Supporting Information:

Supplementary Information for Self-Assembly Motifs of Water in Crystals of Palladium β-Amino Acid Complexes Influenced by Methyl Substitution on the Amino Acid β-Carbon.

David B. Hobart, Joseph S. Merola,* Vraj G. Patel, Heather Pendergrass, and Jacqueline Florio

Department of Chemistry, Virginia Tech, Blacksburg, VA 24061

E-mail: jmerola@vt.edu Phone: +1 540 231-4510. Fax: +1 540 231-3255

Contents

1	Table of Results from DFT Calculations	S-3
R	eferences	S-3
2	Proton NMR Spectra	S-4
3	High Resolution Mass Spectra	S-7
4	XRD Full Experimental Results	S-10

Compound	Solvent	ΔG (hartrees)	$\Delta\Delta G$ (trans-cis) (hartrees)	$\Delta\Delta G \ (kJ/mol)$
cis-compound 1	None	-772.827162	0	0
cis-compound 2	None	-851.398244	0	0
cis-compound 3	None	-929.963847	0	0
trans-compound 1	None	-772.86408	-0.03692	-19.31472
trans-compound 2	None	-851.433915	-0.035671	-21.02685
trans-compound 3	None	-930.000513	-0.036666	-21.81848
cis-compound 1	water	-772.902187	0	0
cis-compound 2	water	-851.472101	0	0
cis-compound 3	water	-930.034208	0	0
trans-compound 1	water	-772.909531	-0.007344	-97.0996
trans-compound 2	water	-851.480096	-0.007995	-93.81473
trans-compound 3	water	-930.042504	-0.008296	-96.43158

1 Table of Results from DFT Calculations

DFT calculations using the WebMO interface S1 to Gaussian 09^{S2} at the B3LYP level of theory S3,S4 using the lanl2dz basis set S5 were carried out on the two isomers of all compounds.

References

- (S1) Schmidt, J.; Polik, W. WebMO Enterprise. https://www.webmo.net/.
- (S2) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; J. A. Montgomery, J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian09*; 2016.
- (S3) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.
- (S4) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B* 1988, 37, 785–789.
- (S5) Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310.

2 Proton NMR Spectra

3 High Resolution Mass Spectra

High Resolution Mass Spectrum for Compound 1, bis-(3-aminopropionato)palladium(II)

High Resolution Mass Spectrum for Compound 2, bis-(3-aminobutanato)palladium(II)

The peaks are fully consistent with the Pd isotope distribution and with all peaks being (M+H)+ ions

High Resolution Mass Spectrum for Compound 3, bis-(3-amino-3-methylbutanato)palladium(II)

The peaks are fully consistent with the Pd isotope distribution and with all peaks being (M+H)+ ions

4 XRD Full Experimental Results

Compound 1.....Page S11

Compound 2.....Page S18

Compound 3.....Page S26

Compound 1 Full X-Ray Results

Table 1 Crystal data and structure refinement for Compound 1

Identification code	JF6-1
Empirical formula	$C_6H_{12}N_2O_4Pd$
Formula weight	282.58
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	5.6938(3)
b/Å	8.8497(4)
c/Å	9.0421(5)
$\alpha/^{\circ}$	90
β/°	104.686(6)
$\gamma^{/\circ}$	90
Volume/Å ³	440.73(4)
Z	2
$ ho_{calc}g/cm^3$	2.129
µ/mm ⁻¹	2.090
F(000)	280.0
Crystal size/mm ³	$0.39 \times 0.12 \times 0.1$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/	^o 7.68 to 64.158
Index ranges	$-8 \le h \le 8, -13 \le k \le 13, -12 \le l \le 10$
Reflections collected	4467
Independent reflections	1451 [$R_{int} = 0.0315$, $R_{sigma} = 0.0356$]
Data/restraints/parameters	1451/0/62
Goodness-of-fit on F ²	1.041 S 11
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0215, wR_2 = 0.0430^{11}$

