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Abstract: Here, crystal structure, electronic structure, chemical substitution, pressure-dependent
superconductivity, and thickness-dependent properties in FeSe-based superconductors are
systemically reviewed. First, the superconductivity versus chemical substitution is reviewed,
where the doping at Fe or Se sites induces different effects on the superconducting critical temperature
(Tc). Meanwhile, the application of high pressure is extremely effective in enhancing Tc and
simultaneously induces magnetism. Second, the intercalated-FeSe superconductors exhibit higher Tc

from 30 to 46 K. Such an enhancement is mainly caused by the charge transfer from the intercalated
organic and inorganic layer. Finally, the highest Tc emerging in single-unit-cell FeSe on the SrTiO3

substrate is discussed, where electron-phonon coupling between FeSe and the substrate could enhance
Tc to as high as 65 K or 100 K. The step-wise increment of Tc indicates that the synergic effect of
carrier doping and electron-phonon coupling plays a critical role in tuning the electronic structure
and superconductivity in FeSe-based superconductors.
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1. Introduction

After discovering FeAs-based superconductors in 2008 [1–4], a structurally-simple binary FeSe
superconductor with a superconducting critical temperature (Tc) of 8 K was quickly established by
Hsu et al. [5] This brought researchers into a fresh new field of iron-based superconductors. The binary
compound is composed of a neutral FeSe layer that is composed of a FeSe4 tetrahedra along the c-axis,
and thus the interlayer coupling is weak van der Waals forces. It was found, initially, that the chemical
substitution of Se by S and Te mildly enhanced the Tc to 10−15 K. However, tiny amounts of doping
(3%) in the Fe site by Cu and Co strikingly suppress the Tc. Such features are totally different from
those of FeAs-based superconductors, where the Co/Ni doping effectively induces superconductivity
(SC) accompanying many properties like linear-T resistivity, a quantum critical point, and magnetic
fluctuations [6–8]. Furthermore, there is no long-range magnetic order in FeSe, and the interplay
between magnetism and SC is lacking, thus its superconducting mechanism seems to be simpler than
that of FeAs-based superconductors. On the other hand, it is hard to grow large-sized single crystals of
FeSe by the conventional flux-method because superconducting FeSe is a metastable phase that only
exists in the temperature range of 673 K−973 K. The intrinsic properties like gap symmetry and the
Fermi surface are hence inaccessible. These disadvantages, to some extent, hinder the investigations of
FeSe-based superconductors.
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Later, a technique of growing high-quality FeSe single crystals was found, and multiple
characterizations like magneto-transport, in situ pressure, and inelastic neutron scattering revealed
inherent properties for SC. More importantly, in 2010, the intercalation between the FeSe layer by
large-sized alkali metals was successfully realized, forming a series of superconductors AxFe2-ySe2

(A = K, Cs, Rb, Tl) with a Tc of 30 K. This discovery opened a broader field in the physics and chemistry
community. Subsequent reports of alkali metal, and ammonia co-intercalated FeSe, inorganic molecule
intercalation, and monolayer FeSe on a SrTiO3 substrate continuously enhanced the Tc up to 65 K
or even 100 K, making the FeSe-based compound one of the most fascinating fields in the search
for a high Tc superconductor. Apart from the enhancement of Tc, the angle resolve photoemission
spectrum (ARPES) revealed that the Fermi surface in such high Tc superconductors share a common
feature (i.e., only two electron pockets surviving at the M point). A unique Fermi surface possibly
implies a different pairing mechanism for Cooper pairs rather than the Fermi nesting scenario between
electron-hole pockets in the well-documented FeAs-based superconductor [9,10].

In the last 11 years, FeSe-based superconductors have exhibited huge advancements and
prosperous developments, and we feel that it is necessary to summarize the significant progress
made at each important step. In this paper, we will review the crystal structure, the electronic structure,
and the superconducting phase diagram in diverse FeSe-based superconductors. The evolutions of SC
in binary FeSe under chemical substitution and physical pressure are discussed in first part. Second, the
FeSe-based intercalates through inorganic and organic molecules are summarized, where both the
interlayer spacing between FeSe layers and the charge transfer should determine the Tc. Finally, the
substrate effect, the doping carrier, and the interfacial coupling of high-Tc SC in thin FeSe film are
discussed. We hope that this review can deepen the understanding of structural evolution and
superconductivity in FeSe-based superconductors to motivate the exploration of new superconducting
materials with higher Tc.

2. Superconductivity in FeSe

2.1. Structure and Stoichiometric of Fe1+xSe

Binary FeSe with Tc = 8 K was discovered in 2008. It is regarded as a less-toxic superconductor
when compared with the FeAs-based superconductors. The structure of FeSe is the PbO-type, which is
composed of FeSe layers that are formed by edge-shared FeSe4 tetrahedra. The onset of Tc is
8.5 K. Rietveld refinements of powder synchrotron diffraction (BL12B2 beamline in Spring8) yield
a = 0.37693(1) nm and c = 0.54861(2) nm for FeSe0.82, and a = 0.37676(2) nm and c = 0. 54847(1) nm for
FeSe0.88. By cooling below the phase transition temperature (Ts) of 90 K, the (220) peak of PXRD splits
into (200) and (020), indicating a structural transition from tetragonal P4/nmm to triclinic P-1, as shown
in Figure 1. After that, Margadonna et al. carefully resolved the low-temperature crystal structures
for FeSe0.92 [11]. Both high-resolution synchrotron x-ray diffraction and powder neutron diffraction
(NPD) were carried out at different temperatures. They found that it indeed experienced a structural
transition below the Ts, but the low-temperature phase showed an orthorhombic phase (space group
Cmma), rather than triclinic symmetry, as seen in Figure 2. This transition was later called a nematic
transition, which possibly correlates with the SC evidenced by multiple characterizations [12,13].

