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Abstract: Real-time in situ neutron diffraction was used to characterize the crystal structure evolution
in a transformation-induced plasticity (TRIP) sheet steel during annealing up to 1000 ◦C and then
cooling to 60 ◦C. Based on the results of full-pattern Rietveld refinement, critical temperature
regions were determined in which the transformations of retained austenite to ferrite and ferrite
to high-temperature austenite during heating and the transformation of austenite to ferrite during
cooling occurred, respectively. The phase-specific lattice variation with temperature was further
analyzed to comprehensively understand the role of carbon diffusion in accordance with phase
transformation, which also shed light on the determination of internal stress in retained austenite.
These results prove the technique of real-time in situ neutron diffraction as a powerful tool for heat
treatment design of novel metallic materials.

Keywords: in situ neutron diffraction; TRIP steel; annealing; phase transformation; thermal
expansion; carbon concentration

1. Introduction

Known as one type of advanced high strength steels for the automotive industry,
transformation-induced plasticity (TRIP) steels offer an outstanding combination of strength, ductility,
and work hardening capacity, thus providing excellent formability and energy absorption capacity.
The superior mechanical performance of TRIP steels is a result of the composite microstructure:
islands of hard retained austenite (RA) dispersed in a soft bainite ferritic matrix. The transformation
of RA to martensite at straining renders the material high strength and work hardening capacity
and promotes bulk uniform deformation while delaying localized necking. To achieve the desired
microstructure, designated chemical compositions and relatively complex heat treatment processes
are required [1,2]. Modern low-alloyed TRIP steels contain ~3.5% alloy elements (in weight fraction),
typically including 0.20–0.25% C, ~1.5% Mn and at least 0.3–0.8% Si. The C and Mn play a key
role of austenite stabilizer to retain austenite at room temperature. The Si is mainly to suppress the
formation of cementite and thus to promote carbon enrichment in RA. The conventional heat treatment
processing for cold-rolled TRIP steels involves two main annealing steps: intercritical annealing at
750–800 ◦C to yield an austenite-ferrite microstructure with a certain degree of carbon enrichment in
austenite, and isothermal bainitic transformation at 350–490 ◦C to allow part of austenite to transform
to bainite, thus leading to further carbon enrichment in RA. In addition, Zn or Zn alloy coatings are
typically applied to achieve corrosion protection of the steel substrate. When hot dip galvanizing
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or hot dip galvannealing are utilized during the coating process, additional heat treatments to the
substrate materials are involved. The hot dip galvanizing and galvannealing require temperature
ranges of 450–470 ◦C and 500–550 ◦C, respectively, which could further influence the microstructure
of cold-rolled TRIP steels [3,4]. Collectively, the manufacture of cold-rolled TRIP steels involves a
series of annealing processing that could largely affect the microstructure. Therefore, it is desired to
understand the phase transformation behavior during those annealing processes thus to characterize
the microstructure changes as a function of annealing processing.

Recent advances on in situ neutron or high-energy X-ray diffraction allow researchers to trace
microstructure evolution in TRIP and other steels under heating/cooling [5–14]. Choi et al. [13]
studied the stability of RA in a hot-rolled TRIP steel during annealing up to 450 ◦C at a rate of
0.2 ◦C/s by in situ synchrotron X-ray diffraction, and claimed that RA started to transform to
ferrite at ~330 ◦C and precipitate iron carbide at ~390 ◦C. Babu et al. [6] investigated the isothermal
transformation of austenite-to-bainitic ferrite in a high-carbon steel during annealing at 300 ◦C for 12 h
by in situ synchrotron X-ray diffraction and proposed a theory that the development of carbon-rich
and carbon-poor regions in the austenite could be a precursor to transformations including the bainite
reaction. Jimenez-Melero et al. [9] and Van Dijk et al. [7] found in several TRIP steels by in situ
synchrotron X-ray diffraction that the carbon content played a key role in the thermal stability of
RA during cooling down to −173 ◦C. Allain et al. [11–13] determined the time and temperature
evolutions of phase fractions and their carbon content in a high-strength steel during a quenching and
partitioning (Q&P) process by in situ synchrotron X-ray diffraction, and concluded the carbon diffusion
from martensite to austenite as the main mechanisms responsible for the carbon enrichment in RA in
the partitioning step. Compared to the conventional post-test techniques such as optical microscopy
(OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission
electron microscopy (TEM) that give relatively localized observation of the resulted microstructures
after varied heat treatment processes, in situ diffraction techniques enable the measurement of kinetic
lattice structures of constituent phases over a relatively large bulk gauge volume during heat treatment
processes to elucidate how to attain the final microstructure.