8/26/2019

JF6-1

Final R indexes [all data] $R_1 = 0.0328$, $wR_2 = 0.0512$

Largest diff. peak/hole / e Å $^{-3}$ 0.76/-0.78

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for JF6-1. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
Pd1	5000	5000	5000	6.88(8)
O1	7169(3)	5394.3(17)	3601.2(18)	12.9(3)
O2	7978(3)	6080.3(17)	1441.5(18)	15.5(3)
N1	2602(3)	6659.7(19)	4100.0(19)	10.4(3)
C3	3226(4)	7604(2)	2907(3)	12.6(4)
C1	6524(4)	6003(2)	2250(2)	11.2(4)
C2	3989(4)	6653(2)	1705(2)	12.0(4)

Table 3 Anisotropic Displacement Parameters (Å ² ×10 ³) for JF6-1. The Anisotropic
displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pd1	7.40(11)	7.10(11)	6.24(11)	0.31(8)	1.90(8)	0.66(8)
01	10.9(7)	17.6(7)	11.1(7)	4.3(6)	4.7(6)	1.9(6)
02	14.9(8)	18.0(8)	15.7(8)	4.6(6)	7.8(7)	1.1(6)
N1	12.5(8)	10.2(8)	9.3(8)	0.3(7)	3.9(7)	2.2(7)
C3	14.4(9)	10.9(9)	12.0(10)	3.4(8)	2.5(8)	2.1(8)
C1	12.8(9)	8.6(9)	12.2(10)	-0.4(8)	3.2(8)	-0.8(7)
C2	11.1(9)	15.4(10)	9.4(9)	4.0(8)	2.3(8)	1.7(8)

Table Aton	e 4 Boi n Aton	nd Lengths for JF6-1. 1 Length/Å	Ator	n Atom	Length/Å
Pd1	O1 ¹	2.0097(16)	O2	C1	1.238(3)
Pd1	01	2.0097(16)	N1	C3	1.477(3)
Pd1	N1	2.0300(16)	C3	C2	1.522(3)
Pd1	N1 ¹	2.0300(16)	C1	C2	1.516(3)
01	C1	1.300(3)			

¹1-X,1-Y,1-Z

Table 5 Bond Angles for JF6-1.							
Atom Atom Atom			Angle/°	Ator	n Atoi	Angle/°	
01 ¹	Pd1	01	180.00(6)	C3	N1	Pd1	116.11(13)
01	Pd1	N1 ¹	85.39(7)	N1	C3	C2	111.95(17)
01 ¹	Pd1	N1	85.39(7)	01	C1	C2	118.82(19)
01 ¹	Pd1	N1 ¹	94.61(7)	02	C1	01	120.41(19)
01	Pd1	N1	94.61(7)	02	C1	C2	120.75(19)
$N1^1$	Pd1	N1	180.0	C1	C2	C3	113.47(18)
C1	01	Pd1	126.23(14)				

¹1-X,1-Y,1-Z

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and

Isotropic Displacement Parameters (Å	A ² ×10 ³) for JF6-1
--------------------------------------	---

Atom	x	У	z	U(eq)
H1A	1162	6236	3705	13
H1B	2444	7262	4858	13
H3A	4540	8282	3380	15
H3B	1831	8215	2416	15
H2A	2843	5830	1402	14
H2B	3913	7273	809	14

Experimental

Single crystals of $C_6H_{12}N_2O_4Pd$ [JF6-1] were [From water/acetone]. A suitable crystal was selected and [On fiber] on a Xcalibur, Eos, Gemini ultra diffractometer. The crystal was kept at 100.00(10) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Intrinsic Phasing and refined with the ShelXL [3] refinement package using Least Squares minimisation.

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.

