also play an important role and frequently act as ancillary ligands
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to adjust the coordination modes of carboxylate spacers, to provide reinforcement of metal-organic
networks via additional supramolecular interactions, or to facilitate crystallization [16,26,31-34].

Following our interest in the exploration of novel and poorly investigated multicarboxylic
acids for the design of metal-organic architectures [21,22,24-27], in the present study we selected
2-(5-carboxypyridin-2-yl)terephthalic acid (Hzcpta) as a main pyridine-tricarboxylate building block.
Its choice is governed by the following reasons: (A) Hzcpta can potentially act as an excellent bridging
ligand to construct MOFs, given the presence in its structure of three COOH groups along with an
N-pyridyl functionality; (B) Hzcpta features a flexibility wherein pyridyl and phenyl rings can rotate
around the C-C single bond; and (C) Hzcpta is thermally stable and remains largely unexplored for
the construction of MOFs, as attested by a search of the Cambridge Structural Database.

Hence, we report herein the hydrothermal synthesis, full characterization, thermal behavior,
structural features, topological analysis, and luminescent properties of two novel lead(Il) and zinc(II)
3D coordination compounds with very complex and topologically unusual metal-organic architectures.
The obtained compounds represent the first structurally characterized Pb(Il) and Zn(II) derivatives
assembled from 2-(5-carboxypyridin-2-yl)terephthalic acid.

2. Experimental

2.1. Materials and Physical Measurements

All chemicals were of analytical reagent grade and used as received. Hscpta was obtained
from Jinan Henghua Sci. and Tec. Co., Ltd., Jinan, China. IR spectra were recorded on a Bruker
EQUINOX 55 spectrometer (Bruker Corporation, Billerica, MA, USA) using KBr pellets. Elemental
(C, H, N) analyses were run on an Elementar Vario EL elemental analyzer (Elementar, Langenselbold,
Germany). Thermogravimetric analyses (TGA) were performed under N, atmosphere using a LINSEIS
STA PT1600 thermal analyzer (Linseis Messgerdte GmbH, Selb, Germary) with a heating rate of
10 °C/min. Powder X-ray diffraction patterns (PXRD) were measured on microcrystalline samples
using a Rigaku-Dmax 2400 diffractometer (Rigaku Corporation, Tokyo, Japan) with a Cu-Ka radiation
(A = 1.54060 A). Solid-state excitation and emission spectra were measured on an Edinburgh FLS920
fluorescence spectrometer (Edinburgh Instruments, Edinburgh, England) at room temperature.

2.2. Synthesis of {[Pb3(us-cpta)(ug-cpta)(phen),]-2H,0}, (1)

A mixture of PbCl; (113.7 mg, 0.3 mmol), Hzcpta (57.2 mg, 0.2 mmol), phen (59.4 mg, 0.3 mmol),
NaOH (24.0 mg, 0.6 mmol), and H,O (10 mL) was stirred at room temperature for 15 min. Then, it was
sealed in a 25 mL Teflon-lined stainless steel vessel and heated at 160 °C for three days, followed
by cooling to room temperature at a rate of 10 °C/h. Colorless block-shaped crystals were isolated
manually, washed with distilled H,O, and dried in air to give compound 1. Yield: 60% (based on
Hjcpta). Caled for CsoHzPb3NgOpy: C 39.37, H 2.03, N 5.30%. Found: C 39.06, H 2.01, N 5.33%.
IR (KBr, cm~1): 3393 w, 3044 w, 1592 s, 1568 s, 1546 s, 1522 s, 1370 s, 1265 w, 1137 w, 1097 w, 1044 w,
1021 w, 892 w, 846 m, 805 w, 764 m, 723 m, 630 w, 554 w.

2.3. Synthesis of {[Zn(ug-cpta)(u-OH)(4,4'-bipy)]-6H, O}, (2)

A mixture of ZnCl, (81.8 mg, 0.3 mmol), Hzcpta (57.2 mg, 0.2 mmol), 4,4"-bipy (46.8 mg, 0.3 mmol),
NaOH (24.0 mg, 0.6 mmol), and H,O (10 mL) was stirred at room temperature for 15 min. Then, it was
sealed in a 25 mL Teflon-lined stainless steel vessel and heated at 160 °C for three days, followed
by cooling to room temperature at a rate of 10 °C/h. Colorless block-shaped crystals were isolated
manually, washed with distilled H,O, and dried in air to give compound 2. Yield: 45% (based on
Hjcpta). Caled for CogHy7ZnyN3Oq3: C 41.40, H 3.91, N 6.03%. Found: C 41.63, H 3.92, N 5.99%.
IR (KBr, cm~1): 3614 w, 3288 w, 1603 s, 1493 w, 1417 w, 1376 s, 1277 w, 1213 w, 1160 w, 1125 w, 1068 w,
1044 w, 1015 w, 864 w, 840 w, 817 w, 776 w, 717 w, 642 w, 571 w.
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2.4. X-ray Crystallography