Thanks to the high flux and deep penetration of the time-of-flight (TOF) neutrons, real-time
in situ study is facilitated with complex sample environment equipped enabling loading [15–24],
heating/cooling [25,26] charging [27,28] etc. as well as their combinations [29–32]. The large
cross-section of all components in the material make it possible to differentiate mixed phases and
to monitor the phase evolutions under the external stimuli [33–36]. The static neutron incident slits
and detectors of the TOF diffractometer ensure the high resolution to precisely resolve the lattice
parameters/strains [37,38]. The average structure information given from a bulk provide statistical
quantities such as phase fraction [39], preferential orientation [40], lattice site occupancy [41,42] and
their evolutions [43,44]. Being benefited with the advantages above, in this study, a real-time in situ
neutron diffraction was used to characterize the phase transformation in a cold-rolled TRIP sheet steel
during two cycles of annealing up to 850 ◦C and 1000 ◦C and then cooling to 60 ◦C. Phase-specific lattice
parameters and weight fractions were determined as a function of temperature. Phase transformation
behavior was thus analyzed in association with carbon diffusion. Internal stress in RA due to the
mismatch of coefficients of thermal expansion between austenite and ferrite was further estimated.
These results are aimed to reveal the continuous phase transformation kinetics during heat treatment
of cold-rolled TRIP steels and to prove the in situ diffraction technique as a powerful tool for the
research of microstructure controlling of metallic materials by heat treatment.

2. Material and Experiment

The TRIP sheet steel tested in this study is a typical C-Mn-Si steel that has been cold rolled to
1.8-mm thickness and heat treated in a continuous anneal commercial production line [45]. Dog-bone
shaped tensile specimens were cut from the steel sheet, as reported in our prior study [46], showing a
yield strength of 500 MPa, a tensile strength of 800 MPa and an elongation of 26–28%.
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The in situ neutron diffraction experiments were conducted at the engineering materials
diffractometer, VULCAN, at the Spallation Neutron Source, Oak Ridge National Laboratory
(Oak Ridge, TN, USA) [47]. A schematic illustration of the testing configuration is shown in Figure 1.
The dog-bone tensile specimen was horizontally placed with its axial direction at 45◦ with respect to
the incident neutron beam. One clamping end of the specimen was fixed in a sample holder on a load
frame (the holder was originally used for tension of dog-bone shaped specimen like the one used in
this study), which stood on a sample positioning system that enables three-dimensional translation
movement and horizontal rotation by the center. The other end, as the part to be measured, was aligned
to the center of gauge volume. The neutron beam gauge volume was defined by the adjustable incident
slits (8 mm in horizontal and 10 mm in vertical) and the 5 mm receiving collimators as an option.
Two detectors that are located at −90◦ and +90◦ with respect to the incident beam collected neutrons
scattered by crystal lattice planes parallel and perpendicular with the axial direction of the specimen,
respectively. In the experiment, the nominal neutron beam power was about 1.3 MW. The chopper
configuration was set at 30 Hz with bandwidth at 2.88 Å and center at 2.0 Å, which measured the
d-spacing range of 0.40~2.43 Å at the −90◦ and +90◦ detectors. The high-intensity mode was used,
where the d-spacing resolution (∆d/d) was about 0.45%.
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Figure 1. Schematic configuration of the real-time in situ neutron diffraction on the sample under
heating by induction coils. The upper right inset shows the camera view of the heating set-up.