3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of [JF6-1]

Crystal Data for C₆H₁₂N₂O₄Pd (M = 282.58 g/mol): monoclinic, space group P2₁/n (no. 14), a = 5.6938(3) Å, b = 8.8497(4) Å,

c = 9.0421(5) Å, $\beta = 104.686(6)^{\circ}$, V = 440.73(4) Å³, Z = 2, T = 100.00(10) K, $\mu(MoK\alpha) = 2.090$ mm⁻¹, Dcalc = 2.129 g/cm³, 4467 reflections measured ($7.68^{\circ} \le 2\Theta \le 64.158^{\circ}$), 1451 unique ($R_{int} = 0.0315$, $R_{sigma} = 0.0356$) which were used in all calculations. The final R_1 was 0.0215 (I > 2 σ (I)) and wR_2 was 0.0512 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details:
1. Fixed Uiso
At 1.2 times of:
 All C(H,H) groups, All N(H,H) groups
2.a Secondary CH2 refined with riding coordinates:
 N1(H1A,H1B), C3(H3A,H3B), C2(H2A,H2B)

This report has been created with Olex2, compiled on 2018.05.29 svn.r3508 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.

Compound 2 Full X-Ray Results

HP-23_abs

Table 1 Crystal data and structure refinement for compound 2

Tuble I eijstul ullu sti	detai e i ennemente i el compound 2
Identification code	HP-23_abs
Empirical formula	$C_{16}H_{44}N_4O_{15}Pd_2$
Formula weight	745.35
Temperature/K	100.15
Crystal system	monoclinic
Space group	I2
a/Å	10.7593(2)
b/Å	7.38120(10)
c/Å	17.8370(3)
$\alpha/^{\circ}$	90
β/°	97.217(2)
$\gamma/^{\circ}$	90
Volume/Å ³	1405.33(4)
Z	2
$\rho_{calc}g/cm^3$	1.761
μ/mm^{-1}	1.352
F(000)	760.0
Crystal size/mm ³	$0.2973 \times 0.2328 \times 0.198$
Radiation	$MoK\alpha (\lambda = 0.71073)$
2Θ range for data collection/°	7.462 to 64.882
Index ranges	$-15 \le h \le 15, -10 \le k \le 11, -26 \le l \le 26$
Reflections collected	14648
Independent reflections	4716 [$R_{int} = 0.0381$, $R_{sigma} = 0.0425$]
Data/restraints/parameters	4716/1/187
Goodness-of-fit on F ²	1.087
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0254, wR_2 = 0.0528$
Final R indexes [all data]	$R_1 = 0.0292, wR_2 = 0.0556$
Largest diff. peak/hole / e Å $^{-3}$	0.89/-0.68
Flack parameter	0.003(18)

HP-23_abs

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for HP-23_abs. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z	U(eq)
Pd1	4008.0(2)	9044.1(5)	2914.2(2)	9.20(6)
01	2472(2)	8537(3)	2172.2(13)	14.9(6)
O2	461(2)	8531(3)	1764.5(14)	18.1(6)
O3	4787.0(19)	9343(5)	1950.3(12)	14.6(8)
O4	6310(2)	9782(4)	1252.7(13)	15.6(5)
N1	3110(2)	8794(6)	3833.6(14)	11.4(8)
N2	5608(2)	9483(4)	3608.2(14)	10.9(6)
C1	1314(3)	8630(4)	2293(2)	14.2(7)
C2	1016(3)	8832(8)	3097.3(17)	15.4(10)
C3	1890(3)	7828(5)	3695.4(19)	12.4(6)
C4	1296(3)	7663(6)	4423(2)	19.3(8)
C5	5958(3)	9488(4)	1876.7(18)	12.3(7)
C6	6916(3)	9239(8)	2568.9(16)	11.5(8)
C7	6665(3)	10319(5)	3265.4(18)	10.6(6)
C8	7831(3)	10350(5)	3848.6(19)	15.7(7)
05	-1335(2)	10685(4)	1067.3(15)	17.2(5)
06	5000	7012(6)	5000	18.2(10)
O7	2453(3)	12517(4)	4339.4(15)	19.7(6)
08	5000	11572(6)	5000	18.0(10)
09	10000	13034(6)	5000	23.8(9)