Single-crystal X-ray data for 1 and 2 were collected on a Bruker APEX-II CCD diffractometer
(Bruker Corporation, Billerica, MA, USA), using a graphite-monochromated Mo Ka radiation (A =
0.71073 A). Semiempirical absorption corrections were applied using the SADABS program. Crystal
structures were determined using direct methods and refined by full-matrix least-squares on F? with
the SHELXS-97 and SHELXL-97 programs [35,36]. All the non-H atoms were refined anisotropically by
full-matrix least-squares methods on F2. All the H atoms (except those of H,O and OH moieties) were
placed in calculated positions with fixed isotropic thermal parameters, and included in structure factor
calculations at the final stage of full-matrix least-squares refinement. Hydrogen atoms of H,O and OH
moieties were located by difference maps and constrained to ride on their parent oxygen atoms. Some
lattice solvent molecules in 2 are highly disordered and were removed using the SQUEEZE routine
in PLATON (University of Glasgow, Glasgow, UK) [37]. The number of solvent H,O molecules was
obtained on the basis of elemental and thermogravimetric analyses. Crystal data for 1 and 2 are given in
Table 1. Selected bond lengths and hydrogen bonding details are given in Tables S1 and S2, respectively
(Supplementary Material). Topological analysis of metal-organic networks was performed following
the concept of the simplified underlying net [38]. Such nets were obtained by eliminating the terminal
ligands [38] and contracting the bridging ligands to centroids and maintaining their connectivity [39].
CCDC-1840702 and 1840703 for 1 and 2 contain the supplementary crystallographic data.

Table 1. Crystal data for compounds 1 and 2.

Compound 1 2
Chemical formula C52H32Pb3N6014 C24H272n2N3013
Molecular weight 1586.40 696.18

Crystal system Monoclinic Monoclinic

Space group Pn C2/c

a/A 16.1620(4) 24.2264(8)
b/A 8.61606(17) 19.3903(9)
c/A 18.3591(4) 4.0603(6)
a/(°) 90 90
B/(°) 109.333(3) 98.645(4)
/() 90 90
V/A3 2412.40(10) 6529.9(5)
VA 2 8
F(000) 1488 2608
Crystal size/mm 0.29 x 0.26 x 0.25 0.21 x 0.18 x 0.16
6 range for data collection 3.332-25.050 3.265-25.050
Limiting indices —19<h<11,-9<k<10,-17<1<21 -28<h<19,—-11<k<23,-15<I1<16
Reflections collected /unique (Rin¢) 8845/5582 (0.0385) 12181/5789 (0.0660)
Do/(Mg-cm™3) 2.184 1.306
pw/mm—1 10.520 1.518
Data/restraints/parameters 5582/61/677 5789/0/343
Goodness-of-fit on F 1.020 0.975

Final R indices[(I > 20(I))] R1, wRy
R indices (all data) Ry, wRy»
Largest diff. peak and hole/(e-A~3)

0.0374, 0.0450
0.0688, 0.0742
1.345 and —0.931

0.0707, 0.1809
0.1320, 0.2111
0.932 and —0.490

3. Results and Discussion

3.1. Hydrothermal Self-Assembly Synthesis

Hydrothermal treatment of the aqueous mixtures composed of a metal(Il) chloride (PbCl; or
ZnClp), 2-(5-carboxypyridin-2-yl)terephthalic acid as a principal building block, sodium hydroxide as
a deprotonating agent, and an aromatic N,N-donor as a crystallization mediator (1,10-phenanthroline
or 4,4'-bipyridine) resulted in the generation of two novel coordination compounds formulated as
{[Pbs(us-cpta)(ug-cpta)(phen);]-2H; Ol (1) and {[Zna(u-cpta)(u-OH)(-4,4"-bipy)]-6HzO} (2). These
were isolated as microcrystalline solids and analyzed by standard methods including single-crystal
X-ray diffraction, which allowed the establishment of their intricate 3D metal-organic architectures.
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3.2. Crystal Structure of {[Pbs3(us-cpta)(us-cpta)(phen),]-2H, O}y, (1)

