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Abstract: The re-entrant ferroelectric phase (Sm-C∗re) is investigated in the framework of a
molecular–statistical approach. It was found that anticlinic synpolar along the smectic layer normal
phase can arise below the antiferroelectric phase (Sm-C∗A) in the temperature scale, and we suggest
this phase to be Sm-C∗re. We have shown that in the vicinity of Sm-C∗A–Sm-C∗re phase transition
temperature, a very small electric field can cause a transition into the bidomain synclinic phase,
where the helical pitch is unwound and the tilt planes have contributions either along or against
the electric field. The helical rotation, elasticity and deformation of the Sm-C∗, Sm-C∗A and Sm-C∗re
structures without electric field or in the presence of electric field, as well as the dielectric response,
are investigated. It is shown that Sm-C∗re can arise solely due to the dipole–dipole interaction,
and thus, in contrast to the conventional (improper) ferroelectric Sm-C∗, appears to be the proper
ferroelectric phase.

Keywords: proper ferroelectric LC phase; re-entrant ferroelectric phase; lactic acid derivatives;
molecular-statistical approach; bi-domain structure

1. Introduction

Ferroelectricity in smectic liquid crystals was discovered by Meyer [1]. Antiferroelectric smectic
phases were discovered later in [2]. The LC lactic acid derivatives are the unique ferroelectric materials.
In particular, they can form the antiferroelectric, hexatic, Sm-X [3,4] and various kinds of re-entrant
phases [5]. They also can be used for the synthesis of the side chain polysiloxanes, which are the
well-aligned polar polymers [6]. In the majority of antiferroelectric materials, the antiferroelectric
Sm-C∗A phase is observed at lower temperature than the ferroelectric Sm-C∗ smectic phase . However,
in lactic acid derivative ZLL 7/∗, the ferroelectric phase reappears below the antiferroelectric phase
in the temperature scale [5]. The general molecular formulae for ZLL m/∗ materials is presented in
Figure 1. A ZLL m/∗ molecule consists of a rigid core and two flexible tails. It is remarkable that one
of the molecular tails contains several transverse dipole moments, each one in the vicinity of a chiral
center (marked with stars in Figure 1). The series of ferroelectric liquid crystals with several chiral
centers in the molecular tail were investigated in Ref. [7], where in particular, it was reported about
the existence of the Sm-C∗re phase in ZLL 7/∗ material. Another tail of a molecule is also quite long.
The re-entrant ferroelectric phase also tends to appear in the mixtures of the ZLL 6/∗ and ZLL 8/∗

lactic acids [5], and thus, seven chains in the long molecular tail appear to be optimal for the emergence
of the re-entrant ferroelectric phase.
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Figure 1. Molecular formulae for ZLL m/∗ materials.

The existence of the Sm-C∗re phase was confirmed by various experimental data, for example,
by birefringence [8], calorimetry [3], nuclear magnetic resonance and dielectric spectroscopy [9–11]
measurements. In the electric field–temperature phase diagram the antiferroelectric smectic phase
appears to be isolated, in other words, is surrounded by the ferroelectric smectic phase [8]. It was also
noticed that the ferroelectric phase consists of several anomaly regions. The origin of re-entrant
ferroelectric phase should be related to polarization effects. Theory predicts the three kinds of
polarization in each smectic layer i [12–15]:

c f [ni × [∆ni±1 × ni] + cp(ni · k0)[ni · k0]−
1
4

βµ[ni × [E× ni]], (1)

where the first two terms, flexoelectric and piezoelectric ones, arise spontaneously, while the third
term is induced polarization due to reorientation of permanent molecular dipoles in the electric
filed. One notes that for example, piezoelectric polarization in Sm-C∗ and Sm-C∗A [the second term in
Equation (1)] favors the orientation of tilt planes perpendicular to the electric field, while anisotropy of
coupling of induced polarizations in the neighboring smectic layers [the third term in Equation (1)]
favors longitudinal to the electric field orientation of tilt planes.

If polarization is small, it is possible to obtain the set of simple equations for polarization in each
smectic layer i [12–15]:

Pi + ĝ[Pi−1 + Pi+1] = −ρµχ̂Mi, (2)

containing the coupling tensor ĝ between polarizations in the neighboring layers, which originates
from the dipole–dipole interaction of molecules located in the neighboring smectic layers [12–15]:

ĝ ≈

g1 0 0
0 g1 0
0 0 −2g1

 , (3)

where the xx, yy and zz components of tensor are the average interactions between the projections of
molecular dipoles on the corresponding axes. The local molecular field Mi in Equation (2) contains,
in particular, the piezoelectric and flexoelectric terms and the interaction of molecular dipoles with
higher multipoles and with the electric field. In the synclinic phase (where polarization is the same in
each smectic layer) from Equation (2) it follows:

Pi = −ρµω̂Mi, (4)

where the longitudinal and orthogonal to the smectic layer plane residual dielectric susceptibility can
be written in the following form:

ω‖ =
χ‖

1 + 2g1
, ω⊥ =

χ⊥
1− 4g1

. (5)

In correspondence with Equation (5), the residual spontaneous polarization along the smectic
layer plane is diminished with respect to that of an isolated single smectic layer because of the
unfavorable side-by-side coupling of dipoles in the neighboring layers. On the contrary, polarization
along the smectic layer normal is enhanced because of the favorable head-and-tail coupling of the
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same dipoles, generally with projections as on the smectic layer plane, as on the smectic layer normal,
in the tilted smectic phase. It is known that the coupling parameter g1 increases with the increasing tilt
angle θ [12–15]:

g1 ∼
µ2

e f

cos3 θ
(6)

where µe f ≡ µ/
√

kBT∗d3 is the effective molecular dipole of the molecular tail, where µ is the electric
dipole itself, kB is the Boltzmann constant, d is the molecular breadth and T∗ is the temperature
of transition into the orthogonal Sm-A∗ phase, while the tilt angle θ increases with the decreasing
temperature in Sm-C∗ and/or Sm-C∗A phases below this temperature.

Formally, from Equation (2) it follows that ω⊥ becomes infinitely large when g1 reaches 1/4.
In most of smectic materials this situation does not happen, which means that the coupling parameter
g1 [see Equation (6)] does not reach considerably large values when the tilt angle θ increases with the
decreasing temperature. At the same time, if we suppose that the molecular flexible tails are very long
and contain several transverse dipole moments attached to their own chiral centers, in particular, far
from the molecular core, we can imagine that some of them can be oriented along the smectic layer
normal. At the same time, since they are connected with the molecular core, all tendencies related
to their azimuthal orientation can be translated into the molecular core. The infinitely large ω⊥ says
presumably about the induction of the normal to the smectic layer surfaces spontaneous polarization
below the temperature corresponding to g1 = 1/4. It is impossible to investigate the structure below
this temperature in the framework of linear approximation for polarization, and the more general
approach is needed.

In the present paper, we are going to consider the Maier–Saupe theory for polarization
(polar order parameter), when the distribution function for the orientation of transverse molecular
dipoles is determined by the molecular mean field and by the external electric field. It will be
demonstrated that the proper ferroelectric phase (in contrast to the improper conventional ferroelectric
Sm-C∗ phase) can arise at lower temperature if the molecular tails are sufficiently disordered (and
thus, are sufficiently long). In other words, the dipole–dipole interaction itself can promote the
existence of ferroelectric phase. One can imagine, for example, the disc-like molecules with the dipoles
perpendicular to their main planes. In the case of disc-like molecules, the dipoles would prefer to
be oriented parallel to each other in the “head-and-tail” configuration. In our case, the molecules
are elongated, and, at the first glance, nothing should promote the proper ferroelectricity. However,
the molecules of lactic acids have very long flexible tails with several transverse dipoles. The rigid
molecular cores also possess the transverse dipole moments. If we propose that the molecular tails
are flexible only in prime direction (along the chain), but the secondary axes of each link can only
rotate all together (in the same manner as in the jump rope), it is easy to realize that the azimuthal
orientations of all the dipoles along the chain of a flexible tail will be strongly correlated with each other.
In particular, the rotation of a dipole located in the rigid molecular core around the long molecular
axis will cause the rotation of all dipoles located in the molecular tail by the same angle around
their local chain directions. One notes, however, that in the long molecular tails, which are flexible
in prime direction, some dipoles can point perpendicular to the smectic layer, and thus, contribute
to the “head-and-tail” dipole–dipole interaction in the neighboring smectic layers. Their azimuthal
orientation will automatically be transmitted into the molecular core, and thus, the dipole–dipole
interaction of dipoles located in the molecular tails will result in the appearance of proper polarization
due to the induced in this way particular orientation of transverse dipoles located in the molecular
cores.