Table 3 Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for HP-23_abs. The Anisotropic displacement factor exponent takes the form:

 $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...].$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pd1	7.32(9)	12.25(10)	8.02(10)	-0.27(13)	0.91(6)	-0.63(13)
01	9.3(10)	23.9(16)	11.2(11)	-1.1(9)	0.8(8)	-3.1(9)
O2	12.6(11)	22.5(15)	18.0(12)	1.0(9)	-2.7(9)	-0.8(9)
O3	7.6(9)	26(2)	10.2(9)	2.6(10)	1.7(7)	-2.9(10)
O4	11.6(11)	25.1(13)	10.5(11)	2.2(9)	3.2(9)	-1.3(10)
N1	8.6(10)	17(2)	9.4(11)	0.7(12)	2.7(8)	-0.8(12)
N2	9.5(11)	15.0(17)	8.4(11)	-0.4(9)	2.0(9)	-0.6(9)
C1	12.7(14)	14(2)	15.8(15)	0.0(11)	0.8(11)	-1.8(11)
C2	7.0(11)	22(3)	16.8(14)	-2.5(16)	1.0(10)	-1.1(16)
C3	11.4(15)	14.9(16)	11.2(15)	-1.4(12)	2.8(12)	-3.1(12)
C4	15.8(17)	28(2)	15.7(17)	-1.6(15)	7.0(13)	-6.4(15)
C5	11.1(14)	14.5(19)	11.2(14)	-1.6(11)	0.8(11)	-0.1(11)
C6	8.6(11)	17(2)	9.4(11)	0.2(15)	2.1(9)	-0.7(15)
C7	8.8(14)	10.8(15)	12.1(15)	0.1(12)	1.2(11)	-1.8(12)
C8	13.1(15)	21.9(19)	11.3(16)	-1.9(13)	-0.8(12)	-2.9(13)
O5	14.6(12)	18.4(14)	19.2(14)	5.8(10)	3.9(10)	-0.5(10)
06	20(2)	19(2)	17(2)	0	7.9(17)	0
O7	20.2(13)	21.2(14)	17.3(13)	0.9(11)	0.8(10)	4.7(11)
08	19(2)	16(2)	17(2)	0	-3.3(17)	0
09	33(2)	21(2)	14.6(19)	0	-8.8(16)	0

Table 4 Bond Lengths for HP-23_abs.

Lan		<i>i</i> Denguis for fit =25_abs.			
Aton	n Atom	Length/Å	Ator	n Atom	Length/Å
Pd1	01	2.018(2)	N1	C3	1.487(4)
Pd1	O3	2.017(2)	N2	C7	1.491(4)
Pd1	N1	2.013(2)	C1	C2	1.516(5)
Pd1	N2	2.016(2)	C2	C3	1.523(5)
01	C1	1.293(4)	C3	C4	1.522(5)
O2	C1	1.232(4)	C5	C6	1.517(4)
O3	C5	1.287(4)	C6	C7	1.529(5)
O4	C5	1.239(4)	C7	C8	1.526(5)

HP-23_abs

Tabl	Table 5 Bond Angles for HP-23_abs.						
Aton	n Aton	n Atom	Angle/°	Ator	n Atoı	n Atom	Angle/°
O3	Pd1	01	81.67(9)	O2	C1	C2	120.3(3)
N1	Pd1	01	94.59(10)	C1	C2	C3	115.5(3)
N1	Pd1	O3	175.85(10)	N1	C3	C2	109.7(3)
N1	Pd1	N2	88.55(10)	N1	C3	C4	110.7(3)
N2	Pd1	01	176.40(10)	C4	C3	C2	110.4(3)
N2	Pd1	O3	95.26(9)	O3	C5	C6	118.7(3)
C1	01	Pd1	127.4(2)	O4	C5	O3	121.3(3)
C5	O3	Pd1	127.8(2)	O4	C5	C6	119.9(3)
C3	N1	Pd1	114.4(2)	C5	C6	C7	115.3(3)
C7	N2	Pd1	116.83(19)	N2	C7	C6	109.8(3)
01	C1	C2	119.0(3)	N2	C7	C8	109.3(3)
O2	C1	O1	120.7(3)	C8	C7	C6	110.3(3)

