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Abstract: Batteries are a critical component of modern society. The growing demand for new battery
materials—coupled with a historically long materials development time—highlights the need for
advances in battery materials development. Understanding battery systems has been frustratingly
slow for the materials science community. In particular, the discovery of more abundant battery
materials has been difficult. In this paper, we describe how machine learning tools can be exploited
to predict the properties of battery materials. In particular, we report the challenges associated with
a data-driven investigation of battery systems. Using a dataset of cathode materials and various
statistical models, we predicted the specific discharge capacity at 25 cycles. We discuss the present
limitations of this approach and propose a paradigm shift in the materials research process that
would better allow data-driven approaches to excel in aiding the discovery of battery materials.
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1. Introduction

Battery materials research began with Volta’s voltaic pile in the 1800s [1]. Since then, new materials
have facilitated the development of new batteries; each with desired properties such as enhanced
energy density, rechargeability, high power output, and low cost. Li-ion batteries were conceived in
1980 by Mizushima, Jones, Wiseman, and Goodenough [2]. Today, they are one of the most popular
batteries constituting approximately one third of all batteries [3] because of their high energy density
and rechargeability.

Nevertheless, Li-ion batteries have a lot of room for improvement. For one thing, they are
relatively high-cost owing to their use of transition metals such as Co, Ni, and Mn. Additionally,
reliance on organic electrolytes has led to flammability and safety concerns upon dendrite growth.
Another challenge is that high capacity anodes are still being developed or are not yet available.
Therefore, we clearly see that each part of the battery would benefit from new materials being
discovered, for example: an earth abundant cathode, a solid electrolyte, or a high capacity anode.

Currently, incremental local optimization is the primary tool for discovering new materials.
However, it may be possible for data-driven methods to screen an enormous composition or
micro-structural space. The principle being that machine learning (ML) models could learn from
data that exists in the literature, and then very rapidly predict properties of interest for an enormous
number of battery material candidates. The use of machine learning as a tool for materials discovery
is rapidly growing. Examples can be found in the fields of thermoelectrics [4–6], superhard
materials [7], thermochemical data [8,9], electronic properties [10–14], structural materials [15],
functional materials [16–18], and structure classification [19–23]. Given the history of success of
ML methods, it is natural to want to apply them to battery materials research. There are ∼104
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battery publications per year (>7000/year for the last three years according to Scopus keyword
search). Thus, there may be ample data available to exploit using statistical models. Indeed, battery
researchers have recently shown an interest in employing machine learning to answer battery research
questions. For example, Hu et al. used machine learning to predict the state-of-charge in batteries
for electric vehicles [24]. Liu et al. showed that machine learning could successfully be used to
predict the remaining useful life for batteries systems [25]. We applied ML methods to a set of data
describing Li-ion-battery architecture, properties, and performance. We explored not only chemical
descriptors, but also those associated with the architecture and battery testing conditions. We observed
several hurdles for the successful application of ML methods to battery research, where heterogeneous
materials and properties are common. We describe the challenges of applying a machine learning
approach to the discovery of battery materials [24–28].

2. Materials and Methods

The data used for this work (see Supplementary Materials) were previously published by
Ghadbeigi et al. as an analysis article [29]. This work did not attempt any machine learning, but instead
provided unique visualization and sustainability metrics such as scarcity and Herfindahl–Hirschman
index (HHI).

As a first step in the machine learning process, we needed to retrieve and clean the data. For the
case of this dataset, there were extensive missing entries. This is largely due to poorly enforced
standards for battery data reporting. For example, one author might provide the cathode type including
the mass fraction of the binder and carbon additives, whereas another author might simply state
that carbon additive was used. As a result, potentially useful descriptors—such as rate performance,
calcination temperature, and synthesis route—need to be removed due to lack of useful information
or excessive missing entries. This greatly reduces the data available for analysis. Furthermore,
we chose the discharge capacity at 25 cycles as the target property for our analysis. Consequently,
experimental descriptors correlated with the discharge capacity at 25 cycles, such as the discharge
capacity at 50 cycles, were also removed. After removing the problematic columns, if a row still
had missing entries, it was dropped. Besides learning from the metadata, additional descriptors
were generated from the composition of the cathode material. These descriptors should be readily
available (e.g., from databases) or easily computed without the need for computationally expensive
simulations. Using the atomic properties of the constituent elements, we can construct a mathematical
description, or descriptor, of the composition. That is, we consider the weighted average, and the
maximum difference of a set of atomic properties for a given composition. Examples of the atomic
properties include the ionic radius, electronegativity, and the number of valence electrons [30–32].
These preprocessing steps resulted in a total 215 entries and 49 descriptors. See Appendix A for the
entire list of descriptors.