2. Molecular Model

Let us consider the smectic structure, where molecules consist of the rigid cores and flexible
tails (Figure 2).
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Figure 2. (Color online) Molecular model: {x, y, z} is the laboratory frame; {w, m′, n} is the local frame
related to molecular core, where axis w is perpendicular to the tilt plane of director n; {b, c, a} is the
local frame related to molecular tail, where axis b is perpendicular to the tilt plane of tail axis a. Inset
(a) shows the projection on the director tilt plane, and inset (b) shows the projection on the tilt plane of
tail axis.

The molecular tails in each smectic layer i can possess the nematic order with director ni coinciding
for simplicity with principal orientation of the rigid molecular cores in the same layer. Orientation of
director ni is specified by tilt angle θ assumed to be the same in every layer, and by azimuthal angle ϕi,
which can vary from layer to layer. We expect that real molecule can possess several dipole moments
as in the core, as in the tail. Let us consider a simple model, where each molecule possesses one large
transverse dipole moment µ∗ in the core and one small transverse dipole moment µ in the tail. Let us
consider a jump rope model for a molecular tail. Suppose that molecular tails are flexible in prime
axis orientation, but, at the same time, are rigid in the biaxial orientation, so that rotation of dipole µ

located in tail by angle ψ around local a-axis in the tail causes rotation of dipole µ∗ located in the rigid
core by the same angle ψ around director n. Change over from laboratory frame {x, y, z} to local frame
{wi, m′i, n} related to the molecular core in layer i requires the rotation by angle ϕi around z-axis and
then rotation by angle θ around new wi-axis. Dipole moment µ∗i belongs to the plane of axes wi and
m′i. Farther change over from frame {wi, m′i, n} to local frame {bi, ci, ni} related to the molecular tail
in layer i requires the rotation by angle ϕ′i around n-axis and then rotation by angle θ′ around new
bi-axis. Dipole moment µi belongs to the plane of axes bi and ci. Since the plane of axes wi and m′i is
parallel to the plane of axes wi and bi, it is convenient to change over from angle ψ to angle ψ− ϕ′, i.e.,
to count orientation of both dipoles µi and µ∗i from the same bi-axis. In the model of jump rope angles
ψ− ϕ′ and ψ′ appear to be equal. In the following consideration we will omit the apostrophe and use
definition ψ for both angles.

It was shown in [16,17] that dipoles µ belonging to the neighboring smectic layers should have
positional correlation, because they are located near the border between layers (see Figure 3).
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Figure 3. (Color online) Positional correlation of terminal molecular dipoles. Dipoles located in the
cores are essentially larger, but they do not correlate.

At the same time, we do not expect that dipoles µ∗ located far from the border between layers
have positional correlations either with each other in the neighboring layers, or even with dipoles µ

within the same layers. Dipoles located in the molecular cores are expected to be essentially larger than
dipoles located in tails, and in this case only interaction of dipoles µ∗ with external electric field E can
be taken into account and only piezoelectric effect related to dipoles µ∗ can be considered. However,
the distance between terminal dipoles µ is essentially smaller than distance between dipoles µ∗ located
in cores. In this case, only interaction between dipoles µ in neighboring smectic layers can be taken
into account. If the flexible tails possess low nematic order, the interacting dipoles µ can be almost
freely oriented in the space, while their azimuthal part of orientation is translated to the molecular
cores and influences the azimuthal orientation of dipoles µ∗ located in molecular cores, which on the
other hand, should influence the orientation of director n in the electric field.

3. Free Energy of Smectic Molecules with Transverse Dipoles in Rigid Cores and in Flexible Tails

One should generalize the distribution function considered in [12,16,17] to take into account
orientations of tails and orientations of dipoles µ and µ∗ around axes a and n, respectively. In the
framework of this approach there should be two types of the order parameters: (1) nematic order
parameters for the principal orientations of tails and (2) polarization. It is clear that nematic ordering
of tails is determined by their anisotropic interactions with mostly different origin than polarization.
Therefore, let us simply consider the nematic order parameters as input parameters, and let us
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determine the polarization. A part of the free energy of tilted smectic state explicitly depending on the
distribution function f ((a · n), ψ) can be written in the following way (compare to [12,17]):

F
ρkBT = ∑i

∫
d2a1dψ1 f ((a1 · ni), ψ1) ln f ((a1 · ni), ψ1)

+ 1
2 ∑i,j

∫
d2a1dψ1d2a2dψ2 f ((a1 · ni), ψ1)

× f ((a2 · nj), ψ2){u0(a1, a2)− µi(a1, ψ1)ĝ|j−i|µj(a2, ψ2)}
−Mi ∑i

∫
d2a1dψ1 fi((a1 · ni), ψ1) µ∗i (ψ1),

(7)

where the first term is the orientational entropy, the second term is the averaged with respect to
translational coordinates interaction between a fragment of flexible tail of molecule 1 located in
layer i containing dipole moment µi and a fragment of flexible tail of molecule 2 located in layer
j containing dipole moment µj, while the third term describes an influence of the local field Mi
on the transverse dipole moment µ∗i in the rigid core of a molecule located in layer i. Orientation
of prime axes a1 and a2 of fragments mentioned above is determined mostly by their dispersion
interaction u0(a1, a2) which is assumed to be independent of the orientation of dipoles µi and µj,
while orientation of dipoles themselves around prime axes is determined by dipole–dipole interaction
−µi(a1, ψ1)ĝ|j−i|µj(a2, ψ2). In the model of a jump rope, the azimuthal orientation of dipole moment
µ∗i located in the rigid core around ni is biased to the azimuthal orientation of dipole moment µi located
in the molecular tail around a1 (for simplicity, both orientations are described by the same azimuthal
angle ψ1). For convenience we consider both dipoles µ and µ∗ in each layer as dimensionless vectors,
while the dimension of dipole µ is included into the dipolar coupling tensors [17]

(ĝ0)αβ ≡ 1
4 µ2

ef

[
δ̂αβ

(
1− 3

2 θ2)+ 3
2 θ2 (wi)α (wi)β

]
,

(ĝ1)αβ ≡ −
µ2

ef
2 cos3 θ

(δ̂αβ − 3 kα kβ),
(8)

where µef ≡ µ/(kBTd3)1/2, d is the molecular breadth, θ is the tilt angle, wi is the unit vector
perpendicular to the tilt plane in layer i (see Figure 2), k is the smectic layer normal, and dimension of
dipole µ∗ is included into the local field [12]

Mi ≡ cp(ni · k)[ni × k] + c f [ni × [∆ni±1 × ni]] +
µ∗

kBT
[ni × [E× ni]] (9)

where E is the external electric field, ni is the nematic director in layer i, and parameters cp and c f
are the piezoelectric and flexoelectric constants, respectively. In Equation (9) we have taken into
account in advance only projection of the local field Mi on the plane, which is perpendicular to director
ni, because only this projection survives after multiplication by the transverse dipole moment µ∗ in
Equation (7) for the free energy. Taking into account interaction between terminal dipoles within the
same and in the neighboring smectic layers only and minimizing free energy (7) with respect to the
orientational distribution function fi ≡ f ((a1 · ni), ψ1), one obtains:

fi =
f0

Zi
exp{µi[ĝ0pi + ĝ1(pi−1 + pi+1)] + µ∗i Mi}, (10)

where f0 = f0(a1 · n) is the orientational distribution function for the prime axes of flexible tails
depending mostly on their dispersion interaction u0(a1, a2),

Zi =
∫

d2a1dψ1 f0 exp{µi[ĝ0pi + ĝ1(pi−1 + pi+1)] + µ∗i Mi}, (11)

where pi is the average dimensionless dipole moment µi:

pi =
1
Zi

∫
d2a1dψ1 f0µi exp{µi[ĝ0pi + ĝ1(pi−1 + pi+1)] + µ∗i Mi}. (12)
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By analogy one obtains the following expression for the average dimensionless dipole moment µ∗i

p∗i =
1
Zi

∫
d2a1dψ1 f0µ∗i exp{µi[ĝ0pi + ĝ1(pi−1 + pi+1)] + µ∗i Mi}. (13)

Equations (11) and (12) are the recurrent equations for determination of polarization pi in each
smectic layer i, from where polarization p∗i can be calculated according to Equations (11) and (13).