Pomjakushina et al. used two different methods to synthesize the FeSe1-x powder [14],
and found that the superconducting phase existed in a very narrow range of Se content (FeSe0.974±0.005).
Williams et al. carefully identified the role of Se-deficiency on tuning the structural transition and
SC [15]. They proved experimentally that the correct formula of superconducting samples was
FeSe0.99. The Se vacancies may not be necessary for inducing SC. They also determined that the SC
was extremely sensitive to the content and disorder of Fe. After introducing 3% excess Fe, the SC was
totally suppressed. Additionally, the magnetic order was not observed down to 5 K, in contrast to the
antiferromagnetic (AFM) ground state in the FeAs-based superconductors. The Fe1.01Se compound
exhibits the superstructure below the Ts in the form of a

√
2 ×
√

2 × 1 supercell, consistent with
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the previous report [16]. Moreover, in the compound Fe1.03Se, the structural transition disappears,
which means that excess Fe can break the long-range coherence of the structural unit. Recently, more
details on the superstructure and SC were revealed in vacancy-ordered Fe1-xSe. Three kinds of
superstructures,
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√

2 × 1,
√

5 ×
√

5 × 1, and
√

10 ×
√

10 × 1, were identified in Fe3Se4, Fe4Se5,
and superconducting Fe9Se10, respectively [17]. Among them, the Fe4Se5 compound is an AFM
insulator with a small effective magnetic moment (0.003µB). These authors claimed that the Fe vacancies
could be effectively tuned, and increasing the content of Fe gradually led to the so-called parent
compound Fe4Se5 into a superconducting state. Such behavior is analogous to the superconducting
phase diagram in cuprates, where the parent compounds are AFM insulators and excess hole or
electron doping can induce SC [18].

Regarding the single crystal of FeSe, Mok et al. could grow it through the high-temperature
method using flux KCl [19]. As shown in Figure 3a, single crystals 2–3 mm in width and 0.1–0.3 mm
in thickness were obtained. Only small amounts of the hexagonal FeSe impurity phase was detected
according to the x-ray diffraction analysis. This work further proved that post-annealing at 673 K was
useful to improve the quality of single crystals. Chareev et al. successfully grew high-quality FeSe
single crystals by the chemical vapor deposition method. The atomic ratio of Fe:Se = 1:0.96 ± 0.02 and
the maximal size was 4 × 4 × 0.1 mm3. The layered feature can clearly be observed in the Figure 3b.
The Tc

onset of this crystal was 9.4 K [20]. Following the improvement of single crystals, several groups
quickly determined the intrinsic SC of FeSe. Lei et al. presented the nearly isotropic upper critical field
[Hc2(0)] with magnetic field parallel and perpendicular to (101) face (see Figure 4a,b), and deduced a
large Ginzburg-Landau parameter of κ ~72.3(2) [21]. The critical current density (Jc) was determined to
be 2.2 × 104 A/cm2 by the Bean model. Furthermore, these authors analyzed the Hall effect of FeSe and
confirmed that the dominant carriers were hole-type at high magnetic fields. The electron-type carriers
made a larger contribution at low magnetic field and low temperature, as shown in Figure 4c [22].
The symmetry of the superconducting energy gap was investigated by Lin et al. who demonstrated
the coexistence of the isotropic s-wave and extended anisotropic s-wave gap with the magnitude of
1.33 meV and 1.13 meV in FeSe [23]. A high electron-boson coupling constant, 1.55, implies that the
electron is not only coupled with phonons, but also with other “glues” associated with spin fluctuations.
Subsequently, Abdel-Hafiez et al. measured the temperature-dependent London penetration depth,
which was fitted by either a two s-wave-like model or a single anisotropic gap [24]. They claimed that
the superconducting energy gap is nodeless. The fitting curves of a two-gap model with anisotropic
s-wave and d-wave models are shown in Figure 4d.

Density functional calculations demonstrated that the electronic structure of FeSe was very
similar to those of the FeAs-based superconductors [25]. In the first Brillouin zone, there are heavy
hole-cylinders and lighter electron-pockets near the zone center (Г-point) and corner (M-point),
respectively, implying typical spin-density wave instability due to Fermi surface nesting. In 2014,
Shimojima et al. investigated the temperature-dependent band dispersion of Fe 3dxz and 3dyz orbitals
at the M point from 50 K to 110 K. The results showed that the removal of degeneracy in the 3dxz/3dyz

bands occurred at temperatures close to the Ts, which may be the orbital origin of structural transition
[26]. Later, Zhang et al. traced the temperature dependence of band dispersion at the M point and
the Г point. They surprisingly found that the band splitting at the Г point was not closely related to
the structural transition, which may be controlled by magnetic frustration [27]. A high-resolution
laser-based ARPES on FeSe recently uncovered a highly anisotropic Fermi surface around the Г point.
This is possibly related to the low-temperature orthorhombic phase (i.e., nematic state), because the
splitting of 3dxz/3dyz bands is possibly due to anisotropic electron hopping. Moreover, the observation
of an extremely anisotropic superconducting gap with two-fold symmetry was also associated with
nematicity. Fitting the gap scale against momentum suggests a possible combination of extended
s-wave and d-wave gap symmetry [28,29]. It can be found that many characterizations, at least,
confirmed that the superconducting energy gap of FeSe was of the anisotropic type.
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Figure 1. (a,b) Crystal structure of FeSe. (c) Observed (open black circle) and calculated (red solid 
line) powder diffraction intensities of FeSe0.88 at 300 K using space group P4/nmm. (d) The 
temperature dependence of the γ-angle fitted with P-1 symmetry. The single peak of the (2, 2, 0), (2, 
0, 3), (2, 2, 1) reflection is seen in (c), splitting of the diffraction peaks into two peaks was observed 
(Figure reprinted from Hsu, F.C. et al., Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 14262–14264. Copyright 
2008 by the National Academy of Sciences of the USA). 