Table 6 Hydrogen Atom Coordinates $({\rm \AA}{\times}10^4)$ and

Isotropic Displacement Parameters (Å	$(^{2}\times10^{3})$	for HP-
--------------------------------------	----------------------	---------

23_abs.				
Atom	x	у	Z.	U(eq)
H1A	3616.83	8189.3	4197.23	14
H1B	2975.61	9919.87	4014.96	14
H2A	5427.48	10210.18	3992.2	13
H2B	5875.31	8403.33	3815.4	13
H2C	150.93	8397.14	3118.63	19
H2D	1036.82	10136.83	3227.04	19
H3	2039.92	6583.12	3504.4	15
H4A	1872.4	7029.56	4804.49	29
H4B	511.91	6979.23	4324.97	29
H4C	1121.41	8875.55	4608.09	29
H6A	7749.39	9589.16	2435.75	14
H6B	6953.72	7936.76	2702.54	14
H7	6435.91	11590.14	3110.5	13
H8A	7634.77	10949.05	4309.8	23
H8B	8500.88	11016.29	3643.61	23
H8C	8107.1	9106.14	3966.8	23
H5A	-874.37	9936.96	1359.25	26
H5B	-934.35	10820.35	676.6	26
H6	4602.46	6112.58	5176.76	27
H7A	2930.32	12922.18	4733.89	30
H7B	1695.23	12763.19	4429.8	30
H8D	4497.19	11965.16	4614.04	27
H8E	5502.39	12476.8	5124.31	27
H9A	9727.87	13901.4	4692.02	36
H9B	10575.93	13541.54	5317.79	36

Experimental

Single crystals of C₁₆H₄₄N₄O₁₅Pd₂ [HP-23_abs] were [From methanol/acetone/water]. A suitable crystal was selected and [on kryton fiber] on a Xcalibur, Eos, Gemini ultra diffractometer. The crystal was kept at 100.15 K during data collection. Using Olex2 [1], the structure was solved with the ShelXS [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of [HP-23_abs]

Crystal Data for C₁₆H₄₄N₄O₁₅Pd₂ (*M* =745.35 g/mol): monoclinic, space group I2 (no. 5), *a* = 10.7593(2) Å, *b* = 7.38120(10) Å, *c* = 17.8370(3) Å, $\beta = 97.217(2)^{\circ}$, V = 1405.33(4) Å³, Z = 2, T = 100.15 K, $\mu(MoK\alpha) = 1.352$ mm⁻¹, Dcalc = 1.761 g/cm³, 14648 reflections measured (7.462° $\leq 2\Theta \leq 64.882^{\circ}$), 4716 unique ($R_{int} = 0.0381$, $R_{sigma} = 0.0425$) which were used in all calculations. The final R_1 was 0.0254 (I > 2 σ (I)) and wR_2 was 0.0556 (all data). S-24

Table 7 Atomic Occupancy for HP-23_abs.							
Atom	Occupancy	Atom	Occupancy	Atom	Occupancy		
H6	0.5	H8D	0.5	H8E	0.5		
H9A	0.5	H9B	0.5				

Experimental

Single crystals of $C_{16}H_{44}N_4O_{15}Pd_2$ [HP-23_abs] were [From methanol/acetone/water]. A suitable crystal was selected and [on kryton fiber] on a Xcalibur, Eos, Gemini ultra diffractometer. The crystal was kept at 100.15 K during data collection. Using Olex2 [1], the structure was solved with the ShelXS [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation.