4. Spontaneous Polarization in the Absence of Piezoelectricity and Flexoelectricity

Let us consider the right-handed local coordinate system as shown in Figure 2 with wi-axis
perpendicular to the local tilt plane in layer i, mi-axis parallel to the local tilt direction in layer i within
the smectic layer plane, and k-axis parallel to the smectic layer normal. Usually polarization is called
spontaneous if it arises at E = 0. Typically, it arises due to the presence of piezoelectricity and/or
flexoelectricity (i.e., due to the first two terms in Equation (9) for local field Mi). Both piezoelectric
and flexoelectric terms are due to interactions of molecular dipole with higher multipoles. It is
believed that spontaneous polarization cannot arise due to the dipole–dipole interaction itself. From
Equations (11) and (12) it, however, follows that polarization can arise even at M = 0. Indeed,
Equations (11) and (12) are very similar to Maier–Saupe equations for determination of the orientational
order parameter in nematics, if one considers dimensionless polarization pi as vector order parameter,
whose projections on the coordinate axes wi, mi and k can vary from zero to one.

Thus, let us first consider the M = 0 case, when dimensionless polarization p0 is expected to
be the same in each smectic layer, if it is considered in the local coordinate system {wi, mi, k} of
particular layer i. In the framework of perturbation theory, one can neglect a small influence of the
helical rotation on polarization. In this approximation, in the anticlinic phase the local coordinate
system exhibits rotation from layer to layer by angle π around smectic layer normal k, and therefore
the longitudinal projections (parallel to the smectic layer plane) of polarizations pi−1 and pi+1 in the
local coordinate system of layer i in Equations (10)–(12) should be taken with opposite sign to that
in the local coordinate system of layers i− 1 and i + 1, while the normal projection (perpendicular
to the smectic layer plane) should be taken with the same sign. Since both tensors ĝ0 and ĝ1 are
diagonal in the local coordinate system of each layer, it is more convenient to introduce a new tensor
ĝA

1 with opposite signs of components (ĝA
1 )ww and (ĝA

1 )mm to those of tensor ĝ1, and the same sign of
component (ĝA

1 )kk as that of tensor ĝ1:

(ĝA
1 )αβ ≡

µ2
ef

2 cos3 θ
(δ̂αβ + kα kβ). (14)

Let us also introduce the general tensors taking into account both couplings between polarizations
within the same layers and in the neighboring layers: ĝ± ≡ ĝ0 ± 2ĝ1 in the synclinic phase, or
ĝ± ≡ ĝ0 ± 2ĝA

1 in the anticlinic phase. Taking into account this difference in definition, one
obtains from Equations (11) and (12) similar types of equations for polarization in both synclinic
and anticlinic phases:

p0 = 1
Z0

∫
d2a1dψ1 f0µi exp{µiĝ

+p0},
Z0 =

∫
d2a1dψ1 f0 exp{µiĝ

+p0}.
(15)

Expanding a combination of Equation (15) in Taylor series with respect to polarization p0 up
to the third power and integrating as shown in Appendix A, one obtains the following equation for
polarization:

p0 =
1

Z0
r̂ p0, (16)
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where

r̂αβ ≈ 1
2

{(
2
3 + 1

3 S2

)
ĝ+

αβ − S2nα(ĝ+n)β

}
+ 1

16

{(
8

15 + 8
21 S2 +

3
35 S4

)
q2

0ĝ+
αβ

−
(

4
7 S2 +

3
7 S4

)
[(nq0)

2ĝ+
αβ + q2

0nα(ĝ+n)β]

+S4(nq0)
2nα(ĝ+n)β

}
,

(17)

Z0 ≈ 1 +
1
4

[(
2
3
+

1
3

S2

)
q2

0 − S2(nq0)
2
]

, (18)

where q0 ≡ ĝ+p0, and the nematic order parameters for prime axes of flexible molecular tails are
given by the following equation:

Si ≡
∫

d2a f0(a · n)Pi(a · n), (19)

where Pi(a · n) are the Legendre polynomials. One notes that Equation (16) always has trivial solution
p0 = 0. At the same time, it is noticeable already from Equation (15) that large positive tensor element
ĝ+

kk in both synclinic and anticlinic phases [see Equations (8) and (14)] can cause different from zero
solution for projection (p0)k at sufficiently large tilt angle, since parameter g1 = µ2

ef/(2 cos3 θ) increases
with the increasing tilt angle. Element ĝ+

kk is positive [13–15], because projections of polarizations
on the smectic layer normal have favorable head-and-tail coupling, while the side-by-side coupling
of projections of polarizations on the smectic layer plane is either completely not favorable (in the
synclinic phase) or is not that favorable (in the anticlinic phase), and the corresponding elements
ĝ+

ww and ĝ+
mm are either negative (in the synclinic phase) or positive, but approximately twice smaller

(in the anticlinic phase). Temperature dependencies of polarizations (p0)k and (p0)m corresponding
to solutions to Equation (16) are presented in Figure 4 for several values of the order parameters S2

and S4, while polarization (p0)w always appears to be equal to zero. So far we assume that both
synclinic and anticlinic phases can exist at each temperature, while determination of which particular
phase should indeed exist at particular temperature requires the comparison of their free energies
that will be done in the following sections. In the manner of paper [17], we assume that the tilt
angle is the only parameter explicitly depending on the temperature, mostly due to interactions not
related to polarization. On the other hand, variation of polarization is driven by variation of the tilt
angle participating in Equations (17) and (18) for r̂ and Z0 with temperature, while the temperature
dependence of the tilt angle itself can be modeled by the following expression [17]:

sin2 θ = − T̃
B0 − B1 T̃

, (20)

where B−1
1 is the square sine function of the saturated tilt angle, ratio B1/B0 regulates how fast is the

saturation with variation of temperature, and T̃ ≡ (T − T∗)/T∗ is the reduced temperature showing
the deviation from temperature T∗ of transition into Sm-A∗. If both nematic order parameters S2

and S4 are equal to zero, the spontaneous polarization arises only along k-axis. At the same time,
if order parameters S2 and/or S4 are different from zero, polarization (p0) appears to be biased to
the plane, which is perpendicular to director n, and in this case polarization cannot arise solely along
k-axis, because it should have a projection on axes w and/or m′ (see Figure 2). Among these two
projections, only the projection on m′-axis has a contribution along k-axis, but, on the other hand,
it has also a contribution along m-axis, and therefore, both polarizations (p0)k and (p0)m should arise
simultaneously, while polarization (p0)w can be equal to zero. The transition point, at which the proper



Crystals 2019, 9, 583 9 of 25

spontaneous polarization arises, corresponds to the non-trivial solution of Equation (16) at q0 = 0,
which can be formulated in the following simple form:

S2 ĝ+
kk sin2 θ

1− 1
3 (1− S2) ĝ+

kk

+
S2 ĝ+

mm cos2 θ

1− 1
3 (1− S2) ĝ+

mm
= 2, (21)