 

Figure 2. (a) Schematic diagram of the low-temperature orthorhombic structure of FeSe0.92. (b,c) 
Geometry of the FeSe4 tetrahedra and the SeFe4 pyramids with three distinct Se–Fe–Se and Fe–Se–Fe 
bond angles, respectively (Figure reprinted from Margadonna, S. et al., Chem. Commun. (Cambridge, 
U. K.). 2008, 5607–5609. Copyright 2008 by the Royal Society of Chemistry). 

Pomjakushina et al. used two different methods to synthesize the FeSe1-x powder [14], and 
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[15]. They proved experimentally that the correct formula of superconducting samples was FeSe0.99. 
The Se vacancies may not be necessary for inducing SC. They also determined that the SC was 
extremely sensitive to the content and disorder of Fe. After introducing 3% excess Fe, the SC was 
totally suppressed. Additionally, the magnetic order was not observed down to 5 K, in contrast to 
the antiferromagnetic (AFM) ground state in the FeAs-based superconductors. The Fe1.01Se 
compound exhibits the superstructure below the Ts in the form of a √2 × √2 × 1 supercell, consistent 

Figure 1. (a,b) Crystal structure of FeSe. (c) Observed (open black circle) and calculated (red solid line)
powder diffraction intensities of FeSe0.88 at 300 K using space group P4/nmm. (d) The temperature
dependence of the γ-angle fitted with P-1 symmetry. The single peak of the (2, 2, 0), (2, 0, 3), (2, 2, 1)
reflection is seen in (c), splitting of the diffraction peaks into two peaks was observed (Figure reprinted
from Hsu, F.C. et al. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 14262–14264. Copyright 2008 by the
National Academy of Sciences of the USA).
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Figure 2. (a) Schematic diagram of the low-temperature orthorhombic structure of FeSe0.92.
(b,c) Geometry of the FeSe4 tetrahedra and the SeFe4 pyramids with three distinct Se–Fe–Se and Fe–Se–Fe
bond angles, respectively. (d) Temperature dependent lattice constants of FeSe. (Figure reprinted from
Margadonna, S. et al. Chem. Commun. (Cambridge, U. K.). 2008, 5607–5609. Copyright 2008 by the Royal
Society of Chemistry).
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Figure 3. (a) Scanning electron micrographs of the as-grown FeSe0.9 single crystal 2–3 mm in width
and 50–60 µm in thickness by the high temperature flux-method. (b) The FeSe0.96S0.04 single crystal
was obtained by chemical vapor deposition (Figure 3a reprinted from Vedeneev S.I. et al. Phys. Rev.
B 2013, 87, 134512. Copyright 2013 by American Physical Society. Figure 3b reprinted from Chareev,
D. et al. Cryst. Eng. Comm. 2013, 15, 1989–1993. Copyright 2013 by the Royal Society of Chemistry).
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Figure 4. (a) Determination of the upper critical field Hc2(0) from the temperature
dependence of the resistivity ρ(T) of β-FeSe single crystals for H//(101) and H⊥(101) directions.
(b) Temperature-dependence of Hc1 for both H//(101) and H⊥(101) directions. The solid blue line was
the fitting curve using Hc1(T) = Hc1(0)[1 − (T/Tc)2] for H//(101). (c) Temperature dependence of carrier
density n (nh − ne) of the β-FeSe crystal. (d) Fitted curve of two-gap model with anisotropic s-wave
and d-wave models (Figure 4a,b reprinted from Lei H.C. et al. Phys. Rev. B 2011, 84, 014520. Copyright
2011 by American Physical Society. Figure 4c reprinted from Lei H.C. et al. Phys. Rev. B 2012, 85,
094515. Copyright 2012 by American Physical Society. Figure 4d reprinted from Hafiez, M.A. et al.
Phys. Rev. B 2013, 88, 174512. Copyright 2013 by American Physical Society].