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

2. Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of [HP-23_abs]

Crystal Data for $C_{16}H_{44}N_4O_{15}Pd_2$ (*M* =745.35 g/mol): monoclinic, space group I2 (no. 5), a = 10.7593(2) Å, b = 7.38120(10) Å, c = 10.7593(10) Å, c = 10.759

17.8370(3) Å, $\beta = 97.217(2)^{\circ}$, V = 1405.33(4) Å³, Z = 2, T = 100.15 K, $\mu(MoK\alpha) = 1.352$ mm⁻¹, Dcalc = 1.761 g/cm³, 14648 reflections measured (7.462° $\leq 2\Theta \leq 64.882^{\circ}$), 4716 unique ($R_{int} = 0.0381$, $R_{sigma} = 0.0425$) which were used in all calculations. The final R_1 was 0.0254 (I > 2 σ (I)) and wR_2 was 0.0556 (all data).

Refinement model description

Number of restraints - 1, number of constraints - unknown.

Details: 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups, All N(H,H) groups At 1.5 times of: All C(H,H,H) groups, All O(H) groups, All O(H,H) groups 2. Others Fixed Sof: H6(0.5) H8D(0.5) H8E(0.5) H9A(0.5) H9B(0.5) 3.a Free rotating group: O5(H5A,H5B), O6(H6), O7(H7A,H7B), O8(H8D,H8E), O9(H9A,H9B) 3.b Ternary CH refined with riding coordinates: C3(H3), C7(H7) 3.c Secondary CH2 refined with riding coordinates: N1(H1A,H1B), N2(H2A,H2B), C2(H2C,H2D), C6(H6A,H6B) 3.d Idealised Me refined as rotating group: C4(H4A,H4B,H4C), C8(H8A,H8B,H8C)

This report has been created with Olex2, compiled on May 18 2018 14:05:52 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.

Complex 3 Full X-ray Data

Table 1 Crystal data and structure refinement for Compound 3

Identification code	VGP-beta1
Empirical formula	$C_{10}H_{32}N_2O_{10}Pd$
Formula weight	446.77
Temperature/K	97(5)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	12.4228(5)
b/Å	7.0497(2)
c/Å	12.5509(5)
α/°	90
β/°	117.080(5)
γ/°	90
Volume/Å ³	978.67(7)
Z	2
$\varrho_{calc}g/cm^3$	1.516
μ/mm^{-1}	0.993
F(000)	464.0
Crystal size/mm ³	$0.4 \times 0.214 \times 0.114$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	° 6.932 to 64.77
Index ranges	$-18 \le h \le 18, -10 \le k \le 126 - 17 \le l \le 18$
Reflections collected	9102

Independent reflections	3258 [$R_{int} = 0.0379, R_{sigma} = 0.0474$]				
Data/restraints/parameters	3258/0/140				
Goodness-of-fit on F ²	1.055				
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0280, wR_2 = 0.0553$				
Final R indexes [all data]	$R_1 = 0.0448, wR_2 = 0.0636$				
Largest diff. peak/hole / e Å ⁻³ $0.62/-0.75$					

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for VGP-beta1. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z.	U(eq)
Pd1	5000	5000	5000	8.91(6)
01	5999.0(13)	3255.9(19)	4567.4(12)	14.2(3)
O2	6435.7(14)	1362(2)	3434.6(13)	19.5(3)
N1	3442.1(16)	4353(2)	3508.3(15)	11.0(3)
C1	5663.0(18)	2213(3)	3634.7(17)	13.6(4)
C2	4347.4(18)	2010(3)	2712.0(17)	15.6(4)
C3	3332.7(18)	2360(3)	3063.4(17)	12.5(4)
C4	2113.4(19)	2124(3)	1938.2(18)	19.8(4)
C5	3396(2)	1024(3)	4047(2)	21.1(5)
05	11081.8(14)	5053(3)	3562.9(14)	18.9(3)
03	8803.6(16)	3128(2)	-7.1(15)	19.4(3)
O4	9847.6(16)	6496(3)	1261.4(17)	21.1(3)