Compound 1 features a very complex 3D coordination polymer structure (Figure 1).
An asymmetric unit of 1 contains three distinct Pb(Il) atoms, two different p5- and u6—cpta3_ blocks,
three terminal phen ligands, and two lattice HyO molecules. Three Pb(Il) centers adopt distinct
coordination environments (Figure 1a and Figure S1). The Pb1 atom is seven-coordinate and has a
distorted {PbN;,Os} geometry, which is completed by a pair of phen N atoms and five carboxylate O
donors from four distinct cpta®~ moieties. The Pb2 center is also seven-coordinate and possesses a
distorted {PbOy} geometry, which is taken by seven O donor atoms from five different cpta®~ blocks.
The six-coordinate Pb3 atom adopts a distorted {PbN,O4} geometry, filled by a pair of phen N atoms
and four O donors coming from two cpta3_ ligands. The Pb-O [2.328(11)-2.913(10) A] and Pb-N
[2.577(15)-2.704(17) A] distances are comparable to those in related Pb(Il) derivatives [21,22,40]. In 1,
the cpta3’ blocks behave as two different pg- and ps-spacers (modes I and II, Scheme 1), in which the
COO™ groups exhibit the monodentate, bidentate, or bridging tridentate modes. Although the N atom
of cpta®~ remains uncoordinated, there is a rather short Pb3 ... N1 interaction (3.193 A). In the cpta’~
moieties, the dihedral angles between the two aromatic rings are 20.66 and 50.14°. Carboxylate groups
of the yg- and p.5—cpta3’ blocks interlink the Pb1 and Pb2 nodes into 2D layer motifs, which are further
interconnected via the Pb3 centers (through additional Pb3-Ocarpoxylate bonds) to give rise to a very
complex 3D metal-organic architecture (Figure 1b).

To better understand this architecture, we generated its simplified underlying net (Figure 1c,d) that
is constructed from the 5-, 4-, and 2-connected Pb centers (Pb2, Pb1, and Pb3, respectively) as well as the
5- and 6-connected cpta®~ blocks. Topological analysis of this tetranodal 4,5,5,6-connected framework
reveals a unique topology that is defined by the point symbol of (4°.6.8%)(4°.6)(4°.6* .8%)(4°.6), wherein
the (4°.6.8%), (4°.6), (4°.6.8%), and (4°.6*) notations correspond to the ps-cpta®~, Pb1, pg-cpta®~, and Pb2
nodes, respectively. An unprecedented nature of the present topological net was confirmed by a search
of different databases [38,39].

I II II1

Figure 1. Cont.
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Figure 1. Structural fragments of 1. (a) Coordination environment around the Pb(II) atoms; H atoms
are omitted for clarity. Symmetry code: i=x+1/2, —y,z+1/2;ii=x, y+ 1, z;ili=x+1/2, —y —
1,z+1/2;iv=x,y —1,zzv=x —1/2, —y, z + 1/2. (b) 3D coordination polymer seen along the
b axis. (c,d) Topological representation of an underlying tetranodal 4,5,5,6-connected net with the
unique topology; views along the c (c) and b (d) axis. Color codes: 2-, 4-, and 5-connected Pb centers
(turquoise balls; Pb3, Pb1, and Pb2, respectively; partial labelling scheme is shown), centroids of 5- and
6-connected cpta®~ blocks (gray).

3.3. Crystal Structure of {[Zny(uy-cpta)(u-OH)(u-4,4'-bipy)]-6H, 0}, (2)

Compound 2 also features a 3D metal-organic framework which, in contrast to 1, is driven by
ty-cpta®~ spacers along with additional n-OH ™~ and p-4,4’-bipy linkers. The asymmetric unit of 2 bears
two crystallographically unique Zn(Il) atoms, a py-cpta®~ block, a n-OH™ group, a p-4,4’-bipy ligand,
and six water molecules of crystallization (Figure 2a and Figure S2). Both Zn atoms are four-coordinate
and display distorted tetrahedral {ZnNOs} or {ZnN,O;} geometries. Znl center is bound by two
O atoms from two py-cpta®~ blocks, a ui-OH ™~ linker, and an N donor from the p-4,4’-bipy moiety.
Zn2 atom is coordinated by one O and one N atom from two different py-cpta®~ blocks, one p-OH ™~
group, and one N atom from the u-4,4'-bipy ligand. The Zn-O [1.936(5)-1.977(5) A] and Zn-N
[2.030(6)-2.050(6) A] bond lengths are within typical values for related Zn(Il) derivatives [16,24,25].
In 2, the cpta®~ block acts a py-N,03-spacer (mode III, Scheme 1) and its COO~ groups adopt a
monodentate mode; a dihedral angle between the aromatic rings in cpta®~ is 70.81°. One p-OH ™ linker
bridge the two adjacent Zn(Il) centers (Znl and Zn2) to furnish a dinuclear Zn; unit (Figure 2a) with a
Zn---Zn separation of 3.488(5) A and the Zn-O-Zn angle of 128.41(5)°. These Zn; units are multiply
interlinked by the remaining COO™~ groups of the py-cpta®~ blocks and p-4,4’-bipy ligands to generate
a 3D metal-organic framework (Figure 2b). The PLATON analysis revealed that the framework is
porous with a free volume of 25.4% of the crystal volume [37]. The elimination of guest water molecules
increases the effective free volume up to 30.7% of the crystal volume.