2.2. FeSe under Pressure and Chemical Substitution

The application of high pressure on FeSe exhibits a surprising effect on tuning SC and magnetism.
Mizuguchi et al. first enhanced the Tc of polycrystalline FeSe to 13.5 K under 1.48 GPa with a positive
pressure-coefficient of 9.1 K/GPa [30]. Linear-extrapolated Hc2(0) was increased from 37 T to 72 T,
implying the unconventional feature of SC. Millican et al. applied 0.6 GPa hydrostatic pressure to FeSe,
and the structural parameters deduced from the high-resolution NPD pattern suggested that the phase
transition was suppressed under pressure. A small bulk modulus, 31 GPa, suggested that FeSe is a
soft material that can be effectively pressurized [31]. Garbarino et al. observed a new orthorhombic
phase at a higher Tc of 34 K under 22 GPa [32]. Imai et al. performed the 77Se nuclear magnetic
resonance (NMR) measurement at 2.2 GPa and ascribed the strongly-enhanced AFM spin fluctuations
to be the origin of the enhancement of Tc [33]. This picture was supported by a zero-field muon
spin rotation (µSR) measurement, from which the SC and AFM order were simultaneously stabilized
in the low pressure range (see Figure 5a) [34]. Meanwhile, a very small magnetic moment, 0.2 µB,
was obtained at 2.4 GPa. In an extended pressure range, a clear dome-shaped superconducting phase
diagram as a function of pressure was established, where the maximal Tc of 36.7 K showed up at
8.9 GPa. Above 12 GPa, the tetragonal FeSe changed into hexagonal FeSe (NiAs-type), which is a
non-superconducting phase (Figure 5b) [35]. The in situ Mössbauer spectrum under pressure revealed



Crystals 2019, 9, 560 6 of 21

that there was no long-range magnetic ordering in the whole pressure range. This observation is in
stark contrast to the results of the NMR and µSR experiments.
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To clarify this, single crystals of FeSe have been used in in-situ high-pressure experiments. In 2015,
Terashima et al. applied the high pressure of 2.72 GPa on FeSe single crystals and measured the
resistance and ac magnetic susceptibility [36]. They confirmed that Tc generally increased under
pressure, but dropped to a minimum Tc at ~1.2 GPa, which was consistent with the pressure-induced
antiferromagnetic phase transition [37]. At pressures above 5 GPa, Sun et al. observed a sudden
enhancement of Tc and suppression of TN, indicating competition between SC and magnetic order (see
Figure 6). Furthermore, an interesting linear-T resistivity was observed at higher pressure, which can
be considered to be a signature of a quantum critical point [38]. Application of higher pressure would
destabilize the AFM state and thus enhance the spin fluctuations, to some extent, which is similar
to the mechanism enhancing Tc in FeAs-based superconductors. At the optimum Tc, the electrical
transport behaviors are dominated by holes, which are enhanced near optimal pressure, implying a
Fermi surface reconstruction due to AF ordering [39].

According to the reports by Yeh et al. Te-substitution of Se sites resulted in lattice expansion
because of the larger ionic radius of Te, as shown in Figure 7 [40,41]. It also can enhance onset
of superconductivity (Tc

onset ) to 15.2 K and Hc2(0) to 28.8 T as half of the Se was substituted.
Later, a high-quality single crystal of Fe1+ySe1-xTex was grown from the melt [42]. It showed that
the single-phase can only exist in the Te-rich side. Bulk SC at 14 K in Fe1+ySe0.5Te0.5 was confirmed
simultaneously by resistivity, magnetic susceptibility, and heat capacity. Post-annealing on Te-rich
samples could improve the filamentary SC into bulk SC [43–46]. Meanwhile, the excess Fe at the
interstitial site not only suppresses SC, but also induces weakly-localized states. From the neutron pair
density function analysis, Se and Te do not actually occupy the same crystallographic site, leading to a
local symmetry around Fe that is lower than the average crystal symmetry (P4/nmm) in Fe1+ySe1-xTex

solid-solutions [47]. A comprehensive phase diagram of the SC and the structure of Fe1+ySe1-xTex

were constructed by Liu et al. where bulk SC emerged in the range of 50% to 70% Te doping [48].
The in-plane magnetic wave vector in FeTe for the AFM order is (π, 0); as the content of Se increases,
the magnetic fluctuations gradually evolve into the (π, π) type associated with the scenario of Fermi
surface nesting. This finding first revealed that both FeSe- and FeAs-based superconductors may share
a similar mechanism for SC, assuming that the spin fluctuation picture is applicable.
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Figure 7. (a) Te-doping dependence of structural evolution and Tc of FeSe1−xTex. (b) Temperature
dependence of FeSe1−xTex resistance under zero magnetism (Figure reprinted from Yeh, K.W. et al.
J. Phys. Soc. Jpn. 2008, 77, 19–22. Copyright 2008 by JPS).

Regarding S-doped FeSe, the soluble limit of S is smaller than 20%, according to a report from
Mizuguchi et al. [49] Additionally, Abdel-Hafiez et al. studied the superconducting properties of
high-quality single crystals of FeSe1-xSx (x = 0, 0.04, 0.09, and 0.11). As the S concentration increases,
the Tc determined from the onset of the diamagnetic signal increases from ~8.5 K to 10.7 K at x = 0.11.
The normalized specific heat jump for FeSe1-xSx was significantly larger than the limit (1.43) of the
BCS model, which is a signature of strong-coupling SC [50]. By using ARPES, Watson et al. observed
a smaller splitting of the 3dxz and 3dyz bands and a weaker anisotropy of the Fermi surface in the
FeSe1-xSx [51]. This means that isovalent S-substitution reduces the orbital ordering, correspondingly
suppressing the structural transition temperature from 87 K to 58 K. Matsuura et al. investigated the
pressure-dependent phase diagram of FeSe1-xSx, as shown in Figure 8 [52]. As S-content increased,
the structural transition was quickly suppressed. Simultaneously, the pressure-induced SDW phase
zone was gradually narrowed and the maximal Tc in each composition also decreased. This becomes a
single dome-like SC in FeSe0.83S0.17, where the highest Tc was 30 K.
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3. Intercalated FeSe-Based Superconductors

In 2010, we discovered the alkali-intercalated FeSe-based superconductor with Tc ~30 K for the
first time [53,54]. Through Rietveld refinements against PXRD, an average structure of K0.8Fe2Se2