Table 3 Anisotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for VGP-beta1. The Anisotropic displacement factor exponent takes the form: - $2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

		$0 \ 0 \ 12 \ 12 \ 12$				
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pd1	10.09(9)	9.21(9)	7.68(9)	-0.33(8)	4.26(7)	1.03(8)
01	14.5(7)	15.0(7)	13.4(7)	-3.6(5)	6.5(6)	1.6(5)
O2	17.5(8)	24.2(8)	17.4(7)	-6.8(6)	8.5(6)	2.5(6)
N1	11.7(8)	11.6(7)	9.2(8)	0.6(6)	4.4(6)	1.5(6)
C1	15.8(10)	12.3(9)	13.0(9)	1.0(7)	7.0(8)	0.7(7)
C2	15.8(10)	15.6(10)	13.8(9)	-4.5(8)	5.4(8)	2.7(7)
C3	12.4(9)	10.3(9)	13.5(9)	-0.6(7)	4.6(7)	-0.1(7)
C4	15.8(10)	19.6(10)	18.8(10)	-5.2(9)	3.4(8)	-2.1(8)
C5	20.6(11)	17.1(11)	23.7(11)	5.2(9)	8.4(9)	-0.3(8)
O5	20.9(8)	17.9(8)	19.4(8)	-4.8(7)	10.5(6)	-1.6(7)
O3	16.1(8)	22.1(9)	18.6(8)	1.1(7)	6.6(7)	-2.0(7)
O4	21.9(9)	24.8(9)	20.6(9)	-0.3(7)	13.1(7)	-0.2(7)

Table 4 Bond Lengths for VGP-beta1.

Atom	n Atom	Length/Å	Aton	n Atom	Length/Å
Pd1	01 ¹	1.9900(14)	N1	C3	1.495(2)
Pd1	01	1.9900(14)	C1	C2	1.520(3)
Pd1	$N1^1$	2.0396(17)	C2	C3	1.533(3)
Pd1	N1	2.0396(17)	C3	C4	1.539(3)
01	C1	1.281(2)	C3	C5	1.526(3)
O2	C1	1.251(2)			

¹1-X,1-Y,1-Z

Table	Table 5 Bond Angles for VGP-beta1.							
Aton	n Aton	n Atom	Angle/°	Aton	n Ator	n Atom	Angle/°	
O1 ¹	Pd1	01	180.0	O2	C1	O1	119.89(18)	
01	Pd1	N1	93.46(6)	O2	C1	C2	117.35(17)	
01	Pd1	$N1^1$	86.54(6)	C1	C2	C3	120.37(17)	
01 ¹	Pd1	N1	86.54(6)	N1	C3	C2	108.17(16)	
01 ¹	Pd1	$N1^1$	93.46(6)	N1	C3	C4	109.20(15)	
N1	Pd1	$N1^1$	180.0	N1	C3	C5	108.40(16)	
C1	01	Pd1	128.30(13)	C2	C3	C4	108.25(16)	
C3	N1	Pd1	116.11(12)	C5	C3	C2	112.74(17)	
01	C1	C2	122.72(18)	C5	C3	C4	110.02(17)	

¹1-X,1-Y,1-Z

Table 6 Hydrogen Bonds for VGP-beta1.