From the topological perspective, the present 3D framework (Figure 2¢) is built from the
4-connected Zn1 and Zn2 centers (topologically equivalent), the 4-connected py-cpta®~ blocks and
the 2-connected n-OH ™ and p-4,4"-bipy linkers. Hence, this binodal 4,4-connected framework can
be classified within the isx topological type and described by the point symbol of (4.52.6%),(42.5.63).
Although the present topological type has been theoretically predicted and referenced in databases [38],
compound 2 appears to represent the first synthesized and structurally characterized metal-organic
framework with the isx topology.
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Figure 2. Structural fragments of 2. (a) Coordination environment around the Zn(II) atoms; H atoms
are omitted for clarity except one of OH™ group. Symmetry code: i= —x, —y, —z;ii= —x+1/2,y +1/2,
—z+1/2idii=x, —y,z+1/2;iv=—x+1/2,y — 1/2, —z + 1/2. (b) 3D metal-organic framework seen
along the c axis. (c) Topological representation of an underlying binodal 4,4-connected framework with
the isx topology; view along the c axis. Color codes: 4-connected Zn centers (cyan balls), centroids of
4-connected cpta®~ blocks (gray), centroids of 2-connected u-OH™ (red) and y1-4,4’-bipy (blue) linkers.

3.4. Thermogravimetric and Powder X-ray Diffraction Analysis

Thermal behavior and stability of CP 1 and MOF 2 were studied by thermogravimetric analysis
(TGA) in the 25-800 °C temperature range under Ny atmosphere (Figure S1). TGA curve of 1 shows a
release of two lattice water molecules between 42 and 86 °C (exptl, 2.6%; calcd, 2.3%); a dehydrated
solid remains stable on further heating up to 304 °C. In 2, a weight loss in the 32-94 °C range
corresponds to a removal of six lattice water molecules (exptl, 15.3%; calcd, 15.1%) and the dehydrated
material keeps its integrity on heating up to 308 °C.

Microcrystalline samples of 1 and 2 were also investigated by PXRD (powder X-ray diffraction)
analysis. PXRD patterns of the bulk products are given in Figures S4 and S5. The experimental results
match those simulated from the single-crystal X-ray diffraction data, thus confirming a phase purity of
the bulk samples of 1 and 2.

3.5. Luminescent Properties

Solid-state emission spectra of compounds 1, 2, and Hjcpta were recorded at room temperature
using the microcrystalline samples (Figure 3). The emission spectrum of Hscpta displays a band with
a maximum at 371 nm (Aex = 320 nm). In contrast, CP 1 and MOF 2 show more intense emission
peaks with maxima at 374 (Aex = 318 nm) and 376 nm (Aex = 348 nm), respectively. This observation



Crystals 2018, 8, 353 7 of 10

suggests that the emission bands in 1 and 2 are similar to those of the free Hscpta ligand, allowing
their assignment to the intraligand 7—7* or n—m* transitions [16,24,40].

]
E
z ——H Jcpta
é —1
E —2
- T T T T T T T T 1
340 360 380 400 420 440

Wavelength (nm)

Figure 3. Solid-state emission spectra of Hzcpta, CP 1 and MOF 2 at room temperature; Aex is 320
(Hzcpta), 318 (1), or 348 nm (2)).

4. Conclusions

In the present study, we applied a versatile aqueous medium approach for the
hydrothermal synthesis of two novel 3D metal-organic architectures derived from
2-(5-carboxypyridin-2-yl)terephthalic acid (Hzcpta) as an underexplored tricarboxylate building
block with a phenyl-pyridine core. In fact, the obtained coordination polymer 1 and metal-organic
framework 2 represent the first structurally characterized Pb(Il) and Zn(Il) coordination compounds
assembled from Hscpta.

Additionally, structural and topological features of 1 and 2 were highlighted, namely by
performing the analysis and classification of their intricate underlying 3D networks. As a result,
a topologically unique 4,5,5,6-connected net was identified in the structure of 1, whereas a very rare
4,4-connected net with the isx topology was determined in the structure of 2. Hence, the current work
also contributes to the identification of topologically rare and unprecedented nets in metal-organic
architectures. Both compounds also show promising luminescent properties.

Further research on widening a still very limited family of CPs and MOFs driven by Hscpta and
related pyridine-tricarboxylate building blocks, as well as on establishing their functional properties
and applications is currently under way in our laboratories.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2073-4352/8/9/353/s1,
Figures S1 and S2: ORTEP ellipsoid plots, Figure S3: TGA curves, Figures S4 and S5: PXRD patterns, Figure S6:
excitation spectra, Tables S1 and S2: selected bonding and H-bonding parameters for compounds 1 and 2.
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