(i.e., 122-type), was determined, which was iso-structural, to be known BaFe2As2, as seen in Figure 9.
From the temperature dependence of resistance and magnetization, the Tc

onset was identified as 30.1 K.
The dominant carriers were n-type, suggesting an electron-doped superconductor. This was the first
report of enhancing Tc in an FeSe-based superconductor up to 30 K without applying high pressure.
Following this discovery, several groups quickly identified many 122-type FeSe-based superconductors
such as Cs0.8(FeSe0.98)2 (Tc ~27 K) [55,56], Rb0.88Fe1.81Se2 (Tc = 32 K) [57], Tl0.58Rb0.42Fe1.72Se2 (Tc

~32 K) [58], and (Tl, K)FexSe2 (Tc ~31 K) [59]. A new family of materials thereby came into the
awareness of the superconducting community.
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Figure 9. (a) PXRD pattern and Rietveld refinements profile of K0.8Fe2Se2. Crystal structure is shown as
inset. (b) Temperature dependence of magnetization of the K0.8Fe2Se2 single crystal (Figure reprinted
from Guo J.G. et al. Phys. Rev. B 2010, 82, 180520. Copyright 2010 by American Physical Society).

Transmission electron microscopy (TEM) on K0.8FexSe2 and KFexSe2 (1.7≤ x≤ 1.8) samples revealed
that complex phase-separation emerge in such AFe2Se2 superconductors. The superconducting phase
is likely to be KxFe2Se2, which was later confirmed by STM results. The Fe-vacancy ordered phase
K2Fe4Se5 showed a

√
5 ×
√

5 × 1 superstructure [60]. The NPD on KxFe2Se2 samples revealed that the
superstructure phases A2Fe4Se5 existed in all K, Cs, Rb, (Tl, Rb), and (Tl, K) intercalated FeSe-based
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superconductors [61]. Li et al. proposed that the existence of Fe vacancies could locally destroy SC
[62], and suggested that the K2Fe4Se5 layer may be indispensable to regulate superconductivity in
KFe2Se2 by providing charge carriers [63]. More superstructures associated with different Fe-vacancy
and alkali-metal-ordering were later revealed later [64–67].

Phase separation hinders the investigation of the intrinsic property of FeSe-based 122-type
superconductors. A low-temperature route, named the liquid-ammonia method, was proposed
to synthesize phase-pure superconductors. A series of alkali and ammonia co-intercalated
compounds were synthesized such as Li(NH3)yFe2Se2, Na(NH3)yFe2Se2, Ca0.5(NH3)yFe2Se2,
Sr0.8(NH3)yFe2Se2, Ba0.8(NH3)yFe2Se2, Eu(NH3)yFe2Se2, and Yb(NH3)yFe2Se2, with a Tc of 30–46 K
[68–70]. Taking Na(NH3)yFe2Se2 as an example, the crystal structure is composed of edge-sharing
FeSe4-tetrahedra layers and Na atoms between the FeSe4 layers, and the Tc

onset is 46 K, as shown
in Figure 10a,b. In addition, these authors built a discrete superconducting phase diagram against
K content, as seen in Figure 10c,d, where the low intercalated content could enhance the Tc to 44 K.
After increasing the K content to 0.6, the Tc was lowered to 30 K [71]. This trend is well reproduced by
the density function theory and Monte Carlo simulations [72].Crystals 2019, 9, x FOR PEER REVIEW 10 of 23 
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Figure 10. (a) PXRD pattern and Rietveld refinements profile of NaFe2Se2 at ambient temperature.
Inset shows the crystal structure of NaFe2Se2. (b) Temperature dependence of magnetization of
NaFe2Se2 polycrystalline sample. (Left) inset shows superconducting loops of NaFe2Se2 at 10 K
and 60 K, respectively. (Right) inset shows temperature dependence of the electrical resistance of
cold-pressed NaFe2Se2. (c) Enlargement of (002) peak of PXRD patterns for KxFe2Se2(NH3)y (x = 0.25,
0.4, 0.5, and 0.65) samples measured at 297 K. (d) Tcs of KxFe2Se2(NH3)y as a function of nominal
potassium content (Figure 10a,b reprinted from Ying, T.P. et al. Sci. Rep. 2012, 2, 426. Copyright 2012
by Macmillan Publishers Limited. Figure 10c,d reprinted from Ying, T. P. et al. J. Am. Chem. Soc. 2013,
135, 2951–2954. Copyright 2013 by American Chemical Society).