In the experiment, a special induction coil was used for the controlled in situ heating while the
gap of the coil allowed clear neutron paths. K-type thermal couple wires were welded on the middle
top of the clamping end for temperature monitoring and controlling. Note that only the free end of the
specimen, i.e., the end in the neutron beam was heated, as seen from Figure 2a–d.
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Figure 2. Camera views of the specimen at different temperatures: (a) 60 ◦C in Cycle 1 before heating
up, (b) isothermal holding at 850 ◦C in Cycle 1, (c) isothermal holding at 1000 ◦C in Cycle 2 and
(d) 60 ◦C in Cycle 2 after cooling down. (e) Annealing profiles of two cycles.
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The specimen was in situ annealed twice, and the annealing profiles are shown in Figure 2e.
In the first cycle, the specimen was heated to 850 ◦C and held for ~15 min before cooled down.
The heating/cooling rates were 24 ◦C/min. In the second cycle, the specimen was first rapidly heated
to 700 ◦C at a rate of 140 ◦C/min and then slowly heated to 1000 ◦C at 24 ◦C/min and held for ~10 min
before cooled down. During the heating and cooling processes, the scattered neutrons along with the
camera views were collected in real time. The continuous neutron data was then chopped by 1-min
time interval using the VDRIVE software [48] to render each bin of neutron data with enough statistics
to reflect information averaged over the corresponding time interval. The GSAS software [49] was then
used to perform full-pattern Rietveld refinement on the diffraction profiles, from which phase-specific
weight fractions and lattice parameters were derived.

3. Results and Discussion

3.1. Phase Transformation

Phase transformation in the TRIP steel can be evidenced by dramatic changes of diffraction
patterns. As shown in Figure 3a,b, the disappearance/appearance of diffraction peaks are typical
indictors of phase transformation. In the first annealing cycle, before heating up, the diffraction
pattern constitutes a mixture of body-centered cubic (BCC) structure and face-centered cubic (FCC)
structure. The BCC pattern reflects the matrix of ferrite, bainite and martensite, which are hard to be
distinguished by neutron diffraction, while the FCC pattern reflects the RA. As temperature increases
to 600 ◦C, the FCC peaks disappear while the BCC peaks grow, indicating the transformation of RA to
ferrite. With further heating up, the FCC peaks reappear and become stronger than the BCC peaks,
indicating the transformation of ferrite to high-temperature austenite. During holding at 850 ◦C,
the diffraction patterns hardly change, indicating no further phase transformation in this period. Upon
cooling, the FCC peaks gradually become weaker and are barely observable at 400 ◦C and down to
60 ◦C, indicating the transformation of austenite to ferrite. In the second annealing cycle, the diffraction
pattern shows almost only FCC at 1000 ◦C whereas solely BCC after cooling to 60 ◦C. Collectively, RA
transforms to ferrite as heating up, and then ferrite transforms to high-temperature austenite upon
further heating, and high-temperature austenite transforms back to ferrite upon cooling.
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Figure 3. (a) Contour plots of diffraction peak intensity as a function of time/temperature (upper image:
Cycle 1, lower image: Cycle 2). The color indicates the scale of intensity with purple as minimum
(background) and yellow as maximum. (b) Selected 1-min diffraction patterns during annealing.
(c) Examples of full-pattern Rietveld refinement via GSAS.
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To distinguish the critical temperature regions of transformation between austenite and ferrite
more specifically, quantitative analysis of constituent phase compositions was performed based on
full-pattern Rietveld refinement. As shown in Figure 3c, the refinement on the diffraction patterns via
GSAS shows excellent agreement with the experimental data. The weight fraction evolutions of FCC,
BCC and iron oxides with temperature/time were thus derived and shown in Figure 4, from which
a total of 8 temperature regions can be identified during heating and cooling. The features of those
regions are discussed as follows:
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Figure 4. Weight fraction evolutions of constituent phases as a function of temperature/time. The three
subsets from left to right correspond to heating, isothermal holding and cooling stages, respectively.

(I) 60–300 ◦C. The fractions of BCC and FCC show no observable changes, indicating that the RA
is stable during heating in this temperature range.

(II) 300–500 ◦C. There are a slight and gradual increase in the fraction of BCC and a slow decrease
in the fraction of FCC, indicating that the RA starts to transform to ferrite during heating in this
temperature range.

(III) 500–600 ◦C. The fraction of FCC decreases rapidly to zero while that of BCC increases to
one, indicating that the RA is no longer stable above 500 ◦C and quickly transforms to ferrite until the
transformation finishes at 600 ◦C.

(IV) 600–730 ◦C. The fractions of BCC and FCC remain at one and zero, respectively, indicating
that the steel is composed of pure ferrite during heating in this temperature region.