Starting from transition point the left-hand side of Equation (21) should become larger than
two. Roughly speaking, to satisfy this requirement molecular system needs to have either large
enough numerators [requiring large enough elements of tensor ĝ+] or small enough denominators
in the left-hand side of Equation (21). However, large tensor ĝ+ requires large dipole moment µef
[see Equations (8) and (14)], but our estimations show that conventional synclinic phase, which is
suppressed by the same terminal dipoles [17,18], becomes unstable before the dipoles reach sufficiently
large values. Therefore Equation (21) can reasonably be fulfilled only due to small denominators.
The corresponding dependence of the transition tilt angle, at which the spontaneous polarization p0

arises, on the nematic order parameter of flexible tails S2 is presented in Figure 5 for both synclinic and
anticlinic phases. One can see that in the anticlinic phase there exist two opportunities to reach the
transition point at reasonably small tilt: (1) either nematic order of flexible tails should be very small,
and in this case dipoles µ are not biased to the plane perpendicular to director n and therefore can have
sufficiently large projections on the smectic layer normal k, or (2) the nematic order of flexible tails
should be very large, and in this case both projections on axes k and m [which are both favorable in the
anticlinic phase] appear to be large. On the contrary, in the synclinic phase, the projections of dipoles
on the m-axis in the neighboring layers have unfavorable coupling, and only opportunity (1) exists,
and therefore, the transition tilt angle monotonously increases with the increasing order parameter.
We do not expect projection (p0)m in the anticlinic phase to be very large, because otherwise it should
cause reverse (decrease with lowering the temperature) of the tilt angle due to anti-polar side-by-side
ordering of these projections in the neighboring layers and due to the head-and-tail ordering of these
projections along the m-axis within the same smectic layers. This reverse of tilt is not specific to the
re-entrant ferroelectric phase, but is rather specific to hexatic and re-entrant Sm-A∗ phases, which are
going to be considered in the following publications. Therefore, we do not expect the nematic ordering
of flexible tails to be very large in both synclinic and anticlinic phases considered here. In the present
paper, we assume that the molecular tails are essentially disordered and suppose that it is important for
the formation of the re-entrant ferroelectric phase.
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Figure 4. Cont.
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Figure 4. (Color online) Spontaneous polarization along axis k (a) and along axis m (b) as a function
of reduced temperature at µef = 1 and S2 = S4 = 0.01 (red circles for the synclinic phase and blue up
triangles for the anticlinic phase); 0.05 (red rectangles and blue down triangles, respectively); 0.08 (red
diamonds and blue stars, respectively). Here T∗ is the transition temperature into Sm-A∗; B0/B1 = 0.04;
B−1

1 = 0.25.
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Figure 5. Transition tilt angle, at which the proper spontaneous polarization p0 arises, as a function
of nematic order parameter of flexible tails at µef = 1 in the synclinic phase (1) and in the anticlinic
phase (2).

5. Polarization in the Presence of Electric Field: Re-Entrant Ferroelectric Phase

In the general case, when local field M is different from zero, polarization is expected to vary
from layer to layer in the anticlinic phase. For both synclinic and anticlinic phases let us change over
from polarization p1 in layer 1 and polarization p2 in layer 2 to new variables:

q1 ≡ ĝ0 p1 + 2 ĝ1p2, q2 ≡ ĝ0 p2 + 2 ĝ1p1 (22)

in the synclinic phase, or

q1 ≡ ĝ0 p1 + 2 ĝA
1 p2, q2 ≡ ĝ0 p2 + 2 ĝA

1 p1 (23)
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in the anticlinic phase. Elimination of the distribution function (Equation (10)) from the free energy
(Equation (7)) yields:

Fi
ρkBT = − ln Z1 − ln Z2 +

1
2 q1ĝ0(ĝ2

0 − 4ĝ2
1)
−1q1

+ 1
2 q2ĝ0(ĝ2

0 − 4ĝ2
1)
−1q2 − 2q1ĝ1(ĝ2

0 − 4ĝ2
1)
−1q2,

(24)

for the synclinic phase, and similar expression, where tensor ĝ1 is replaced with ĝA
1 , for the anticlinic

phase. In both cases for i = 1, 2

Zi =
∫

d2a1dψ1 f0 exp(µiqi + µ∗i Mi) , (25)

where variables q1 and q2 are defined either in Equation (22) in case of synclinic phase or in
Equation (23) in case of anticlinic phase. Expanding free energy (24) in Taylor series with respect to
the local fields M1 and M2 as shown in Appendix B and taking into account that local field generally
contains contribution M0, which is the same in every smectic layer, and contribution ∆M, which
alternates in sign from layer to layer (for the synclinic phase the latter one is equal to zero), one obtains
for both synclinic and anticlinic phases the following expression for the part of the free energy per one
smectic layer, which explicitly depends on the local field:

∆F
ρkBT

= −1
2

M0ε̂+M0 −
1
2

∆Mε̂−∆M, (26)

where ε̂± are the generalized dielectric tensors:

ε̂+αβ ≡
1
2

d[(p∗1)α+(p∗2)α ]
d(M0)β

∣∣∣∣
M1,2=0

,

ε̂−αβ ≡
1
2

d[(p∗1)α−(p∗2)α ]
d(∆M)β

∣∣∣∣
M1,2=0

,
(27)

and in Appendix B it is shown that

ε̂± =
∆̂
∗ĝ±∆̂

∗
T

Î + ĝ±∆̂
− ∆̂

∗∗, (28)

where Î is the unit tensor, ĝ± ≡ ĝ0 ± 2ĝ1 in the synclinic phase or ĝ± ≡ ĝ0 ± 2ĝA
1 in the anticlinic

phase, and tensors describing the dispersion of various projections of dipole moments are expressed
as follows [see Appendix A]:

∆̂αβ ≡ (p0)α(p0)β −
∫

d2a1dψ1 f µαµβ

≈ (p0)α(p0)β − 1
Z0

{
1
2

[(
2
3 + 1

3 S2

)
δ̂αβ − S2nαnβ

]
+ 1

16

[(
8

15 + 8
21 S2 +

3
35 S4

)(
q2

0δ̂αβ + 2(q0)α(q0)β

)
−
(

4
7 S2 +

3
7 S4

)(
2(nq0)((q0)αnβ + nα(q0)β)

+(nq0)
2δ̂αβ + q2

0nαnβ

)
+ 3S4(nq0)

2nαnβ

]}
,

(29)
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∆̂
∗
αβ = (∆̂

∗
T)βα ≡ (p∗0)α(p0)β −

∫
d2a1dψ1 f µ∗αµβ

≈ − 1
2Z0

{
1
2 (1 + S1)δ̂αβ +

[
1

96 (5 + S2) +
1

64 (S1 + 3S3)

]
×[2(q0)α(q0)β + q2

0δ̂αβ]−
[

1
48 (2 + S2)− 1

32 (S1 − 3S3)

]
×[2(nq0)(q0)αnβ + (nq0)

2δ̂αβ]

}
,

(30)

∆̂
∗∗
αβ ≡ (p∗0)α(p∗0)β −

∫
d2a1dψ1 f µ∗αµ∗β

≈ − 1
2Z0

{
δ̂αβ +

1
48 (2 + S2)[2(q0)α(q0)β + 3q2

0δ̂αβ]

+ 1
16 S1[2(q0)α(q0)β − q2

0δ̂αβ]

+ 1
48 (2− 11S2)(nq0)

2δ̂αβ

}
,

(31)

where f ≡ fi(Mi = 0) = f0 exp(µq0)/Z0, (i = 1, 2) [see Equations (10), (22) and (23)], and where
we neglected in advance all terms, which are orthogonal to vectors M0 and ∆M and participate in
scalar products with these vectors in Equation (26). Counting azimuthal orientation ϕ of the normal to
the local tilt plane from the direction of external electric field, one obtains instead of Equation (9) the
following expression for the local filed:

Mw = cp cos θ sin θ + 2c f hϕ′ sin θ ± µ∗E cos ϕ/(kBT),
Mm = ∓µ∗E cos2 θ sin ϕ/(kBT)
Mk = ±µ∗E sin θ cos θ sin ϕ/(kBT),

(32)

where h is the layer spacing and ϕ′ is the derivative of the azimuthal orientation with respect to
coordinate z along the smectic layer normal k. In the case of synclinic phase the upper sign in
Equation (32) should be taken for each layer, while in the case of anticlinic phase the upper sign should
be taken for layer 1, and the lower sign should be taken for layer 2. Thus, in the anticlinic phase, a part
of the local field explicitly depending on external electric field E alternates in sign from layer to layer
and therefore contributes into the second term of Equation (26) for the free energy. On the contrary,
in the synclinic phase electric field E contributes into the first term of Equation (26). One notes from
Equation (28) for the generalized dielectric tensor that element (ε̂+)kk diverges exactly at the same
transition point, where the proper spontaneous polarization (p0)k arises in the synclinic phase, i.e.,
where constraint (21) is fulfilled. From comparison of the free energies it follows that the transition
point belongs to the temperature interval, where the anticlinic phase has lower free energy without
electric field. Below and above this point (ε̂+)kk reaches very large positive values, which means that
in the vicinity of the transition into the proper ferroelectric phase the favorable coupling of induced
polarizations along smectic layer normal k in the neighboring smectic layers is very strong in the
synclinic phase. On the contrary, element (ε̂−)kk does not diverge at the same point and is negative in
the vicinity of this point, which means that induced polarization in the anticlinic phase would exhibit
unfavorable coupling along the smectic layer normal k in the neighboring smectic layers if projection
of induced polarization along axis k existed. This difference expressed by elements (ε̂+)kk and (ε̂−)kk
reflects the two tendencies: (1) in the vicinity of transition into the proper ferroelectric phase, the
coupling between induced polarizations along the smectic layer normal k favors orientation of the tilt
planes along the electric field direction in the synclinic phase, and perpendicular to the electric field
direction in the anticlinic phase, because M2