Later, the high-resolution NPD technique was adopted to determine the crystal structure of
Lix(NH3)yFeSe, where the Li and NH3 are located in between the FeSe layer [73]. Jin et al. also
determined the structure of Na0.39(C2N2H8)0.77Fe2Se2 in this way, as shown in Figure 11 [74].
The existence of organic molecules seems not to be related to SC, but can drastically alter the geometry
of FeSe, even changing the structural symmetry due to rotations of the long-chain of the C atom [75].
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Lu et al. synthesized an intercalated superconductor (Li0.8Fe0.2)OHFeSe by the hydrothermal method.
The Tc was ~41 K and the precise structure parameters were determined by x-ray and NPD. the details
of which are shown in Figure 12 [76]. The Tc of different FeSe intercalates imply that Tc is proportional
to the interlayer spacing below 9.0 Å. Once the spacing is above 9.0 Å, Tc seems to be independent
on this spacing [77]. Therefore, the doped electron count is more important for determining Tc.
Thus, studies of metal ions and molecular co-intercalated FeSe-based compounds are important to
enhance Tc and understand the effect of structural change on SC [78,79]. Additionally, under high
pressure, a second superconducting phase with higher Tc was observed in KxFe2Se2, which can be
ascribed to the quantum critical phase transition [80,81]. Such pressure-induced SC was also verified
in (Li0.8Fe0.2)OHFeSe [82] and in Lix(NH3)yFe2Se2 [83].
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Figure 11. (a–b) Crystal structure of Na0.39(C2N2H8)0.77Fe2Se2. (c) Rietveld refinements of NPD
pattern. Inset is the atomic geometry of FeSe4 tetrahedra. (d) Rietveld refinements of PXRD pattern.
Inset shows the expanded range of 20◦–90◦. [Figure reprinted from Jin S.F. et al. Chem. Commun.
(Cambridge, U. K.) 2017, 53, 9729-9732. Copyright 2017 by The Royal Society of Chemistry.].
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Figure 12. (a,b) Crystal structure of (Li0.8Fe0.2)OHFeSe. (c) Rietveld refinements of PND pattern of
(Li0.8Fe0.2)OHFeSe (Figure reprinted from Lu X.F. et al. Nat. Mater. 2015, 14, 325–329. Copyright 2015
by Macmillan Publishers Limited).
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Sizeable single-crystals of AxFe2Se2 and (Li0.8Fe0.2)OHFeSe superconductors can be easily grown
by the self-flux and hydrothermal method. Thus, the important Fermi surface topology can be detected
by ARPES experiments. The most important finding is that the hole-pocket at the Γ point sinks tens
of meV below the Fermi level and the unique Fermi surface only contains electronic pockets [84].
In terms of the approximation of a rigid band shift, it is a consequence of electron-doping, which lifts
up the Fermi energy. This topology of the Fermi surface has also been observed in (Li0.8Fe0.2)OHFeSe
(see Figure 13) [85,86]. Such a Fermi surface challenges the established picture of electron-hole nesting
for inducing SC in FeAs-based superconductors [9,10,87]. At the same time, the ARPES measurements
confirmed that the superconducting gap was of the isotropic type, with a magnitude of 10.3 meV.
This nodeless gap suggests that a conventional s-wave pairing could better describe the origin of SC
[88].
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Figure 13. (a) Electronic band structure of K0.8Fe1.7Se2 and possible (π, π) scattering vector. (b) Fermi
surface of (Li0.84Fe0.16)OHFe0.98Se measured at 20 K (Figure reprinted from Qian T. et al. Phys. Rev.
Lett. 2011, 106, 187001. Copyright 2011 by American Physical Society. Reprinted from Zhao L. et al.
Nat. Commun. 2016, 7, 10608. Copyright 2016 by Macmillan Publishers Limited).

4. Superconductivity of FeSe Film

In 2012, Wang et al. reported that a single unit cell (SUC) FeSe film grown on a SrTiO3 (STO)
substrate by molecular beam epitaxy (MBE) exhibited a very large superconducting gap (∆) of
20 meV. Assuming that the superconducting mechanism of both FeSe film and bulk FeSe is the same,
the estimated Tc of the SUC FeSe film may be larger than 77 K [89]. The SUC FeSe film had an
atomically smooth surface after Se-flux treatment. The temperature-dependent resistance showed
a little lower Tc

onset of 53 K as plotted in Figure 14a. The upper inset in Figure 14a shows that the
SC is slowly suppressed by the external magnetic field. The tunneling spectrum in the SUC FeSe
film clearly exhibited a ~20 meV superconducting gap, as seen in Figure 14b. However, the double
unit cell (DUC) FeSe film did not exhibit SC at all (see Figure 14c). It seems that the interfacial effect
offers an effective way to realize high Tc in FeSe. Ge et al. reported a rather high Tc, above 100 K,
in FeSe/STO film by using in situ four-point probe electrical transport measurements. This Tc is the
highest value in all reported Fe-based superconductors, which is a rather exciting result that deserves
further investigation [90]. Subsequently, many FeSe thin films grown on different substrates have been
studied in order to understand the mechanism of enhancing SC.

He et al. studied the topology of the Fermi surface of the SUC FeSe film grown on a STO substrate
by changing the carrier concentration through a different annealing procedure [91]. Surprisingly, they
found that two competitive phases, a non-superconducting phase at low-doping level and another
superconducting phase at high-doping level, appeared during the annealing process. The electronic
structure and the superconducting gap were tuned in a larger range by adjusting the annealing time
and temperature. As depicted in Figure 15a–d, it was found that the magnitude of the superconducting
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gap increased from ~10 meV to ~19 meV. Meanwhile, the relation between the superconducting gap
size and temperature could be well described by the BCS theory, which is displayed as a green line in
Figure 15e–h). Meanwhile, Tan et al. also grew a high-quality thin FeSe film on a STO substrate and
measured the Fermi surface and band dispersion [92]. They found that a short-range SDW appeared
in the thin FeSe film (50 unit-cell). As depicted in Figure 16a, the SC arises while the spin density wave
is suppressed. This phase diagram reveals that there is a unified trend in SUC FeSe/STO and other
Fe-based superconductors by controlling the doping level and lattice constants. It also implies that
a higher Tc will appear in the FeSe film if the lattice constants are expanded and higher electronic
doping is introduced. Rebec et al. compared the Tc and the scale of superconducting gap in 60 unit-cell
FeSe/STO (001), SUC FeSe/STO (001), and 3 UC FeSe/STO (001) coated by potassium atoms and SUC
FeSe/TiO2 (100). By analyzing the ARPES results, they found that electron doping plays an important
role in inducing high Tc [93].
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Figure 14. (a) Temperature dependence of square resistivity of a 5-UC-thick FeSe film on insulating
STO (001). (b) Tunneling spectrum measurement of the 1-UC-thick FeSe film on STO (001) at 4.2 K.
(c) dI/dV spectrum of the 2-UC-thick FeSe film on insulating STO (001) at 4.2 K. (Figure reprinted from
Wang, Q.Y. et al. Chin. Phys. Lett. 2012, 29, 037402. Copyright 2012 by Chinese Physical Society and
IOP Publishing Ltd.).