Information regarding the microscopic and macroscopic structure of the cathode materials is
expected to play an important role in describing battery properties. However, since this information
was poorly reported in the literature, our dataset did not possess structural descriptors beyond
identifying the cathode structure class. We believe that it is in the interest of the scientific community
that, in the future, information be standardized and more systematically reported in order to better
serve data-driven studies [33]. Reporting of failed results should also be given equal weight to that of
successful results.

The raw data were combined with additional data that were generated from creating additional
descriptors from atomic properties. The first step of the data analytics process involved visualizing
the data in such a way as to gain insights into their behavior. The data were then divided into a
training set and a test set. The training data contained 172 entries leaving 43 values for the test set.
We exploited machine learning models to approximate the relationship between descriptors of the
battery materials and the target property, the specific discharge capacity at 25 cycles (in mAh g−1).
We considered the scikit-learn [34] implementation of: lasso, kernel ridge regression (KRR), random
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forests (RF) and support vector regression (SVR) [35]. We used grid search and 10-fold cross-validation
on the training data to obtain the hyper-parameters of our models in order to minimize the error on
our test set (hyper-parameter values available in Appendix A). The random forests model allowed us
to calculate a list of descriptor importances, which describes the relative importance of the descriptors
used in the model. The top 25 descriptors were selected and used in a second round of model training
in order to reduce over fitting and improve prediction performance on the test set. See Appendix A
for a list of these descriptors. We report the test error for the models evaluated in terms of the mean
absolute error and the coefficient of determination (R2).

3. Results and Discussion

Individuals interested in modeling and predicting battery performance care about a number
of different metrics. In this work, we used specific discharge capacity at 25 cycles as an example.
We selected the discharge capacity at 25 cycles because capacity fade is an important property that
involves very time consuming testing, which we would rather predict via a high fidelity machine
learning model. For example, if a battery is being tested at a discharge rate of C/10, then the
discharge–charge cycle takes almost an entire day, which means testing 25 cycles will take 20 days and
testing 100 cycles would take nearly three months. It is possible to visualize how this target property
varies with the available descriptors in order to explore correlations [36] with other material properties.
If obvious correlations exist, then a human can detect and exploit them using intuition. However,
as can be seen in Figure 1, there is no obvious correlation. Nevertheless, machine learning algorithms
are capable of building predictive models using higher-dimensional data not perceived by humans.
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Figure 1. Specific discharge capacity at 25 cycle (mAh g−1) versus the following descriptors: (a) mean
of the dipole polarizability; (b) atomic volume maximum difference; and (c) the mean of the gas
phase basicity.

Lasso is a linear model, whereas KRR, SVR, and RF models allow for the learning of both linear
and non-linear relationships. We attempted to map material descriptors to our target property using
these models. Lasso, the only linear model, had the worst performance and is not reported here.
The prediction accuracy of KRR, SVR, and RF models are shown in Figure 2. The model performance
is below what is typically reported in the literature. This significant model error hinders the predictive
utility for battery material discovery.

Descriptor importances can be extracted from the random forest model to determine which
descriptors are most important for a successful prediction. Figure 3 shows the top twelve descriptors.
Among the top descriptors are average dipole polarizability, average gas phase basicity, and the
average heat of fusion. Electrochemical batteries rely on the insertion and removal of ions and the
associated reduction–oxidation reaction. Therefore, the gas phase basicity (that is, the change of
Gibbs free energy during deprotonation) is likely a pertinent materials descriptor which might lend
itself to mechanistic analysis. Other descriptors such as heat of fusion or dipole polarizability are
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much less intuitive but could, hypothetically, play a subtle or higher-order role in determining Li-ion
battery properties.
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Figure 2. Machine learning prediction results for specific discharge capacity at 25 cycles (mAh g−1)
using: (a) kernel ridge regression; (b) support vector regression; and (c) random forests regression.
Training (blue circles) and test (orange squares) performance show similar behavior. The mean absolute
error (MAE) and coefficient of determination (R2) are shown. Dotted lines are included to help visualize
ideal model performance.
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Figure 3. The top twelve descriptors are shown along with their importances from the random forest regression.