k is proportional to sin2 ϕ [see Equation (32)]; (2) the same
coupling promotes transition from the anticlinic phase to the synclinic one in the presence of electric
field. In particular, at the temperature corresponding to transition into the proper ferroelectric phase
exactly, very small electric field causes the synclinic structure. We suppose that without the electric
field, the proper ferroelectric phase with spontaneous polarization along the smectic layer normal is
anticlinic and can correspond to the observed experimentally re-entrant ferroelectric phase Sm-C∗re,
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while above this point in the temperature scale, the conventional antiferroelectric phase Sm-C∗A is
observed. The entire Electric field–Temperature phase diagram is presented in Figure 6a, where solid
black thin lines detach Sm-C∗re, Sm-C∗A and Sm-C∗, dash blue thick line detaches the mentioned above
phases from the bidomain synclinic smectic phase with the tilt plane projections either along or against
the electric field, and dash dot red thick line detaches the helical phases from the unwound ones [see
details in the following sections]. Black arrows inside molecules show the direction of polarization p∗.

Insets for Sm-C∗re and for the synclinic phase arising above the dash blue thick line show that both
mentioned phases can possess the two kinds of domains with two opposite orientations of polarization
projection on the smectic layer normal. As mentioned in the introduction, the interaction of dipoles in
the neighboring smectic layers essentially influences their orientation, especially when polarization
increases in the electric field. Since the dipole–dipole interaction is proportional to the dipole squared,
while the interaction of all dipoles with electric field is proportional to the first power of molecular
dipole moment, the dipole–dipole interaction can sufficiently influence the value and orientation of
polarization at large electric field. In the tilted smectic phase, a part of the transverse molecular dipoles
have always non-zero projections on the smectic layer normal, whose “head-and-tail” configuration is
the most favorable and is very important in correspondence with Equation (3). One notes, however,
that the transverse molecular dipoles have both non-zero contributions along the smectic layer normal
and along the electric field direction only if the tilt planes are not perpendicular to the electric field.
When the dipole moments become sufficiently large (due to the presence of electric field), the free
energy appears to be lower if the molecular system realizes the “head-and-tail” projections for the
larger number of molecular dipoles, and the tilt planes start reorienting partially in the direction along
the electric field (or against the electric field). Because of this, the polarization has non-zero projections
as along the electric field, as along the smectic layer normal. The larger the electric field, the larger the
deviation of the tilt planes from perpendicular to the electric field orientation. These questions were
considered accurately in Refs. [13–15]. Most likely, the opposite domains in both Sm-C∗ and Sm-C∗re
are the solitons whose dimension is determined by prehistory of their creation. The corresponding
experimental phase diagram is presented in Figure 6b, which is reproduced with permission from
Ref. [8]. One notes a very good coincidence of the phase transition borders in both Figure 6a,b.
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Figure 6. (Color online) (a) Electric field–Temperature phase diagram at µef = 1, cp = −0.05, c f = 0.02,
v1 = −1.05, v3 = 2.77, v5 = 0.025, S2 = S4 = 0, S1 = 0.5, S3 = 0.25, B0/B1 = 0.04; B−1

1 = 0.25. Here
T∗ is the phase transition temperature into Sm-A∗, solid black thin lines detach Sm-C∗re, Sm-C∗A and
Sm-C∗, dash blue thick line detaches the above phases from the bidomain synclinic smectic phase with
tilt plane projections either along or against the electric field, and dash dot red thick line detaches helical
phases from the unwound ones. Black arrows inside molecules show the direction of polarization p∗;
(b) Experimental phase diagram–reproduced with permission from Ref. [8]. Copyright Taylor and
Francis, 2008.

6. Temperature Induced Transition Between Synclinic And Anticlinic Smectic Phases

It is believed that synclinic-anticlinic phases transition in tilted smectics is driven mostly by
polarization-independent part of the free energy [18]. Here we are going to follow this idea and
will use the same semi-phenomenological expression for the polarization-independent free energy,
as in [12–15,17]:

F0
ρkBT =

(
3
2 v1 − 1

4 g2
1 + 4 c2

f

)
∑t−1

i=0(ni · ni+1)
2

+
(
v3 +

3
2 g2

1
)

cos2 θ ∑t−1
i=0(ni · ni+1)

+v5 ∑t−1
i=0(ni · ni+1) (k · [ni × ni+1]),

(33)

where the terms proportional to coefficients v1 and v3 describe the non-chiral dispersion interactions,
the term proportional to v5 describes the chiral dispersion interaction, the terms proportional to g2

1
represent the dipole–dipole interaction treated in the second virial expansion, and the term proportional
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to c2
f represents the dipole-quadrupole interaction treated in the second virial expansion. Equation (33)

can be rewritten in terms of tilt angle θ and azimuthal rotation ∆ϕ of the director from layer to layer:

F0
ρkBT = b sin4 θ cos2 ∆ϕ + 1

4 a sin2(2 θ) cos ∆ϕ

+c sin2 θ sin ∆ϕ (1 + cos ∆ϕ),
(34)

where
a ≡ (3 v1 + v3) + g2

1 + 8 c2
f ,

b ≡ 3
2 v1 − 1

4 g2
1 + 4 c2

f , c ≡ v5.
(35)

Most often the dispersion contributions v1 and 3 v1 + v3 are negative, which promotes the
formation of the synclinic phase Sm-C∗ [minimum of Equation (34) is close to ∆ϕ = 0 if helicity
c is small]. At the same time, parameters g2

1 and c2
f are positive, which promotes anticlinic smectic

phase Sm-C∗A [minimum of Equation (34) is close to ∆ϕ = π]. Thus, a competition between the
dispersion and the electrostatic forces can generate a transition from synclinic phase to anticlinic phase,
when the temperature decreases, because parameter g2

1 = µ4
ef/(4 cos6 θ) increases with the increasing

tilt angle (decreasing temperature), and has no tendency of reversal. In other words, there is no
objective reason for reappearance of synclinic phase at low temperatures, and therefore, the re-entrant
ferroelectric phase Sm-C∗re most likely appears to be anticlinic, although projections of polarization on
the smectic layer normal can exhibit synpolar ordering in this phase, as was discussed in the previous
section.

7. Helical Rotation, Elasticity and Deformation of Sm-C∗, Sm-C∗
A and Sm-C∗

Re in the Electric Field

Replacing ∆ϕ with hϕ′ in Equation (34) in the case of synclinic phase or with π + hϕ′ in the
case of anticlinic phase, substituting local field [Equation (32)] into Equation (26), and combining
Equations (26) and (34) for polarization-dependent and polarization-independent parts of the free
energy, one obtains the following well-known expression for the total free energy of the distorted
smectic phase in the presence of electric field explicitly depending on the azimuthal distribution of
director from layer to layer:

F(ϕ, ϕ′)

ρkBT
= f0 +

1
2

K
(

∂ϕ

∂z
− q0

)2
− λE cos ϕ− νE2 sin2 ϕ , (36)

where, however, we can estimate all the parameters for both synclinic and anticlinic phases in terms of
the dielectric tensor ε̂± [Equation (28)] and parameters a, b and c [Equation (35)]:

f0 +
1
2 Kq2

0 = b sin4 θ ± a sin2 θ cos2 θ

− 1
2 c2

p ε̂+ww sin2 θ cos2 θ − 1
2

(
µ∗E
kBT

)2
ε̂±ww

(37)

is the free energy of the unwound structure of particular phase (which is independent of the helical
rotation and orientation of the sample),

K
h2 = −2b sin4 θ ∓ a sin2 θ cos2 θ − 4c2

f ε̂+ww sin2 θ (38)

is the twist elastic constant,

Kq0

h
= −c sin2 θ(1± cos2 θ) + 2cpc f ε̂+ww sin2 θ cos θ (39)
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is the equilibrium helical wave number at E = 0 multiplied by K determined in Equation (38),