(V) 730–1000 ◦C. The fraction of FCC increases rapidly to ~82% at 850 ◦C in Cycle 1 and 100%
at 1000 ◦C in Cycle 2. This indicates that the temperature at which austenite transformation begins
during heating (Ac1) is around 730 ◦C in both cycles and the temperature at which the transformation
completes during heating (Ac3) is around 1000 ◦C in Cycle 2. It is noted that the transformation
rate in Cycle 1 is higher than in Cycle 2, so it could be possible that Ac3 is lower in Cycle 1 than in
Cycle 2. The underlying mechanism for the retarded austenite transformation will be discussed later in
association with the variation of lattice parameter. Meanwhile, during isothermal holding at 850 ◦C in
Cycle 1 and 1000 ◦C in Cycle 2, the fractions of FCC keeps decreasing slowly. In Cycle 1, the decrease in
FCC fraction is postulated to be related to the gradual on-going phase transformation. In Cycle 2, iron
oxide FeO forms on the surface, and the oxide content increases with time, resulting in the decrease of
FCC fraction (Figure 3c).

(VI) 1000–850 ◦C. The fractions of FCC and BCC remain at one and zero, respectively, indicating
that the steel is composed of pure austenite during cooling in this temperature region.

(VII) 850–500 ◦C. The fraction of FCC rapidly decreases to ~5% at 500 ◦C in Cycle 1 and to almost
zero at 500 ◦C in Cycle 2. It indicates that the finish temperature of austenite transformation during
cooling (Ar3) is ~850 ◦C and the start temperature during cooling (Ar1) is ~500 ◦C. It is seen that Ar1
and Ar3 are significantly lower than Ac1 and Ac3, respectively. This is known as the hysteresis in
heating and cooling of carbon steels, which could result from non-equilibrium phase transformation
due to the relatively fast heating and cooling in this study. It is interesting that the transformation
seems to be slightly retarded at ~700 ◦C. This is evidenced by a kink feature shown in Figure 4, which
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indicates a transition of a higher transformation rate to a lower one. The possible cause for the kink
will be discussed later in association with the lattice parameter evolution.

(VIII) 500–60 ◦C. The fractions of BCC and FCC show no distinguishable changes, indicating
that the RA is stable during cooling in this temperature range. The iron oxides, including Fe3O4 and
FeO, account for ~10% of the total weight, and can be observed from the camera view after cooling in
Figure 2d, as compared to that before heating in Figure 2a.

3.2. Lattice Parameter Evolution

Variation of phase-specific lattice parameter during heating and cooling can reflect information on
thermal expansion, carbon diffusion and internal stress, which could affect the phase transformation.
Figure 5 shows the evolutions of BCC and FCC lattice parameters as a function of temperature.
The BCC phase shows nearly linear a-T relations repeated in both cycles while the FCC phase shows
relatively complex non-linear a-T relations. To interpret those a-T relations, a few equations regarding
thermal expansion and carbon concentration are introduced first as follows. Assuming a linear thermal
expansion, the lattice parameter a can be described as a first-order function of temperature T by the
following equation:

a = a0 + b(T − T0) (Å) (1)

where a0 is the lattice parameter at reference temperature T0, and b is a constant, corresponding
to the slope of a-T relation. The coefficient of thermal expansion (CTE) α can be derived as in the
following equation:

α =
1
a0

da
dT

=
b
a0

(10−6 ◦C−1) (2)
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Meanwhile, carbon, being an interstitial solute element in ferrous alloys, is known as a major factor
that affects the lattice parameters of austenite and ferrite. Carbon concentration has been reported to
increase the lattice parameter by the following general form of equation:

a0 = a0,c + βXc (Å) (3)

where a0,c is the zero-carbon lattice parameter at T0; Xc is the carbon concentration in austenite or ferrite
in atomic or weight fraction; and β is a constant. Considering the low solubility of carbon in ferrite,
most literatures focused on the carbon concentration in austenite. As summarized in reference [50],
the zero-carbon lattice parameter of austenite at room temperature ranged from 3.5467 to 3.6003 Å,
and the values of β were reported to be 0.044, 0.033 or 0.047 with Xc being in w.t.%. Onink et al. [51]
reported the a0,c of austenite at 727 ◦C to be 3.6307 Å, and the value of β to be 0.0078 with Xc being
the number of C atoms per 100 Fe atoms. They also provided the CTE of austenite as a function of
carbon concentration for calculation of austenite lattice parameters at other temperatures between
527 and 927 ◦C. Some of the above values have been used to calculate the carbon concentration of RA
in TRIP steels [5,52–54]. However, besides thermal expansion and carbon concentration, internal stress
due to the mismatch of CTE between austenite and ferrite also contributes to the variation of lattice
parameter, as recently reported in a Q&P TRIP-assisted steel [12,13]. Moreover, the concentration of
other alloying elements such as Mn and Si, also affects the lattice parameter when they substitute the
major Fe elements [55]. Therefore, it is inaccurate to quantify the carbon concentration in RA barely on
the ground of the lattice parameter measurement. In the following, carbon concentration evolution is
qualitatively discussed with a comprehensive analysis of CTE and internal stress that may cause the
variation of lattice parameter.