Although there are several battery materials with high values for the specific discharge capacity
at 25 cycles, the vast majority of materials—all of which were investigated as potential battery
materials—have much lower values. A successful machine learning model would cheaply and
accurately predict the properties of a battery system, allowing researchers to identify materials with
desirable properties without the need for costly experiments or simulations. The model performance
shown in Figure 2 is not ideal, allowing for large prediction uncertainty. Although our model
could conceivably distinguish between very small and large specific discharge capacities, the present
predictive model would likely benefit from improvements in its performance prior to being used as
a tool for materials discovery.

This lackluster model performance likely arises from several issues. An algorithm may not
be capable of capturing underlying relationships, as is the case for Lasso. Lasso is a linear model
not capable of capturing nonlinear relationships in the data. In addition, the descriptors might be
insufficient to adequately describe a battery system. The design of material descriptors plays a critical
role in model performance and is an active area of research [30,37–39]. In particular, the complexity
of battery space likely requires appropriate descriptors as well as additional data for the successful
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training of ML models. The latter may be explored by studying how model error varies as a function
of the size of the dataset. In Figure 4, we see the error plateau at a relatively large value when the
size of the dataset approaches N = 90. We found that the training error is significantly lower than the
test error, indicating the impact of over-fitting. This suggests that the model error is dominated by
the lack of appropriate descriptors. It is conceivable that some of the metadata columns that needed
to be removed might be useful for improving model accuracy. This highlights a key challenge that
distinguishes battery research from other fields. That is, the complexity of battery architecture and
materials coupled with the lack of uniformity in data measurement and reporting hinders a data-driven
study of these systems.
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Figure 4. A decrease in mean absolute error (MAE) specific discharge capacity at 25 cycles (in mAh g−1)
is shown as a function of dataset size using the SVR algorithm. Blue (orange) represents the performance
of the test (training) set. Error bars show the standard deviation (obtained by repeating the calculation
50 times, each with a random sampling of the training data).

For example, consider the materials that constitute the battery components: anode, cathode,
and electrolyte. We note that these are rarely single-phase materials. Instead, a cathode is typically
made up of the active material mixed together with conductive additives as well as a binder. The ratio
of these phases is not dictated by an agreed upon standard but is determined on a case-by-case basis.
The cathode can also retain significant porosity, or even gradients in porosity [40,41] which is not
uniformly reported but will certainly influence battery properties. Similarly, it is well known that
grain size and grain morphology strongly influence properties such as electrical and ionic conductivity.
Nevertheless, final microstructures are not always reported and even summary information such
as particle size are rarely, if ever, reported. Likewise, the electrolyte in this dataset is very often the
organic LiPF6. This electrolyte can vary widely with different concentrations of additives, such as
ethylene-carbonate, dimethyl carbonate, diethyl carbonate, and propylene carbonate. When it comes
to assembling cells, even while testing similar cathode materials, researchers do not use a standard test
cell architecture. In some cases, the counter electrode could be lithium, in others graphite, and so forth.

In addition, we must consider the complexity which simply arises from non-standardized testing.
For example, cells can be tested at different discharge rates, which can vary over several orders of
magnitude. This selection of discharge rate has a significant effect on cell performance. Consider
the work of Wang et al. who demonstrated an increase in specific capacity of more than 100% when
changing the discharge rate by an order of magnitude [42]. In other instances, researchers will report
cyclic voltammograms, which require a data scientist to interpret voltage ranges by hand when
retrieving the data.
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Ultimately, it is up to the community of battery researchers to determine the most appropriate
testing procedures and protocols. This has not yet come to pass. However, a starting point might be
what has been put forward by the United States Advanced Battery Consortium. With this is mind,
we summarize the key challenges that the community might consider addressing in order to increase
the impact of a machine learning approach:

1. There are many cell architectures.
2. Each part of the cell is typically a composite, where the volume fraction, distribution, etc. are not

always reported.
3. Standardized description of the crystal structure of the cathode material should be reported.
4. A uniform set of protocols for testing cells is not adhered to, and as a result reported data

lack compatibility.
5. The complexity associated with battery systems results in a large number of diverse descriptors.