D	Η	Ă	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N1 H	H1A	$O2^1$	0.84(2)	2.06(3)	2.883(2)	167(2)
05 H	H5D	O3 ²	0.72(3)	2.07(3)	2.788(2)	173(3)
05 H	H5E	O4 ³	0.84(4)	1.98(4)	2.811(3)	170(3)
O3 F	H3A	O2 ⁴	0.75(3)	1.96(3)	2.715(2)	175(3)
O3 H	H3B	O4	0.78(4)	2.05(4)	2.823(3)	170(5)
O4 H	H4D	O3 ⁵	0.70(3)	2.09(3)	2.785(3)	176(3)
O4 H	H4E	05	0.74(5)	2.03(5)	2.774(2)	175(6)

¹1-X,1/2+Y,1/2-Z; ²2-X,1/2+Y,1/2-Z; ³2-X,-1/2+Y,1/2-Z; ⁴+X,1/2-Y,-1/2+Z; ⁵2-X,1-Y,-Z

Table 7 Torsion Angles for VGP-beta1.

A B C D	Angle/°	ABCD	Angle/°
Pd1 O1 C1 O2	171.77(13)	O1 C1 C2 C3	-24.6(3)
Pd1 O1 C1 C2	-5.8(3)	O2 C1 C2 C3	157.79(18)
Pd1N1C3C2	-62.19(18)	C1 C2 C3 N1	59.7(2)
Pd1N1C3C4	-179.79(13)	C1 C2 C3 C4	177.87(18)
Pd1N1C3C5	60.36(19)	C1 C2 C3 C5	-60.2(2)

Table 8 Hydrogen Atom Coordinates (Å×10⁴) and

Isotropic Displacement Parameters (Å²×10³) for VGPbeta1.

Atom	x	У	z	U(eq)
H1A	3420(20)	5080(30)	2970(20)	16(6)
H1B	2860(20)	4590(30)	3670(20)	19(6)
H2A	4244	733	2393	19
H2B	4214	2867	2059	19
H4A	1466	2369	2137	30
H4B	2046	852	1641	30
H4C	2068	3003	1335	30
H5A	4152	1200	4751	32
H5B	3336	-265	3778	32
H5C	2742	1295	4230	32
H5D	11110(30)	5790(40)	3980(30)	36(9)
H5E	10790(30)	4040(50)	3690(30)	68(12)
H3A	8140(30)	3200(40)	-440(30)	33(8)
H3B	9010(40)	4090(60)	320(40)	103(17)
H4D	10200(30)	6640(40)	960(30)	34(9)
H4E	10160(50)	6150(70)	1890(50)	140(20)

Experimental

Single crystals of $C_{10}H_{32}N_2O_{10}Pd$ [VGP-beta1] were [From methanol/acetone/water]. A suitable crystal was selected and [On a fiber with kryton fluid.] on a Xcalibur, Eos, Gemini ultra diffractometer. The crystal was kept at 97(5) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation.

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

- 2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of [VGP-beta1]

Crystal Data for $C_{10}H_{32}N_2O_{10}Pd$ (*M* =446.77 g/mol): monoclinic, space group $P2_1/c$ (no. 14), a = 12.4228(5) Å, b = 12.4228(5)

7.0497(2) Å, c = 12.5509(5) Å, $\beta = 117.080(5)^{\circ}$, V = 978.67(7) Å³, Z = 2, T = 97(5) K, $\mu(MoK\alpha) = 0.993$ mm⁻¹, Dcalc = 1.516 g/cm³, 9102 reflections measured (6.932° $\leq 2\Theta \leq 64.77^{\circ}$), 3258 unique ($R_{int} = 0.0379$, $R_{sigma} = 0.0474$) which were used in all calculations. The final R_1 was 0.0280 (I > 2 σ (I)) and wR_2 was 0.0636 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown.

```
Details:
1. Fixed Uiso
At 1.2 times of:
All C(H,H) groups
At 1.5 times of:
All C(H,H,H) groups
2.a Secondary CH2 refined with riding coordinates:
C2(H2A,H2B)
2.b Idealised Me refined as rotating group:
C4(H4A,H4B,H4C), C5(H5A,H5B,H5C)
```