Following the eight temperature regions discussed before, the lattice evolution and possible
carbon diffusion mechanisms are discussed as follows:

(I) + (II) 60−500 ◦C. The BCC shows a linear expansion with a CTE of 14.6 × 10−6 ◦C−1, while
the FCC shows a three-stage expansion behavior consisting of a linear expansion with a CTE of
18.6 × 10−6 ◦C−1 at up to ~300 ◦C, and then an accelerated nonlinear expansion till ~470 ◦C, followed
by a subsequent rapid contraction. Choi et al. [5] observed a similar three-stage expansion behavior of
RA in a TRIP steel during annealing up to 450 ◦C. They attributed the slightly enhanced expansion of
austenite lattice to the carbon concentration change because of transformation to ferrite of low-carbon
solubility, and the rapid contraction to carbon depletion due to the formation of cementite. In this
study, the onset of nonlinear expansion coincides with that of phase transformation in Figure 4.
The observations indicate a process similar to the isothermal bainitic transformation: a portion of RA
transforms to ferrite leading to further carbon enrichment in the remained portion of RA, and thus,
the additional expansion to thermal expansion. However, iron carbides were not observed in the
studied steel during annealing, which is different from the results reported by Choi and colleagues.
The significant mobility of atoms, particularly carbon atoms, is thus evidenced at the temperature range
of 300~450 ◦C. At the temperature higher than 470 ◦C, the FCC lattice starts to shrink, which is resulted
from a rapid carbon diffusion from RA to ferrite. As proposed by Babu et al. [6], carbon-depleted
regions could be developed in RA before its massive transformation. In the meantime, due to the
much larger fraction of ferrite in comparison to the RA, the carbon concentration in ferrite is not so
significant considering the low carbon content. Thus, BCC lattice parameter frustration is not observed
besides the linear thermal expansion.

(III) 500–600 ◦C. The BCC still shows a linear expansion, while the FCC shows a slightly further
contraction till 550 ◦C and then a slight expansion. Such behavior of FCC is considered a result of
competition between carbon depletion and thermal expansion along with the phase transformation.

(IV) 600–730 ◦C. The steel consists of pure BCC and shows a linear expansion with a CTE of
15.4 × 10−6 ◦C−1, which is slightly higher than the value in region (I).

(V) 730–1000 ◦C. The expansion of BCC lattice seems restrained to some extent up to ~850 ◦C
by showing a slight rightward flattening trend. After that, the BCC shows a linear expansion with a
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CTE of 14.8 × 10−6 ◦C−1, which is close to the values in region (I) and (IV). In the meantime, the FCC
first shows a gradual contraction up to ~850 ◦C followed by a gradual expansion and eventually a
linear expansion. The contraction of FCC lattice is the result of decreasing carbon solubility with
increasing temperature when the temperature is higher than the eutectoid temperature, which is about
730 ◦C in this study. Though carbon concentration in austenite is decreasing, the austenite volume is
increasing due to phase transformation. Thus, carbon atoms are still diffusing from ferrite to austenite
in general, leading to the restrained expansion of BCC lattice. Along with phase transformation,
thermal expansion gradually overweighs carbon-depletion induced contraction, finally leading to a
linear expansion above 900 ◦C.

(VI) 1000–850 ◦C. The steel consists of pure FCC (excluding the outside layer of iron oxides)
and shows a linear expansion with a CTE of 23.5 × 10−6 ◦C−1, which is significantly higher than the
value in region (I). This value is consistent with the constant CTEs of FCC iron alloys reported in
literatures, such as 24.1 × 10−6 ◦C−1 by Choi et al. [5] and Allain et al. [13], 22.9–24.7 × 10−6 ◦C−1

by Onink et al. [51], 22.3 × 10−6 ◦C−1 by Huang et al. [52], 23.1–23.7 × 10−6 ◦C−1 by Li et al. [55],
24.3 × 10−6 ◦C−1 by Lu et al. [56]. The potential causes for the CTE difference between region (VI) and
(I) are discussed below for region (VIII).