Even if the data were reported in a uniform way, this large number of descriptors might require
large amounts of data for the accurate training of ML models.

4. Conclusions

The large amount of research being generated in battery materials provides an opportunity for
potentially advancing this area of research using data-driven tools, which will aid battery modeling
and the discovery of battery materials. This report highlights the challenges faced in generating high
fidelity models, and suggests a framework that will guide the battery community when performing
and reporting future experiments. Overcoming these challenges will benefit a data-driven approach
to battery research and serve the entire community. This calls for efforts to thwart the lack of
standardization which obfuscates experimental results and thus scientific advancement.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/9/1/54/s1.
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Abbreviations

The following abbreviations are used in this manuscript:

ML Machine learning
HHI Herfindahl–Hirschman index
KRR Kernel ridge regression
RF Random forests
SVR Support vector regression

Appendix A. Descriptor and Model Details

Originally, 49 descriptors that were considered (Table A1). The first two columns of Table A1
show the element-based descriptors that were considered. The element values were obtained using the
Mendeleev package [43]. The far right column shows descriptors that were obtained from the battery
data. The number of descriptors was reduced to 25 using the descriptor ranking from the random
forest algorithm. All remaining descriptors used for training, along with their importances, are shown
in Table A2. The training/test data were obtained by using a split of 80/20. Model validation and
parameter selection were performed using 10-fold cross-validation.

http://www.mdpi.com/2073-4352/9/1/54/s1
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Table A1. The original 49 descriptors that were considered for learning. All averages are assumed to
be weighted.

Element-Based Descriptor Element-Based Descriptor From Battery Data

Atomic Rad: Average Ion: Average Structure Type: Li3PO4
Atomic Rad: Difference Boiling Point: Average Structure: LiCdBO3
Atomic Vol: Average Boiling Point: Difference Structure: LiV3O8
Atomic Vol: Difference Density: Average Structure: Na2FePO4F
Covalent Rad: Average Density: Difference Structure: Nasicon
Covalent Rad: Difference Evaporation Heat: Average Structure: Fluorophosphate
Dipole: Average Evaporation Heat: Difference Structure: Layered
Dipole: Difference Fusion Heat: Average Structure: Multiple
Num Electron: Average Fusion Heat: Difference Structure: Olivine
Num Electron: Difference Gas Basicity: Average Structure: Spinel
Van der Waals Radius: Average Gas Basicity: Difference Anode: Li
Van der Waals Radius: Difference Heat of Formation: Average Anode: Li4Ti5O12
Electronegativity: Average Heat of Formation: Difference Anode: MCMB
Electronegativity: Difference Melting Point: Average Anode: Na
# Valence: Average Melting Point: Difference Anode: Graphite
# Valence: Difference Thermal Conductivity: Average
Ion: Average Thermal Conductivity: Difference

Table A2. The 25 descriptors used for reported model performance and their ranked importance.

Rank Descriptor Rank Descriptor

1 Dipole: Average 14 Atomic Vol: Average
2 Gas Basicity: Average 15 Anode: Graphite
3 Gas Basicity: Difference 16 Electronegativity: Difference
4 Fusion Heat: Average 17 Melting Point: Average
5 Heat Of Formation: Average 18 Thermal Conductivity: Difference
6 # Electron: Average 19 Heat Of Formation: Difference
7 Anode: Li 20 Atomic Rad: Average
8 Boiling Point: Average 21 Van der Waals Radius: Average
9 Covalent Rad: Average 22 Melting Point: Difference

10 # Electron: Difference 23 Atomic Rad: Difference
11 Electronegativity: Average 24 Num Valence: Average
12 Thermal Conductivity: Average 25 Num Valence: Difference
13 Atomic Vol: Difference

Table A3. Optimized model parameters from training set.

Model Parameters

Lasso λ = 3.98
Kernel Ridge Regression λ = 0.126, γ = 0.004
Support Vector Regression ε = 24.2, C = 43.8
Random Forest n_estimators = 10, max_depth = 10
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