ν = 1
2

(
µ∗

kBT

)2
[−ε̂±ww + ε̂±mm cos4 θ + ε̂±kk sin2 θ cos2 θ

−(ε̂±mk + ε̂±km) sin θ cos3 θ],
(40)

is the dielectric constant resulting from anisotropy of coupling between induced polarizations in the
neighboring smectic layers. In Equations (37)–(40) the upper sign corresponds to the synclinic phase,
while the lower sign corresponds to the anticlinic phase. Finally, parameter λ determining an influence
of the electric field on the spontaneous polarization is equal to zero in the anticlinic phase, while in the
synclinic phase it is determined by the following expression:

λ =
cpµ∗

kBT
ε̂+ww sin θ cos θ (41)

Deformation of the helical smectic structure with free energy (36) is considered explicitly in [13].
It was shown that there should be the two thresholds in each phase in the presence of electric field.
The first one corresponds to the critical unwinding electric field, and the second one corresponds
to the reorientation of the molecular tilt planes along the electric field direction. It was shown that,
for example, in the anticlinic phase, the second threshold coincides with the electric field induced
transition into synclinic phase. Here we confirm that the same is valid for Sm-C∗re. Both thresholds
are shown in the phase diagram presented in Figure 6a. The temperature dependence of the helical
pitch in each phase in the absence of electric field derived from Equations (38) and (39) is presented
in Figure 7, from where it follows that there should be no discontinuous jump of the helical pitch
between Sm-C∗A and Sm-C∗re. At the same time, the discontinuous jump together with helical sense
inversion happens between Sm-C∗A and Sm-C∗.
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Figure 7. Equilibrium helical pitch at E = 0 in Sm-C∗re, Sm-C∗A and Sm-C∗ at µef = 1, cp = −0.05,
c f = 0.02, v1 = −1.05, v3 = 2.77, v5 = 0.025, S2 = S4 = 0, S1 = 0.5, S3 = 0.25, B0/B1 = 0.04;
B−1

1 = 0.25. Here T∗ is the phase transition temperature into Sm-A∗.

8. Dielectric Response

To validate our supposition about the anticlinic structure of Sm-C∗re, let us estimate the dielectric
response in Sm-C∗, Sm-C∗A and Sm-C∗re. According to Equation (27), the local polarization induction
due to the presence of local field (9) in the synclinic phase is equal to

∆p∗ = ε̂+M0, (42)
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while in the anticlinic phase it is equal to:

∆p∗ = ε̂−(∆M)‖ + ε̂+(M0)⊥, (43)

where (∆M)‖ is the projection of ∆M on the smectic layer plane and (M0)⊥ is the projection of M0 on
the smectic layer normal. To estimate the dielectric effect, which is measured experimentally, one needs
to estimate the polarization induction in the direction of electric field. Equation (32) for the local field
assumes that the smectic layers are perpendicular to the electric field. In the presence of spontaneous
polarization (p0)k along the smectic layer normal, however, we expect that external electric field
should cause a deformation of smectic layers (Figure 8), so that the smectic layer normal should gain a
contribution sin γ along electric field E. The corresponding contribution to the free energy consists of
the interaction of polarization (p0)k with electric field and elasticity energy:

∆Fγ

ρkBT
≈ −µ∗E

kBT
(p∗0)k sin γ +

1
2

Kγ sin2 γ, (44)

where by analogy to Equations (16) and (17) spontaneous polarization p∗0 is determined by the
following equation:

p∗0 = 1
2Z0

{
1
2 (1 + S1)[q0 − (nq0)n]

+

[
1

96 (5 + S2) +
1

64 (S1 + 3S3)

]
q3

0

−
[

1
48 (2 + S2)− 1

32 (S1 − 3S3)

]
(nq0)

2q0

−
[

1
96 (5 + S2) +

1
64 (S1 + 3S3)

]
q2

0(nq0)n

+

[
1

48 (2 + S2)− 1
32 (S1 − 3S3)

]
(nq0)

3n
}

.

(45)

Minimization of the free energy [(Equation (44)] yields

sin γ ≈ 1
Kγ

µ∗E
kBT

(p0)k, (46)

and the corresponding addition to the local field [(Equation (32)] will be

(Mγ)k =
µ∗E
kBT

sin γ (47)

Changing over from the local coordinate system to the laboratory one, combining the basic local
field [(Equation (32)] with addition [(Equation (47)], one obtains the following expression for the
polarization induction along the direction of the external electric field in the synclinic phase:

∆p∗E = ε̂+ww(cp sin θ cos θ + 2c f hϕ′ sin θ) cos γ cos ϕ

+ µ∗E
kBT {cos2 γ[ε̂+ww cos2 ϕ + cos θ sin2 ϕ(ε̂+mm cos θ

−ε̂+mk sin θ)]− sin γ cos γ sin ϕ[ε̂+mk + cos θ(ε̂+km cos θ

−ε̂+kk sin θ)] + ε̂+kk sin2 γ},

(48)

and in the anticlinic phase:

∆p∗E = µ∗E
kBT {cos2 γ[ε̂−ww cos2 ϕ + cos θ sin2 ϕ(ε̂−mm cos θ

−ε̂−mk sin θ)]− sin γ cos γ sin ϕ[ε̂+mk + cos θ(ε̂−km cos θ

−ε̂−kk sin θ)] + ε̂+kk sin2 γ},
(49)
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From derivation presented in [13] it follows that in the deformed helical structure

(ϕ′)−1 ≈ 1
q0

(
1 +

λE
Kq2

0
cos ϕ

)
. (50)

k 

E 

γ 

Figure 8. Deformation of smectic layers in electric field E in the presence of spontaneous polarization
along smectic layer normal k.

Integrating polarization induction Equations (48) or (49) over coordinate z along the smectic
layer normal, and replacing dz with (ϕ′)−1dϕ, one obtains for the static dielectric permittivity in the
direction of electric field per one smectic layer in the synclinic phase:

εE = 1
2 cos2 γ[ε̂+ww + cos θ(ε̂+mm cos θ − ε̂+mk sin θ)]

+ε̂+kk sin2 γ + 1
2
(cp ε̂+

ww)
2

Kq2
0

sin2 θ cos2 θ cos γ,
(51)

and in the anticlinic phase:

εE =
1
2

cos2 γ[ε̂−ww + cos θ(ε̂−mm cos θ − ε̂−mk sin θ)] + ε̂+kk sin2 γ. (52)

Usually in the experiment the alternating voltage is applied and only the “slow” component
of the dielectric permittivity is taken into account. In Equations (51) and (52) only terms depending
on cp and/or γ are related to the director orientation in the electric field, which is assumed to be
“slow”. The other terms are related to the induced polarization, which requires only reorientation of the
molecular short axes without reorientation of director. It is expected to be much faster and is usually
deducted from experimental data. Thus, we can estimate approximately the experimentally observed
dielectric permittivity if we consider in Equations (51) and (52) only terms depending explicitly on
cp and/or γ. According to the phase diagram presented in Figure 6a, Sm-C∗re is expected to possess
the anticlinic stricture, and thus, the “slow” component of the dielectric permittivity in Sm-C∗re is
determined by the following expression:

∆εE =
1
2

sin2 γ[2ε̂+kk − ε̂−ww − cos θ(ε̂−mm cos θ + ε̂−mk sin θ)], (53)

where deformation of layers γ due to spontaneous polarization along the smectic layer normal arising
in Sm-C∗re is determined by Equation (46). In the conventional anticlinic phase Sm-C∗A distortion of
layers γ is equal to zero, and therefore ∆εE is approximately equal to zero. In the temperature range of
the conventional synclinic phase Sm-C∗ angle γ is also equal to zero, whereas ∆εE is determined by
the piezoelectric spontaneous polarization:

∆εE =
1
2
(cp ε̂+ww)

2

Kq2
0

sin2 θ cos2 θ, (54)
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The temperature dependence of ∆εE in Sm-C∗, Sm-C∗A and Sm-C∗re is presented in Figure 9.
Qualitatively it coincides with the experimentally observed dependence.
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Figure 9. Dielectric permittivity related to reorientation of spontaneous polarization in the electric field
in Sm-C∗re, Sm-C∗A and Sm-C∗ at µef = 1, cp = −0.05, c f = 0.02, v1 = −1.05, v3 = 2.77, v5 = 0.025,
S2 = S4 = 0, S1 = 0.5, S3 = 0.25, B0/B1 = 0.04; B−1

1 = 0.25, µ∗E/(KγkBT∗) = 4.55. Here T∗ is the
phase transition temperature into Sm-A∗.