There is an interaction between electrons from FeSe and the oxygen optical phonons of the STO
substrate, thus enhancing the electron-phonon coupling [94]. Figure 17 suggests that there is a close
relationship between interfacial electron–phonon coupling and Tc enhancement. Both experimental
and calculation results revealed that interfacial electron–phonon coupling could account for the
enhancement of Tc in the SUC FeSe/STO film. To find out the main factor in enhancing SC, Ding et al.
grew SUC FeSe films on a TiO2 (001) substrate [95]. As depicted in Figure 18, a TiO2 film with a
thickness of 15 nm was grown on a STO substrate. On the TiO2 surface, a 4 × 1 reconstruction of
the oxygen vacancies (white spots) can clearly be seen. The density of the oxygen vacancies in the
as-grown TiO2 surface was about 4.6 × 10−2 per nm2, and post-annealing reduced the vacancies of
TiO2 to 6.1 × 10−3 per nm2, as shown in Figure 18a–c. The SUC FeSe film on TiO2 also exhibited a
clear superconducting feature in the dI/dV spectrum, but the double unit cell (DUC) FeSe was not
superconducting (see Figure 18d). In the SUC FeSe sample grown on a TiO2 substrate with different
oxygen vacancies, there was no change in the superconducting gap (see Figure 18e). Thus, the density
of interfacial oxygen vacancies has a limited effect on enhancing the interfacial charge transfer and Tc.



Crystals 2019, 9, 560 13 of 21

Zhou et al. also grew SUC FeSe films on a MgO (001) substrate, and the onset Tc was 18 K, as inferred
by transport measurement. [96] The atomic image illustrates that the SUC FeSe film grown on the MgO
(001) substrate was along FeSe (001). A 1.3% in-plane tensile strain was induced by the lattice mismatch
of the FeSe and the MgO (001) substrate. Scanning transmission electron microscopy (STEM) images
of the interfacial structure demonstrated that Mg atoms could be replaced by Fe atoms, and the result
of the calculations showed that the MgO film near the interface becomes electron doped, which shows
the capability of enhancing the charge-transfer effect.Crystals 2019, 9, x FOR PEER REVIEW 13 of 23 
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Figure 15. (a–d) Symmetrized energy distribution curves (EDCs) of the Fermi surface near the M
point in the Brillouin zone with various annealing process. (e–h) Temperature dependence of the
superconducting gap. Green lines are fitting curves based on the BCS model (Figure reprinted from He,
S.L. et al. Nat. Mater. 2013, 12, 605–610. Copyright 2013 by Macmillan Publishers Limited.).
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Figure 16. (a) The proposed phase diagram of various FeSe film and bulk FeSe. (b) Tc and
superconducting gap of bulk FeSe, FeSe grown on the SiC (0001) substrate, K-doped thin FeSe
film, K-doped FeSe film grown on the STO (001) substrate, single unit cell (SUC) FeSe/STO (001),
and FeSe/STO (110). (Figure 16a reprinted from Tan, S.Y. et al. Nat. Mater. 2013, 12, 634–640.
Copyright 2013 by Macmillan Publishers Limited. Figure 16b reprinted from Rebec, S.N. et al. Phys.
Rev. Lett. 2017, 118, 067002. Copyright 2017 by American Physical Society).
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Figure 17. Electron-phonon coupling effect and measurement of Tc enhancement. (a) High-statistics
scan at the M point of the first Brillouin zone measured at 10 K. (b) The EDC after background
subtraction and the calculated counterpart. (c) Theoretical calculation involving hole and electron
bands coupled to a dispersion phonon mode via model spectral functions, and the dashed line is
the symmetrized energy distribution curves. (d) Tc enhancement as a function of electron–phonon
coupling strength (Veff/J). (Figure 17 reprinted from Lee, J.J. et al. Nature 2014, 515, 245–248. Copyright
2014 by Macmillan Publishers Limited).
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Figure 18. (a) STM topography of TiO2 with lower density of oxygen vacancies after annealing (bright
spots). (b) STM topography in a TiO2 island supported by the STO substrate. (c) Enlarged STM
topography acquired on a TiO2 island with oxygen vacancies (without annealing). (d) Low energy
dI/dV spectra taken on the SUC and DUC FeSe films. (e) A series of dI/dV spectra acquired from the
FeSe surface along one direction (Figure 18 reprinted from Ding, H. et al. Phys. Rev. Lett. 2016, 117.
Copyright 2016 by American Physical Society).