(VII) 850–500 ◦C. The newly formed BCC shows a slightly rightward flattening trend at ~700 ◦C,
almost coinciding with the rightward trend observed in region (V). The FCC shows a more evident
leftward flattening trend, deviating from the linear contraction path in region (VI). This further
indicates the carbon-concentration induced expansion since the carbon solubility in both austenite
and ferrite is known to reach maximum at the eutectoid temperature. The carbon-concentration
induced expansion competes with thermal contraction during cooling, leading to the above deviation
from linear contraction. Such deviation coincides with the kink feature at ~700 ◦C during phase
transformation in Figure 4, when the fractions of BCC and FCC are almost equivalent (half-half). This
may indicate that carbon concentration in austenite could retard the phase transformation to ferrite to
some extent.

(VIII) 500–60 ◦C. Both BCC and FCC show a linear contraction with decreasing temperature.
The CTE of FCC is 18.8× 10−6 ◦C−1, which is very close to that in region (I) but significantly lower than
that in region (VI). One proposed cause could be related to the carbon concentration. As evidenced in
region (VII), carbon-concentration induced expansion in austenite is enough to counteract thermal
contraction. The CTE of austenite was reported to decrease with increasing carbon content for Fe-C
alloys between 527 and 927 ◦C [51]. However, this may not be the case for the present study. The FCC
lattice parameter in region (VIII) is much higher than that in region (I), indicating lower carbon
concentration in region (VIII), but the CTE shows no significant difference. In fact, it is possible that
thermal constrain by BCC due to the mismatch of CTE between the two phases may contribute to the
lower CTE of FCC. One prerequisite for such assumption is that BCC and FCC start to bond rigidly
at a “jointing” temperature. The jointing temperature is difficult to determine but could be around
550 ◦C in this study, where the flattening trend of FCC transitions to the linear contraction. It is noted
that the thermal constrain on BCC in this temperature region could be much weaker due to the low
fraction of FCC, thus hardly affecting the CTE of BCC. Under such assumption, the constrain strain of
FCC caused by mismatch of CTE can be estimated by the following equation:

∆εc = (αc − α0)(T − Tc) (4)

where Tc is the jointing temperature, ∆εc is the constrain strain at temperature T, αc is the CTE under
constrain and α0 is the CTE under free expansion/contraction. Thus, the constrain strain of FCC
at 25 ◦C is ~0.26%. With the thermal constrain strain being a hydrostatic strain, the RA at room
temperature should be under a tensile hydrostatic stress of ~416 MPa by a bulk modulus of 160 GPa.
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4. Conclusions

In this study, the phase transformation and phase-specific lattice variation in a TRIP sheet steel
during high-temperature annealing were traced by real-time in situ neutron diffraction. The following
conclusions are drawn:

(1) Upon heating, the RA is stable in the temperature region below 300 ◦C and starts to transform to
ferrite drastically in the temperature region between 500 and 600 ◦C. Carbon diffusion occurs in
between 300 and 500 ◦C accompanied by a gradual phase transformation.

(2) Upon further heating, the transformation of ferrite to austenite starts at ~730 ◦C accompanied by
a lattice contraction of FCC due to carbon depletion in austenite. The finish temperature could be
dependent on the heating history. In this study, the heating scheme is composed of one cycle of
annealing up to 850 ◦C and then a rapid heating up to 700 ◦C before slow heating to the finish
temperature of ~1000 ◦C.

(3) Upon cooling from the finish temperature, the transformation of austenite to ferrite starts at
~850 ◦C and finishes at ~500 ◦C. The thermal contractions of FCC and BCC with decreasing
temperature are retarded due to carbon-concentration induced expansion. Restrained phase
transformation is also observed to some degree starting at ~700 ◦C.

(4) The CTE of FCC in the temperature region below 550 ◦C is much lower than that above 900 ◦C,
which is considered as the result of thermal constrain induced by the mismatch of CTE of BCC
and FCC. The RA could be under a tensile hydrostatic stress state at room temperature.

(5) The above results prove that the technique of real-time in situ neutron diffraction can be a
powerful tool for heat treatment design of novel metallic materials.
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