9. Conclusions

A molecular–statistical approach to the description of the re-entrant ferroelectric phase is derived.
We have confirmed the experimental data [5,7–10] showing that sufficiently long molecular tails with
several transverse electric dipoles near their own chiral centers promote the re-entrant ferroelectric
phase observed in lactic acid derivatives [3,4]. If the prime orientational order of the flexible tails
is small, the dipoles in the molecular tails can make considerable contribution to the polarization
arising spontaneously along the smectic layer normal. This effect is suggested to be the origin for
the re-entrant ferroelectric phase. It is shown that Sm-C∗re can arise solely due to the dipole–dipole
interaction, and thus, in contrast to the conventional (improper) ferroelectric Sm-C∗, appears to be the
proper ferroelectric phase.

A model of a jump rope was considered for the interpretation of rigidness of the flexible tails with
respect to rotation around their prime local orientation. As a result of this rigidness, the transverse
electric dipoles located in the molecular tails can rotate only together with transverse electric dipoles
located in the molecular core. Since the molecular tails are long and flexible in prime direction, the
transverse dipoles located in the molecular tails can generally point in any direction, including the
direction along the smectic layer normal. In this case, the "head-and-tail" configuration of the dipoles
located nearby each other in the neighboring smectic layers can be realized, and this configuration
appears to be the most favorable from the point of view of their interaction. Below particular
temperature, this interaction induces the non-zero average orientation of dipoles, and thus, the proper
spontaneous polarization arises. However, the polarization of molecular tails themselves, pointing
perpendicular to the smectic layer surfaces, is expected to be small. At the same time, because of the
rigidness of the molecular tails with respect to their rotation around their prime axes, the azimuthal
orientation of this polarization is automatically transmitted into the molecular core, and a large proper
spontaneous polarization arises because of the presence of transverse electric dipoles in the molecular
core. Since the molecular tilt (which can be specified for the rigid molecular core) is usually not
very large, the spontaneous polarization related to the molecular cores (but formed because of the
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transmission from the molecular tails) has generally large projection on smectic layer surface, and, as a
result, can be manipulated by the electric field applied along the surfaces of smectic layers.

Since the layer spacing decreases with the reducing temperature, it is reasonable to propose
that the distance between all dipoles also reduces. The distance between each pair of interacting
dipoles participates in the denominator of the dipole–dipole interaction, and therefore the existence
or the absence of proper ferroelectricity in particular material can also depend on the temperature.
Experimental observations show that the re-entrant ferroelectric phase (which is obviously different by
nature from the conventional improper ferroelectric phase) is observed only in particular materials
and only in the temperature range, which is below the range of conventional ferroelectric and
antiferroelectric phases. The typical parameters of theory, which are used in previous publication
by the author, confirm this scenario. We have also considered the nematic ordering of the molecular
tails and have demonstrated that the best coincidence with experiment (the largest temperature of
transition into the proper ferroelectric phase) should be observed at the complete nematic disorder of
the molecular tails, which is only possible if they are sufficiently long. Thus, without electric field, the
sequence of phases with the decreasing temperature in smectic material with sufficiently long flexible
tails should be Sm-A∗, Sm-C∗, Sm-C∗A, and Sm-C∗re. Here we use the stars in abbreviation of all phases
to reflect their chirality, although the chirality itself is not mandatory for the existence of any of these
phases, but is important for the existence of the improper spontaneous polarization. In the case of
chiral molecules, the helical rotation of director should be observed in any of these phases, and in the
present paper, in particular, we generalize the method of calculation of the helical pitch for the case of
the re-entrant ferroelectric phase and demonstrate the corresponding temperature dependence of the
helical pitch in various phases.

In contrast to the transition from Sm-C∗ to Sm-C∗A, the transition between Sm-C∗A and Sm-C∗re is
the second-order phase transition. The normal to the smectic layers polarization gives large negative
contribution to the free energies of both synclinic and anticlinic phases, but in the synclinic phase the
longitudinal to the smectic layers polarization is not favorable, and therefore, the re-entrant ferroelectric
phase appears to be anticlinic. However, due to the presence of polarization in the direction of the
smectic layer normal in Sm-C∗re (this polarization is synpolar in each smectic layer), the smectic layer
surfaces should exhibit a deformation in the electric field resulting in the dielectric response. In the
present paper, we have calculated the corresponding dielectric permittivity, which appeared to be of
the same order of magnitude, as in the conventional ferroelectric phase. This fact is also confirmed
experimentally.

Finally, the general electric field–temperature phase diagram is calculated reflecting the behavior
of each phase in the electric filed. As one can see from Figure 6, theoretical phase diagram almost
coincides with the experimental one [8]. Moreover, from our theory we can reconstruct the of the
Sm-C∗, Sm-C∗A, and Sm-C∗re phases in the electric field, while experimentally sometimes we can only fix
the transitions without detailed information about the structure. In all the tilted phases the unwinding
of the helical pitch in the electric field happens first. When the electric field farther increases, the
transition into the bidomain synclinic phase happens. This transition is related to the fact that molecular
tilt planes start reorienting either along or against the electric field. In this case, both the projections
of the transverse dipoles– along the electric field and along the smectic layer normal–can coexist.
The latter ones are important for the transverse dipoles located in the molecular tails, because the most
favorable “head-and-tail” configuration can be realized for the dipoles located nearby each other in
the neighboring smectic layers. In the presence of electric field, the transverse molecular dipoles are
redistributed to enlarge the spontaneous polarization. In particular, more dipoles tend to be in the
“head-and tail” configuration in the neighboring smectic layer. As a result, at some value of electric
field (depending on the temperature) the tilt planes start partial reorientation either along or against
the electric field, and the two equiprobable domains arise. The re-entrant ferroelectric phase also
appears to consist of the two equiprobable domains, because the two directions of the surface layer
normal along which the proper polarization arises are also equivalent. In the electric field the bidomain
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proper anticlinic ferroelectric phase exhibits a transition into the bidomain synclinic ferroelectric phase,
and this transition is clearly seen at the experimental phase diagram [Figure 6b] as the border between
anomalies A and B. In particular, we have found out that at the Sm-C∗A–Sm-C∗re transition temperature
exactly, the infinitely small electric field is needed to induce the transition from the bidomain anticlinic
ferroelectric phase into the bidomain synclinic ferroelectric phase, which means that at this particular
temperature the free energies of these two phases coincide, and both phases can coexist.
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Appendix A. Average Multiple of Various Projections of Dipole Moments µ and µ∗

Orientation of transverse dipole moment µ located in the molecular tail in {b, c, a} coordinate
system is specified by angle ψ′ (see Figure 2). In {w, m′, n} coordinate system its orientation is specified
by Euler angles ϕ′, θ′ and ψ′:

µw = cos ϕ′ cos ψ′ − cos θ′ sin ϕ′ sin ψ′

µm′ = sin ϕ′ cos ψ′ + cos θ′ cos ϕ′ sin ψ′

µn = sin θ′ sin ψ′,
(A1)

from where it follows that the average multiple of any two projections of dipole moment µ can be
written as:

〈µαµβ〉 = 1
4 (wαwβ + m′αm′β)(1 + 〈cos2 θ′〉)

+ 1
2 nαnβ〈sin2 θ′〉 = 1

2

[(
2
3 + 1

3 S2

)
δαβ − S2nαnβ

]
,

(A2)

where we have taken into account that distribution of azimuthal orientations ϕ′ of flexible tail fragments
a is uniform, while the distribution of polar angles θ′ is non-uniform (〈Pi(cos θ′)〉 = Si), and used the
following property of the orthogonal vectors w, m′ and n:

wαwβ + m′αm′β + nαnβ = δαβ. (A3)

By analogy, one obtains the following expression for the average multiple of any four projections
of dipole moment µ:

〈µαµβµγµδ〉 = 1
8

(
8

15 + 8
21 S2 +

3
35 S4

)
×(δαβδγδ + δβγδαδ + δαγδβδ)

− 1
8

(
4
7 S2 +

3
7 S4

)
(δαβnγnδ + δγδnαnβ + δβγnαnδ

+δαδnβnγ + δαγnβnδ + δβδnαnγ)

+ 3
8 S4nαnβnγnδ.