Miyata et al. observed SC with a Tc of 48 K in a multilayer FeSe film by coating potassium onto its
surface [97]. The electronic structure of the SUC FeSe films are shown in Figure 19. The Fermi surface
of the SUC FeSe film consists of a large electron pocket at the M point of the Brillouin zone, which is
consistent with those of KxFe2Se2 and LiOHFeSe. However, the Fermi surface of the triple unit-cell
FeSe film included a hole pocket at the Γ point and a tiny electron pocket near the M point of the
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Brillouin zone (see Figure 19d–f), which is similar to that of bulk FeSe. After coating more K atoms,
a downward shift of hole-like band occurred at the Γ point. The hole-pocket at the Γ point thereby
gradually disappeared, as shown in Figure 19g–o. The total doped-electron count was about 0.11e− in
the triple unit-cell FeSe film, and a superconducting gap of 8 meV opened at Tc = 46 K and closed
above 51 K. Obviously, electron doping by coating K atoms is a useful strategy to induce high Tc in
multilayer FeSe films.
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Figure 19. (a,d,g,j,m) Schematic diagram of the FeSe films with different thicknesses and content grown
on the STO substrate. (b,e,h,k,n) Fermi surfaces mapped out by ARPES. Green and blue lines are
momentum cuts around the Γ and M points. (c,f,i,l,o) ARPES intensity image near the Fermi energy
(EF) as a function of binding energy and wav-vector along the cuts close to Γ and M. (Figure 19 reprinted
from Miyata, Y. et al. Nat. Mater. 2015, 14, 775–779. Copyright 2015 by Macmillan Publishers Limited).

Interfacial electron–phonon coupling has also been proposed to explain the enhancement of high
Tc in SUC FeSe/STO. However, the evidence that can directly connect interfacial electron–phonon
coupling intensity (EPI) with high Tc is still not sufficiently clear. Song et al. studied thin films of FeSe
by replacing 16O with its isotope 18O [98]. Surprisingly, they found that the energy difference between
the electron-type band and its replica band was approximately in proportion to the inverse square
root of the mass of oxygen atoms. Therefore, the SC is highly related to interfacial EPI. As depicted
in Figure 20, superconducting gaps ∆1 and ∆2 were ~9.5 meV while the ratio η (i.e., the EPI) is close
to zero, which is basically equal to the superconducting gap of the K-dosed multilayer FeSe film.
Thus, it demonstrated that a synergistic effect between possible spin fluctuations and enhanced EPI
results in such high Tc in FeSe/STO. It is worth noting that theorists could qualitatively describe the
Fermi surface, hidden magnetic order, replica bands, and the superconductivity isotropic Cooper pairs
in heavily electron-doped FeSe by an extended Hubbard model [99,100]. Such explanations could
deepen the understanding of the superconducting mechanism and may help us explore more high
Tc superconductors.



Crystals 2019, 9, 560 16 of 21

Crystals 2019, 9, x FOR PEER REVIEW 16 of 23 

 

 

Figure 19. (a,d,g,m) Schematic diagram of the FeSe films with different thicknesses and content 
grown on the STO substrate. (b,e,h,k,n) Fermi surfaces mapped out by ARPES. Green and blue lines 
are momentum cuts around the Γ and M points. (e,f,i,l,o) ARPES intensity image near the Fermi 
energy (EF) as a function of binding energy and wav-vector along the cuts close to Γ and Μ. (Figure 
19 reprinted from Miyata, Y. et al., Nat. Mater. 2015, 14, 775–779. Copyright 2015 by Macmillan 
Publishers Limited). 

Miyata et al. observed SC with a Tc of 48 K in a multilayer FeSe film by coating potassium onto 
its surface[97]. The electronic structure of the SUC FeSe films are shown in Figure 19. The Fermi 
surface of the SUC FeSe film consists of a large electron pocket at the M point of the Brillouin zone, 
which is consistent with those of KxFe2Se2 and LiOHFeSe. However, the Fermi surface of the triple 
unit-cell FeSe film included a hole pocket at the Γ point and a tiny electron pocket near the M point 
of the Brillouin zone (see Figure 19d–f), which is similar to that of bulk FeSe. After coating more K 
atoms, a downward shift of hole-like band occurred at the Γ point. The hole-pocket at the Γ point 
thereby gradually disappeared, as shown in Figure 19g–o. The total doped-electron count was about 
0.11e- in the triple unit-cell FeSe film, and a superconducting gap of 8 meV opened at Tc = 46 K and 
closed above 51 K. Obviously, electron doping by coating K atoms is a useful strategy to induce high 
Tc in multilayer FeSe films. 

 
Figure 20. (a,b) Relationship between the superconducting gap ∆1, ∆2 and the intensity ratio (η) between
the side band and the main band. The insets show the connection between the superconducting gap
sizes and doping for corresponding samples. (Figure 20 reprinted from Song, Q. et al. Nat. Commun.
2019, 10, 758. Copyright 2019 by Macmillan Publishers Limited).

5. Conclusions

The finding of a series of surprisingly high Tc in FeSe-based materials is a significant breakthrough
in the superconducting community and sets up a very interesting superconducting family. However, the
microscopic mechanism of the enhancement of Tc through multiple treatments is still elusive.
Many kinds of effects have been proposed to explain the enhancement in Tc such as coupling
between the electrons and phonons of the substrate, the tensile strain effect introduced by lattice
mismatch between FeSe film and the substrate, and the charge transfer, etc. More subtle experiments
should be conducted to figure out which effect plays the decisive role. In addition, as FeSe thin films
are very thin and are easily oxidized, the transport and magnetic properties are hard to measure.
Therefore, new methods and more novel experimental tools should be developed to detect the intrinsic
physical properties.
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