(A4)

Expanding Equation (15) in Taylor series with respect to polarization p0 up to the third power,
using averages presented in Equations (A2) and (A4), and taking into account that average multiple of
any odd number of projections of dipole moment µ is equal to zero, one obtains Equations (16)–(18)
for polarization.

Orientation of transverse dipole moment µ∗ located in the molecular core in {w, m′, n} coordinate
system is specified by angle ψ (see Figure 2), which in the model of jump rope is equal to ϕ′ + ψ′, and
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thus, can be expressed by the same Equation (A1), where, however, angle θ′ should be put equal to
zero. By analogy to Equations (A2) and (A4), one obtains:

〈µ∗αµ∗β〉 =
1
2
(δαβ − nαnβ), (A5)

〈µ∗αµβ〉 =
1
4
(1 + S1)(δαβ − nαnβ), (A6)

〈µ∗αµβµ∗γµδ〉 = 1
48 (2 + 3S1 + S2)(δαβδγδ + δβγδαδ

−δαβnγnδ − δγδnαnβ − δβγnαnδ − δαδnβnγ)

+ 1
16 (2− S1 + S2)δβδ(δαγ − nαnγ)

+ 1
48 (2 + 3S1 − 11S2)δαγnβnδ

+ 1
48 (2 + 3S1 + 13S2)nαnβnγnδ,

(A7)

〈µ∗αµβµγµδ〉 =

[
1

96 (5 + S2) +
1

64 (S1 + 3S3)

]
(δαβδγδ

+δαγδβδ + δαδδβγ − δγδnαnβ − δβδnαnγ − δβγnαnδ)

−
[

1
48 (2 + S2)− 1

32 (S1 − 3S3)

]
×(δαβnγnδ + δαγnβnδ + δαδnβnγ − 3nαnβnγnδ).

(A8)

Expanding tensors ∆̂, ∆̂
∗ and ∆̂

∗∗ defined in Equations (29)–(31) in Taylor series with respect
to vector q0 up to the third power, using averages presented in Equations (A2) and (A4)–(A8), one
obtains approximations for these tensors presented in the same Equations (29)–(31).

Appendix B. Free Energy Expansion in Taylor Series with Respect to the Local Field

Free energy F{Mi, qk(Mi)} (i, k = 1, 2) is a complex function of the local field Mi (see
Equations (24) and (25)). Let us consider an approximation of the small local fields Mi and expand free
energy F in Taylor series as follows:

F ≈ F0 +
2

∑
i=1

dF
dMi

∣∣∣∣
Mi=0

Mi +
1
2

2

∑
i,j=1

Mi
d2F

dMidMj

∣∣∣∣
Mi,j=0

Mj, (A9)

The total derivatives used in Equation (A9) can be essentially simplified in the case of equilibrium
state. Minimization of free energy (24)–(25) with respect to vectors q1 and q2 gives the following
equations of state:

1
ρkBT

∂F
∂q1

= − 1
Z1

∫
d2adψ f0µ exp(µq1 + µ∗M1)

+ ĝ0q1−2ĝ1q2
ĝ2

0−4ĝ2
1

= 0,
1

ρkBT
∂F
∂q2

= − 1
Z2

∫
d2adψ f0µ exp(µq2 + µ∗M2)

+ ĝ0q2−2ĝ1q1
ĝ2

0−4ĝ2
1

= 0

(A10)

for the synclinic phase, and similar expressions, where tensor ĝ1 is replaced with ĝA
1 , for the anticlinic

phase [see definitions in Equations (8) and (14)]. Here and below let us write all expressions for
the synclinic phase assuming that the same expressions, where ĝ1 is replaced with ĝA

1 , are valid
for the anticlinic phase. From Equation (A10), in particular, it follows that the total derivatives of
the free energy with respect to the local fields Mi (i = 1, 2) in the equilibrium state are equal to the
corresponding partial derivatives:

dF
dMi

=
2

∑
k=1

∂F
∂qk

∂q1

∂Mi
+

∂F
∂Mi

=
∂F

∂Mi
, (A11)
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and one obtains from Equations (24) and (25):

1
ρkBT

dF
dMi

∣∣∣∣
Mi=0
= − 1

Zi

∫
d2adψ f0µ∗ exp(µqi) ≈ ∆̂

∗ 2

∑
j=1

∂qi

∂Mj
Mj, (A12)

where tensor ∆̂
∗ is defined in Equation (30). Using equation of state Equation (A10) once again, by

analogy to Equation (A11), one obtains the following expression for the second total derivatives of the
free energy with respect to the local fields (i, j = 1, 2) in the equilibrium state:

d2F
dMidMj

=
2

∑
k,m=1

∂2F
∂qk∂qm

∂qk
∂Mi

∂qm

∂Mj
+

∂2F
∂Mi∂Mj

. (A13)

Differentiating both Equation (A10) once again with respect to vectors q1 and q2, one obtains:

1
ρkBT

∂2F
∂q2

k

∣∣∣∣
M1,2=0

= ∆̂ + ĝ0
ĝ2

0−4ĝ2
1
, k = 1, 2,

1
ρkBT

∂2F
∂q1∂q2

∣∣∣∣
M1,2=0

= − 2ĝ1
ĝ2

0−4ĝ2
1
,

(A14)

where tensor ∆̂ is defined in Equation (29). Differentiating Equation (A10) with respect to local fields
Mi (i = 1, 2), one obtains:

1
ĝ2

0−4ĝ2
1

(
ĝ0

∂q1
∂Mi
− 2ĝ1

∂q2
∂Mi

)∣∣∣∣
Mi=0
= −∆̂

∗
δ1i − ∆̂

∂q1
∂Mi

∣∣∣∣
Mi=0

1
ĝ2

0−4ĝ2
1

(
ĝ0

∂q2
∂Mi
− 2ĝ1

∂q1
∂Mi

)∣∣∣∣
Mi=0
= −∆̂

∗
δ2i − ∆̂

∂q2
∂Mi

∣∣∣∣
Mi=0

,
(A15)

Combination of Equations (A14) and (A15) yields:

1
ρkBT

(
∂2F
∂q2

1

∂q1
∂Mi

+ ∂2F
∂q1∂q2

∂q2
∂Mi

)∣∣∣∣
Mi=0
= −∆̂

∗
δ1i,

1
ρkBT

(
∂2F
∂q2

2

∂q2
∂Mi

+ ∂2F
∂q1∂q2

∂q1
∂Mi

)∣∣∣∣
Mi=0
= −∆̂

∗
δ2i,

(A16)

Differentiating free energy (24)–(25) twice with respect to local fields, one obtains (i, j = 1, 2):

1
ρkBT

∂2F
∂Mi∂Mj

∣∣∣∣
Mi=0
= ∆̂

∗∗
δij, (A17)

where tensor ∆̂
∗∗ is defined in Equation (31). Substituting Equations (A16) and (A17) into Equation

(A13), then combining the result with Equation (A12), one obtains for the expansion Equation (A9):

F− F0

ρkBT
≈ 1

2

2

∑
i,j=1

Mi∆̂
∗ ∂qi

∂Mj

∣∣∣∣
Mj=0

Mj +
1
2

2

∑
i=1

Mi∆̂
∗∗Mi. (A18)

Solving Equation (A16) for various derivatives ∂qi/∂Mj (i, j = 1, 2), one obtains:

∂qi
∂Mj

∣∣∣∣
Mi=0
= − [ĝ0+(ĝ2

0−4ĝ2
1)∆̂]∆̂

∗

Î+2ĝ0∆̂+∆̂
2
(ĝ2

0−4ĝ2
1)

, i = j,

∂qi
∂Mj

∣∣∣∣
Mi=0
= − 2ĝ1∆̂

∗

Î+2ĝ0∆̂+∆̂
2
(ĝ2

0−4ĝ2
1)

, i 6= j,
(A19)
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where Î is the unit tensor. Substituting Equation (A19) into Equation (A18) and splitting the local field
in each smectic layer into contribution M0, which is the same in every smectic layer, and contribution
∆M, which alternates in sign from layer to layer, one obtains Equations (26)–(28) for the part of the
free energy, explicitly depending on the local field.
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